• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of Mg2+on boron incorporation into carbonate and the infl uence of B/Ca proxies for the deep ocean carbonate system

    2016-03-21 03:17:03HEMaoyongXIAOYingkai
    地球環(huán)境學(xué)報 2016年3期
    關(guān)鍵詞:碳酸鹽方解石中國科學(xué)院

    HE Maoyong, XIAO Yingkai

    (1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; 3. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, China)

    The effect of Mg2+on boron incorporation into carbonate and the infl uence of B/Ca proxies for the deep ocean carbonate system

    HE Maoyong1,3, XIAO Yingkai2

    (1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; 3. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, China)

    Background, aim, and scopeB/Ca proxies for the deep ocean carbonate system is an important proxy to evaluate carbon sink in sea. Mg2+is common element in sea which can effect B/Ca values of marine carbonate.Materials and methodsThe infl uence of Mg2+in a parent solution on boron incorporation in an inorganic carbonate precipitate is studied using a different solubility method technique. The calcium carbonate precipitate is characterized by scanning electron microscopy and X-ray diffraction. The boron concentration of the samplers is analyzed by ICP-AES.ResultsThe calcium carbonate precipitate is confi rmed to be low-Mg calcite. The boron concentrations in the precipitated calcite increased from 63.91 μg·g-1to 582.41 μg·g-1when the artifi cial solution pH values increased from 7.40 ± 0.03 to 8.80 ± 0.03.DiscussionThe results show that boron uptake by low-Mg calcite is greater than boron uptake by free-Mg calcite grown under nearly identical conditions, and the boron concentration in low-Mg calcite is higher than in free-Mg calcite by 2.57 average time (from 1.83 to 3.56). This result suggests that the mechanism for borate-boron co-precipitation with Mg2+present is different than without Mg2+present, and the Mg2+clearly modifies calcite crystal morphology, as identified in SEM images.ConclusionspH has a signifi cant effect on the incorporation of boron into synthetic carbonate, and the Mg2+also infl uence on boron incorporation into calcite precipitate.Recommendations and perspectivesThe data provide a signifi cant scientifi c basis for B/Ca proxies for the deep ocean carbonate system. It is recommended that the Mg2+would be consider when using B/Ca proxies.

    effect; magnesium ions; boron; precipitated inorganic carbonate

    1 Introduction

    Based on the research by Hemming and Hanson (1992), the foraminifera B/Ca ratios have increasingly been used as a paleo-carbonate ion or paleo-pH proxy because borate ions are preferentially incorporated into the calcite lattice relative to boric acid (Foster, 2008; Yu et al, 2010). In recent years, foraminiferal B/Ca ratio analysis, which is a paleoceanographic method with significant potential, has generated significant concern (H?nisch and Allen, 2013). Marine carbonates (e.g., corals and foraminifera) from sediment core or culture experiments reveal that the ratios of boron to calcium (B/Ca) varied with pH, temperature, light, salinity, and seawater boron concentration (Rae et al, 2011; Kender et al, 2014). To apply boron trace element abundance as a geochemical tracer, the factors that influence boron uptake by calcium carbonate must be discerned (Liu et al, 2010; Deng et al, 2012; Xiao et al, 2012). Over the past few decades, several inorganic calcite precipitation experiments have been performed to evaluate the factors that infl uence boron incorporation into marine biocarbonates by comparing such incorporation with that of boron into inorganic calcite, yielding signifi cant achievements. For example, the level of boron coprecipitated into calcite increased by increasing the parent solution pH; the level of boron that coprecipitates with CaCO3is proportional to the concentration of boron in the parent solution; boron is coprecipitated more readily with aragonite than calcite; and the content in aragonite is higher than calcite by 1.5 to 2 (Hemming et al, 1995; Sanyal et al, 2000; Xiao et al, 2006, 2008; Astilleros et al, 2010; Ruiz-Agudo et al, 2010; Dissard et al, 2012).

    In recent years, the role of magnesium in the growth of calcite was considered. For inorganic calcite precipitation, boron incorporation into Mg(OH)2and boron isotope fractionation during brucite deposition experiments by Xiao et al (2006, 2008) and Xiao et al (2009, 2011) showed that the adsorption capacity for boron with Mg2+was comparatively strong in the presence of Mg2+. Astilleros et al (2002, 2010) systematically studied the role of Mg2+in the growth of calcite by the AFM. They provided an explanation for the development of “dead zones”, which was based on the restrictions that the underlying substrate imposes on the lateral spread of overgrowing layers (the “template effect”).

    The main objective of this study was to further assess the influence of magnesium ions on boron incorporation in an inorganic carbonate precipitate. These experiments were conducted (1) to evaluate the systematics of boron coprecipitation in carbonates with Mg2+at different pH, (2) to determine the effect of Mg2+on boron incorporation into precipitated inorganic carbonate, and (3) to improve the understanding of the mechanisms driving the boron and magnesium incorporation into calcium carbonate.

    2 Experiment

    2.1 Instrumentation

    ICP-AES (Perkin Elmer Optima 4300DV) was used to analyze boron concentrations.

    The morphologies of the dry precipitates were characterized by Powder X-ray Diffraction (PXRD), and the shapes, particle size distributions, and aspect ratios of the particles were observed by Scanning Electron Microscope (SEM).

    2.2 Reagents and materials

    All chemical reagents used in this study were purchased from the Tianjin Kermel Reagent Co. Ltd. High-purity NH3and CO2gases (≥99.99%) were usedtoo. MgCO3· 3H2O was synthesized from MgCl2and (NH4)2CO3(Wang et al, 2008).

    2.3 Experimental methods

    2.3.1 CaCO3precipitation

    CaCO3was precipitated via a different solubility method technique. The experimental setup has been described in our previous work (He et al, 2013). Synthesized MgCO3· 3H2O (0.138 g) was added slowly to the artificial magnesium-free seawater instead of Li2CO3. And approximately 100 mg of calcium carbonate was generated. The samples were treated following the method of He et al (2013) too.

    2.3.2 Powder X-ray Diffraction (PXRD) and Scanning Electron Microscope (SEM)

    X-ray diffraction (XRD) measurements were conducted using an X'Pert PRO MPD with Cu-Kαradiation (40 kV, 200 mA), and 0.02 step and 2θrange of 20° to 60° were selected to analyze the crystal structure and crystal orientation.

    The sizes and morphologies of the CaCO3precipitates were characterized using a JEOS JSM-6700F scanning electron microscope at 20 kV after sputter-coating with Au.

    3 Results and Discussion

    3.1 Characterization of precipitated CaCO3

    The solids recovered from the coprecipitation experiments were characterized with XRD to distinguish calcite from the other polymorphs of CaCO3(Fig.1).

    Fig.1 shows the representative XRD patterns of the CaCO3obtained in the presence of Mg2+at 15 h with variable pH. All of the relatively sharp peaks are characteristic of low-Mg calcite (LMC) of (Mg0.03Ca0.97) (CO3) (JCPDS file: 01-089-1304). Vousdoukas et al (2007) documented that LMC (a polymorph of CaCO3, containing less than 4% MgCO3with a formula (Mg0.03Ca0.97)(CO3)) is the dominant precipitated carbonate phase as a result of water mixing. This has been confi rmed in the present study.

    The crystal structures of carbonate can be further identified by evaluating their SEM. Fig.2 shows representative SEM images of low-Mg-calcite (LMC).

    Fig.1 XRD patterns of CaCO3prepared in different pH conditions: (a) pH = 7.8, (b) pH = 8.2, and (c) pH = 8.6

    3.2 The effect of pH on boron incorporation into calcite precipitate with/without Mg2+

    Fig.3 shows plots of the boron concentrations measured experimentally in low-Mg calcites. The results indicate that pH has a significant effect on the incorporation of boron into low-Mg calcites. The amount of co-precipitated boron increased with the parent solution pH, from 63.91 μg·g-1at pH = 7.4 to 582.41 μg·g-1at pH = 8.8. The fi ndings of the current study are consistent with previous results of boron incorporation into CaCO3by Sanyal et al (2000), Xiao et al (2008), and He et al (2013). As shown in Fig.3, the primary factor controlling boron incorporation into precipitated synthetic arbonate was the parent solution pH. The level of boron that coprecipitated with carbonate increased with the parent solution pH, with or without Mg2+in the solution. The Mg2+modifies calcite crystal morphology to influence on boron incorporation into calcite precipitate.

    At low boron concentrations (B≤0.025 M), boron primarily forms two molecular species in solution: B(OH)3(boric acid; planar, trigonally coordinated) and(borate ion, tetrahedrally coordinated). The following equilibrium is found:

    Fig.2 SEM images of CaCO3crystals (a) This study at pH = 8.2 and (b) He et al (2013) at pH = 8.2.

    Fig.3 Measured boron content of precipitated carbonates relative to pH

    Based on the research by Hemming and Hanson (1992). the incorporation ofinto marine carbonate follows the equilibrium reaction:

    CaCO3+? Ca(HBO3) ++ H2O (2)

    3.3 The effect of Mg2+on boron incorporation into calcite precipitate

    Fig.2a is SEM images of LMC in the presence of Mg2+, and Fig.2b is SEM images of calcite precipitated at same condition without Mg2+. Fig.2 indicates that the presence of Mg2+has clearly been shown to modify calcite crystal morphology. It also supports previous research that Mg2+can alter the crystal structure (Paquette and Reede, 1995; Park et al, 2008). Mg2+has a higher affinity for certain sites, and it is likely adsorption or dehydration during incorporation that preferentially reduces growth in specific directions, such as toward the edges and corners. This nonuniform Mg2+adsorption on the calcite surface produces new crystal surfaces, which have a higher Mg2+density and lower growth rate than the original calcite seed surfaces. Under these conditions, boron is coprecipitated more easily with low-Mg calcite than with calcite.

    Fig.3 shows that the boron content inprecipitated carbonate was different in the presence of Mg2+andabsent of Mg2+in the solution. The results show that boron is coprecipitated more readily with Mg2+in the solution. The results of our experiments are similar to previous reports by Xiao et al (2008) with Mg2+for a similar pH, but are twice as large as the values reported by Sanyal et al (2000) and He et al (2013) without Mg2+in the solution.

    3.4 The infl uence of Mg2+on B/Ca proxies for the deep ocean carbonate system

    The surface water B/Ca ratio can be expressed asand was proposed to be a proxy for seawaterThe basic assumption behind this proxy is that the B/Ca ratio in foraminifera is a function of the ratio ofin seawater, with the later being pH dependent.

    Compared with the conventional method of analyzing boron isotopes, the B/Ca ratio method is relatively easier and more stable. As a result, it is relatively suitable for high-resolution paleoceanographic studies. Yu et al (2010), Foster (2008), and Palmer et al (2010) used foraminiferal B/Ca ratios to reflect the deep water carbonate saturation state. They suggested that B/Ca ratios vary widely for different foraminifera species and thatKDis not a constant value for the same foraminifera species.

    Although B/Ca proxies for the deep ocean carbonates system are widely used, the mechanisms of these proxies are not well accepted. Not only the method is constructed on the basis of an empirical function, but also the B/Ca is impacted of light and temperature (Dissard et al, 2012; Coadic et al, 2013). Mg is an element that is widely distributed in seawater. Mg is not only incorporated into foraminiferal and coral but also impacts the process of boron incorporation. A synthetic calcium carbonate experiment by Hemming et al (1995) showed that boron uptake by aragonite is greater than boron uptake by calcite grown under nearly identical conditions, whereas boron uptake by high-Mg calcite is intermediate. In our study, when all the other parameters are maintained constant, boron concentrations in calcite precipitate increase with increasing Mg2+(Fig.3). It is suggested thatKDperhaps was influenced by Mg2+. Additional work is clearly needed to understand the causes of this behavior, but this is unfortunately beyond the scope of this contribution. These observations complicate the application of B/Ca in planktic foraminifera to trace changes in the carbonate system.

    4 Conclusions

    Boron is coprecipitated more readily with low-Mg calcite than with calcite under the same pH and temperature conditions, and the levels of low-Mg calcite are higher than those of calcite by 1.83 to 3.56, with a 2.57 average value. The presence of Mg2+clearly modifies the calcite crystal morphology and may influence on B/Ca proxies for the deep ocean carbonate system.

    Astilleros J M, Fernández-Díaz L, Putnis A. 2010. The role of magnesium in the growth of calcite: An AFM study [J].Chemical Geology, 271: 52 – 58.

    Astilleros J M, Pina C M, Fernández-Díaz L, et al. 2002. Molecular scale surface processes during the growth of calcite in the presence of manganese [J].Geochimica et Cosmochimica Acta, 66: 3177 – 3189.

    Coadic R, Bassinot F, Dissard D, et al. 2013. A core-top study of dissolution effect on B/Ca in Globigerinoides sacculifer from the tropical Atlantic: Potential bias for paleo-reconstruction of seawater carbonate chemistry [J].Geochemistry, Geophysics, Geosystems, 14: 1053 – 1068.

    Deng W F, Wei G J, Yu K F. 2012. Variations of midlate Holocene rainy season reconstructed from coral geochemical proxies in the Leizhou Peninsula, northern coast of South China Sea [J].Journal of Earth Environment, 3(2): 826 – 834.

    Dickson A G. 1990. Thermo dynamics of dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K [J].Deep-Sea Research, 37: 755 – 766.

    Dissard D, Douville E, Reynaud S, et al. 2012. Light and temperature effect onδ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments [J].Biogeosciences, 9: 5969 – 6014.

    Foster G L. 2008. Seawater pH,pCO2and [] variations inthe Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera [J].Earth and Planetary Science Letters, 271: 254 – 266.

    He M Y, Xiao Y K, Jin Z D, et al. 2013. Quantifi cation of boron incorporation into synthetic calcite under controlled pH and temperature conditions using a differential solubility technique [J].Chemical Geology, 337 / 338: 67 – 74.

    Hemming N G, Hanson G N. 1992. Boron isotopic composition and concentration in modern marine carbonates [J].Geochimica et Cosmochimica Acta, 56: 537 – 543.

    Hemming N G, Reeder R J, Hanson G N. 1995. Mineral-fl uid partitioning and isotopic fractionation of boron in synthetic calcium carbonate [J].Geochimica et Cosmochimica Acta, 59: 371 – 379.

    H?nisch B, Allen K A. 2013. Carbon Cycle Proxies (δ11B,δ13Ccalcite,δ13Corganic, shell weights, B/Ca, U/Ca, Zn/Ca, Ba/Ca) [J].Encyclopedia of Quaternary Science, 2: 849 – 858.

    Kender S, Yu J, Peck V L. 2014. Deep ocean carbonate ion increase during mid Miocene CO2decline [J].Scientific Reports, 4: PA4219, doi: 10.1038/srep04187.

    Liu W G, Xiao J, Hemming N G, et al. 2010. Boron isotopic evidence for contribution of melting ice to ocean pH value and sea level during global warming [J].Journal of Earth Environment, 1(1): 43 – 47.

    Palmer M R, Brummer G J, Cooper M J, et al. 2010. Multiproxy reconstruction of surface waterpCO2in the northern Arabian Sea since 29 ka [J].Earth and Planetary Science Letters, 295: 49 – 57.

    Paquette J, Reeder R J. 1995. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite [J].Geochimica et Cosmochimica Acta, 59: 735 – 749.

    Park W K, Ko S J, Lee S W. 2008. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate [J].Journal of Crystal Growth, 310: 2593 – 2601.

    Rae J W B, Foster G L, Schmidt D N, et al. 2011. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system [J].Earth and Planetary Science Letters, 302: 403 – 413.

    Ruiz-Agudo E, Kowacz M, Putnis C V, et al. 2010. The role of background electrolytes on the kinetics and mechanismof calcite dissolution [J].Geochimica et Cosmochimica Acta, 74: 1256 – 1267.

    Sanyal A, Nugent M, Reeder R J, et al. 2000. Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments [J].Geochimica et Cosmochimica Acta, 64: 1551 – 1555.

    Vousdoukas M J, Velegrakis A F, Plomaritis T A. 2007. Beach rock occurrence, characteristics, formation mechanisms and impacts [J].Earth Science Reviews, 85: 23 – 46.

    Wang Y, Li Z B, Demopoulos G P. 2008. Controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2with (NH4)2CO3[J].Journal of Crystal Growth, 310: 1220 – 1227.

    Xiao J, Xiao Y K, Liu C Q, et al. 2009. Boron isotopic fractionation during incorporation of boron into Mg(OH)2[J].Chinese Science Bulletin, 54: 3090 – 3100.

    Xiao J, Xiao Y K, Liu C Q, et al. 2011. Boron isotope fractionation during brucite deposition from artificial seawater [J].Climate of the Past, 7: 693 – 706.

    Xiao Y K, Li H L, Liu W G, et al. 2008. Boron isotopic fractionation in laboratory inorganic carbonate precipitation: evidence for the incorporation of B(OH)3into carbonate [J].Science in China Series D, 51: 1776 – 1785.

    Xiao Y K, Li S Z, Wei H Z, et al. 2006. An unusual isotopic fractionation of boron in synthetic calcium carbonate precipitated from seawater and saline water [J].Science in China Series B, 49: 454 – 465.

    Xiao Y K, Zhang Y L, Liu W G, et al. 2012. Study on correlation betweenδ18Ocarbof reef coral and sea surface salinity — Coral culture experiments at different salinities [J].Journal of Earth Environment, 3(4): 969 – 981.

    Yu J M, Broecker W S, Elderfi eld H, et al. 2010. Loss of carbon from the deep sea since the Last Glacial Maximum [J].Science, 330(6007): 1084 – 1087.

    Mg2+離子對深海碳酸鹽中硼的摻入和B/Ca指標的影響

    賀茂勇1,3,肖應(yīng)凱2

    (1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安 710061;2.中國科學(xué)院青海鹽湖研究所,西寧 810008;3.陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點實驗室,西安 710061)

    對母液中Mg2+離子對硼摻入無機碳酸鹽沉積的影響進行了研究。通過掃描電子顯微鏡和X射線衍射確定在Mg存在時生成的無機碳酸鹽是低鎂方解石。實驗發(fā)現(xiàn):溶液的pH值是硼進入碳酸鹽的主要控制因素,低Mg2+方解石中硼的濃度從63.91 μg·g-1(pH = 7.40 ± 0.03)增加到582.41 μg·g-1(pH = 8.80 ± 0.03)。Mg2+離子嚴重影響硼進入碳酸鹽中的量,在相同實驗條件下,硼在低鎂方解石中的含量高于無Mg2+方解石中的含量,平均為2.57倍(1.83 — 3.56倍)。這一結(jié)果表明:有Mg2+離子時,硼摻入無機碳酸鹽的機制和無Mg2+離子的是不同的。Mg2+離子的存在改變了晶體的形貌。這對利用B/Ca指標恢復(fù)深海碳酸鹽系統(tǒng)研究有重要影響。

    作用;鎂離子;硼;無機碳酸鹽沉積

    10.7515/JEE201603009

    Received Date:2015-11-30;Accepted Date:2016-01-08

    Foundation Item:National Natural Science Foundation of China (41573013, U1407109); “Key Program” of the West Light Foundation of Chinese Academy of Sciences (42904101) ; Natural Science Fund of Shaanxi Province (2015JM4143)

    HE Maoyong, E-mail: hemy@ieecas.cn

    猜你喜歡
    碳酸鹽方解石中國科學(xué)院
    《中國科學(xué)院院刊》新媒體
    F-在方解石表面的吸附及其對方解石表面性質(zhì)的影響
    硅酸鹽通報(2022年8期)2022-09-08 04:25:42
    中國科學(xué)院院士
    ——李振聲
    氯化鈣和碳酸鈉對方解石浮選的影響及其機理研究
    貴州重晶石與方解石常溫浮選分離試驗研究
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    海相碳酸鹽烴源巖生烴潛力模糊評價方法
    超高壓均質(zhì)聯(lián)合二甲基二碳酸鹽對荔枝汁中污染菌及其微生物貨架期的影響
    螢石與方解石、重晶石等鹽類礦物浮選分離現(xiàn)狀
    寂寞人妻少妇视频99o| 精品国产露脸久久av麻豆 | 国产视频内射| 久久久久久国产a免费观看| 日韩精品青青久久久久久| 国产在线男女| 国产69精品久久久久777片| 丝袜美腿在线中文| 免费高清在线观看视频在线观看| 简卡轻食公司| 免费播放大片免费观看视频在线观看| 女人久久www免费人成看片| 久久久久久久大尺度免费视频| 女人十人毛片免费观看3o分钟| 国产 亚洲一区二区三区 | 一级爰片在线观看| 国产视频内射| 男人和女人高潮做爰伦理| 国产精品精品国产色婷婷| 26uuu在线亚洲综合色| 大话2 男鬼变身卡| 啦啦啦韩国在线观看视频| 天堂俺去俺来也www色官网 | 免费高清在线观看视频在线观看| av天堂中文字幕网| 日韩一区二区三区影片| 91精品伊人久久大香线蕉| 最新中文字幕久久久久| 夫妻性生交免费视频一级片| 国产 一区 欧美 日韩| 青春草国产在线视频| 午夜免费激情av| av在线播放精品| 国产精品国产三级国产av玫瑰| 2021天堂中文幕一二区在线观| 插逼视频在线观看| 日韩成人伦理影院| 亚洲精品一区蜜桃| 亚洲精品成人av观看孕妇| 色播亚洲综合网| 精品一区在线观看国产| 免费av毛片视频| 22中文网久久字幕| 看十八女毛片水多多多| 日韩电影二区| 成年av动漫网址| 男人爽女人下面视频在线观看| 毛片一级片免费看久久久久| 男女边吃奶边做爰视频| 黄片wwwwww| 久久精品人妻少妇| kizo精华| 99热这里只有是精品50| 欧美一级a爱片免费观看看| 午夜激情欧美在线| 性插视频无遮挡在线免费观看| 日韩av免费高清视频| 97人妻精品一区二区三区麻豆| 成人毛片60女人毛片免费| 国产在线男女| 婷婷色av中文字幕| 国产av国产精品国产| 少妇丰满av| 2022亚洲国产成人精品| 一级毛片黄色毛片免费观看视频| 久久久久免费精品人妻一区二区| 精品99又大又爽又粗少妇毛片| 最近2019中文字幕mv第一页| 在线观看美女被高潮喷水网站| 亚洲国产欧美在线一区| 少妇丰满av| 纵有疾风起免费观看全集完整版 | 又粗又硬又长又爽又黄的视频| 久久久午夜欧美精品| www.av在线官网国产| 精品一区二区三卡| 日韩欧美国产在线观看| 国产视频内射| 精品久久久精品久久久| 视频中文字幕在线观看| 一边亲一边摸免费视频| 久久精品国产自在天天线| 国产一级毛片七仙女欲春2| 国内精品一区二区在线观看| 真实男女啪啪啪动态图| 午夜激情福利司机影院| 一区二区三区乱码不卡18| 精品人妻视频免费看| 最近最新中文字幕免费大全7| 免费观看av网站的网址| 久久精品国产鲁丝片午夜精品| 如何舔出高潮| 久久久久性生活片| 性色avwww在线观看| 国产一区二区三区av在线| 国产免费福利视频在线观看| 国产高清不卡午夜福利| 一级爰片在线观看| 又爽又黄a免费视频| 国产在线一区二区三区精| 国产精品麻豆人妻色哟哟久久 | 自拍偷自拍亚洲精品老妇| 欧美bdsm另类| 亚洲av福利一区| 蜜臀久久99精品久久宅男| 亚洲精品aⅴ在线观看| 国产精品一区二区在线观看99 | 一二三四中文在线观看免费高清| 国产精品日韩av在线免费观看| av免费观看日本| 日韩一本色道免费dvd| 国产老妇女一区| 日韩国内少妇激情av| 97超碰精品成人国产| 建设人人有责人人尽责人人享有的 | 亚洲精品国产成人久久av| 亚洲18禁久久av| 亚洲怡红院男人天堂| 日韩中字成人| 久久热精品热| 老司机影院毛片| 久久鲁丝午夜福利片| 欧美日本视频| 久久久久久久大尺度免费视频| 超碰97精品在线观看| 日韩一区二区三区影片| 男插女下体视频免费在线播放| 大片免费播放器 马上看| 少妇猛男粗大的猛烈进出视频 | 国产黄片美女视频| 亚洲av中文字字幕乱码综合| 精品一区二区三卡| 亚洲人成网站高清观看| 免费黄网站久久成人精品| 波多野结衣巨乳人妻| 联通29元200g的流量卡| 午夜精品一区二区三区免费看| 99久国产av精品| 麻豆乱淫一区二区| 美女xxoo啪啪120秒动态图| 国产成人精品婷婷| 欧美bdsm另类| 91久久精品电影网| 久久久久久九九精品二区国产| 亚洲欧美一区二区三区黑人 | 亚洲成人一二三区av| 日韩强制内射视频| 国产 亚洲一区二区三区 | 一个人看视频在线观看www免费| 80岁老熟妇乱子伦牲交| 少妇的逼水好多| 精品人妻一区二区三区麻豆| 日日啪夜夜爽| 亚洲av在线观看美女高潮| 亚洲不卡免费看| 麻豆精品久久久久久蜜桃| 美女cb高潮喷水在线观看| 欧美成人a在线观看| 亚洲精品久久午夜乱码| 亚洲精品国产成人久久av| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一二三区| 亚洲美女视频黄频| 免费播放大片免费观看视频在线观看| 国产熟女欧美一区二区| 可以在线观看毛片的网站| 国产精品一区二区三区四区免费观看| 免费黄网站久久成人精品| 国产午夜精品一二区理论片| 夫妻性生交免费视频一级片| 欧美日韩在线观看h| 精品久久国产蜜桃| 国产在视频线精品| 久热久热在线精品观看| 日韩欧美一区视频在线观看 | av网站免费在线观看视频 | 亚洲精品国产av成人精品| 免费看日本二区| 联通29元200g的流量卡| 国产老妇女一区| 国产一区二区在线观看日韩| 淫秽高清视频在线观看| 午夜免费激情av| 九九爱精品视频在线观看| a级一级毛片免费在线观看| 老司机影院毛片| 久久精品国产自在天天线| av在线天堂中文字幕| 国产片特级美女逼逼视频| 久久精品国产鲁丝片午夜精品| 欧美激情国产日韩精品一区| 日韩一本色道免费dvd| 免费不卡的大黄色大毛片视频在线观看 | 国产在视频线精品| 欧美极品一区二区三区四区| 成人欧美大片| 国产av码专区亚洲av| 日韩不卡一区二区三区视频在线| 观看美女的网站| 国产黄色视频一区二区在线观看| 又爽又黄a免费视频| 国产毛片a区久久久久| 亚洲自拍偷在线| 麻豆国产97在线/欧美| 高清欧美精品videossex| 国产乱人偷精品视频| 不卡视频在线观看欧美| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 男女视频在线观看网站免费| 免费看av在线观看网站| kizo精华| 亚洲精品视频女| 欧美精品国产亚洲| 午夜老司机福利剧场| 熟妇人妻不卡中文字幕| 日韩,欧美,国产一区二区三区| 蜜臀久久99精品久久宅男| 久久久久久国产a免费观看| 2021少妇久久久久久久久久久| 国产91av在线免费观看| 九草在线视频观看| 91aial.com中文字幕在线观看| 一边亲一边摸免费视频| 在现免费观看毛片| 国产91av在线免费观看| 人妻一区二区av| freevideosex欧美| 日韩强制内射视频| 97精品久久久久久久久久精品| 免费少妇av软件| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 精品欧美国产一区二区三| 精品亚洲乱码少妇综合久久| 国产成人精品福利久久| 久久精品国产自在天天线| 国产黄片视频在线免费观看| 欧美丝袜亚洲另类| 欧美潮喷喷水| 国产女主播在线喷水免费视频网站 | 一夜夜www| 欧美3d第一页| 91狼人影院| 汤姆久久久久久久影院中文字幕 | 人妻系列 视频| 国产伦理片在线播放av一区| 日产精品乱码卡一卡2卡三| or卡值多少钱| 三级国产精品片| 亚洲精华国产精华液的使用体验| 久久久亚洲精品成人影院| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 干丝袜人妻中文字幕| 国产伦理片在线播放av一区| av播播在线观看一区| 国产精品爽爽va在线观看网站| 三级国产精品片| 亚洲人成网站在线观看播放| 欧美精品一区二区大全| 中文精品一卡2卡3卡4更新| 大香蕉97超碰在线| 国产一区有黄有色的免费视频 | 亚洲18禁久久av| 久久久久网色| 国产激情偷乱视频一区二区| 22中文网久久字幕| 国产一区二区亚洲精品在线观看| 人妻少妇偷人精品九色| 国产激情偷乱视频一区二区| 亚洲av中文av极速乱| 床上黄色一级片| 亚洲欧美中文字幕日韩二区| 国产在线男女| 亚洲精品,欧美精品| 69人妻影院| 国产精品久久久久久久久免| www.av在线官网国产| 99久久精品热视频| 欧美成人一区二区免费高清观看| 高清毛片免费看| 在线a可以看的网站| 国产成人免费观看mmmm| 亚洲av免费高清在线观看| 午夜精品一区二区三区免费看| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 大香蕉97超碰在线| 国产一区有黄有色的免费视频 | 色哟哟·www| av国产久精品久网站免费入址| 一区二区三区四区激情视频| 三级国产精品片| 伊人久久精品亚洲午夜| 午夜福利在线在线| 午夜亚洲福利在线播放| 内地一区二区视频在线| 国产精品一区二区在线观看99 | 国产淫片久久久久久久久| 日韩欧美一区视频在线观看 | 色综合站精品国产| 日本欧美国产在线视频| 成年女人在线观看亚洲视频 | 国产午夜精品久久久久久一区二区三区| 69人妻影院| 国产在视频线在精品| 欧美日本视频| 国产不卡一卡二| 丰满少妇做爰视频| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 亚洲av男天堂| 成人性生交大片免费视频hd| 尾随美女入室| 久久精品国产自在天天线| 亚洲综合精品二区| 欧美97在线视频| 亚洲精品自拍成人| 亚洲av一区综合| 国产91av在线免费观看| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美人成| 国产单亲对白刺激| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 三级国产精品片| 少妇高潮的动态图| xxx大片免费视频| 少妇人妻精品综合一区二区| 亚洲最大成人中文| 在线免费观看的www视频| 久久精品夜色国产| 久久久久国产网址| 亚洲av男天堂| 少妇人妻精品综合一区二区| 亚洲最大成人中文| 亚州av有码| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 亚洲伊人久久精品综合| 午夜爱爱视频在线播放| 91狼人影院| 99热网站在线观看| 最近的中文字幕免费完整| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看 | 国产精品麻豆人妻色哟哟久久 | 99热全是精品| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 成人欧美大片| 看非洲黑人一级黄片| 好男人在线观看高清免费视频| 麻豆成人av视频| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 久久99热这里只有精品18| 水蜜桃什么品种好| 99久国产av精品| 精品国产露脸久久av麻豆 | 午夜激情福利司机影院| 国产成人精品福利久久| xxx大片免费视频| 超碰97精品在线观看| 熟女电影av网| 日韩强制内射视频| 日本三级黄在线观看| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 丝袜喷水一区| 街头女战士在线观看网站| 春色校园在线视频观看| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 看十八女毛片水多多多| 精品久久国产蜜桃| 成年av动漫网址| 日韩一本色道免费dvd| 91精品伊人久久大香线蕉| 国产激情偷乱视频一区二区| 成人国产麻豆网| 午夜精品在线福利| 亚洲最大成人中文| 国产成人福利小说| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 久久韩国三级中文字幕| av专区在线播放| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 国产精品一区二区三区四区免费观看| 国产成人福利小说| 色尼玛亚洲综合影院| 国产av在哪里看| 免费观看的影片在线观看| 麻豆成人av视频| 亚洲熟妇中文字幕五十中出| 欧美3d第一页| 国产免费一级a男人的天堂| 日本爱情动作片www.在线观看| 久久久久久久亚洲中文字幕| 人人妻人人澡欧美一区二区| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 亚洲精品aⅴ在线观看| 亚洲精品影视一区二区三区av| 午夜免费观看性视频| 精品一区二区免费观看| 成人鲁丝片一二三区免费| 亚洲欧美一区二区三区黑人 | 午夜亚洲福利在线播放| 精品一区二区三卡| 婷婷六月久久综合丁香| 建设人人有责人人尽责人人享有的 | 五月伊人婷婷丁香| 国产美女午夜福利| 亚洲经典国产精华液单| 综合色av麻豆| 国产成人精品一,二区| 国内揄拍国产精品人妻在线| 国产人妻一区二区三区在| 在线a可以看的网站| 午夜亚洲福利在线播放| 国产欧美日韩精品一区二区| 亚洲欧美成人综合另类久久久| 一级黄片播放器| 寂寞人妻少妇视频99o| 少妇猛男粗大的猛烈进出视频 | 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 日本一本二区三区精品| 久久精品久久久久久噜噜老黄| 免费在线观看成人毛片| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 国产午夜精品论理片| 精品久久久久久久久av| 在线观看人妻少妇| 久久精品夜夜夜夜夜久久蜜豆| 日韩一区二区三区影片| 亚洲欧美一区二区三区黑人 | 91精品伊人久久大香线蕉| 国产淫语在线视频| 国产精品一及| 一级av片app| 成人毛片a级毛片在线播放| 久久午夜福利片| 国产探花极品一区二区| 综合色av麻豆| 欧美97在线视频| 久久久久久久久大av| 中文字幕制服av| 国产一区二区三区av在线| 狂野欧美白嫩少妇大欣赏| 天堂中文最新版在线下载 | 一级片'在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产不卡一卡二| 国产69精品久久久久777片| 日本黄大片高清| 好男人视频免费观看在线| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 国产日韩欧美在线精品| 婷婷六月久久综合丁香| 色视频www国产| 神马国产精品三级电影在线观看| 国产老妇伦熟女老妇高清| 精品国产露脸久久av麻豆 | 欧美3d第一页| 婷婷色麻豆天堂久久| 乱系列少妇在线播放| 欧美xxⅹ黑人| 美女cb高潮喷水在线观看| 在线a可以看的网站| 国产免费视频播放在线视频 | 免费观看性生交大片5| 国产亚洲精品av在线| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久 | 精品人妻一区二区三区麻豆| 成人国产麻豆网| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 97精品久久久久久久久久精品| 国产女主播在线喷水免费视频网站 | 尾随美女入室| 国产精品日韩av在线免费观看| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 国产亚洲一区二区精品| 日韩av在线免费看完整版不卡| 五月天丁香电影| 大话2 男鬼变身卡| 国内精品宾馆在线| 天堂中文最新版在线下载 | 青春草亚洲视频在线观看| 看黄色毛片网站| 精品一区在线观看国产| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av| 乱码一卡2卡4卡精品| 国产精品一及| 观看免费一级毛片| 日韩三级伦理在线观看| 又爽又黄a免费视频| av免费在线看不卡| 国产大屁股一区二区在线视频| 高清日韩中文字幕在线| 天堂影院成人在线观看| av免费在线看不卡| 最近最新中文字幕大全电影3| 免费电影在线观看免费观看| 国产大屁股一区二区在线视频| 国产精品一及| 国产一区有黄有色的免费视频 | 久久久久精品性色| 身体一侧抽搐| 五月天丁香电影| 国产高潮美女av| 亚洲欧美一区二区三区国产| 精品人妻偷拍中文字幕| 久久精品夜色国产| 午夜福利在线在线| 色视频www国产| 亚洲熟女精品中文字幕| 干丝袜人妻中文字幕| 国产 一区精品| 91精品国产九色| 国产不卡一卡二| 亚洲国产精品国产精品| 色吧在线观看| av线在线观看网站| 国产伦精品一区二区三区视频9| 精品久久久久久成人av| 日韩制服骚丝袜av| 观看免费一级毛片| 亚洲av成人av| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 精品99又大又爽又粗少妇毛片| 日本wwww免费看| av在线老鸭窝| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| 日韩电影二区| 亚洲国产欧美人成| 国产伦理片在线播放av一区| 一夜夜www| 黄色日韩在线| 亚洲综合精品二区| av网站免费在线观看视频| 日韩一区二区三区影片| 成人黄色视频免费在线看| 久久人人97超碰香蕉20202| 少妇被粗大猛烈的视频| 久久人人97超碰香蕉20202| av片东京热男人的天堂| 美女午夜性视频免费| 国产精品欧美亚洲77777| 熟女av电影| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 嫩草影院入口| 欧美xxⅹ黑人| 在线免费观看不下载黄p国产| 一级,二级,三级黄色视频| 激情视频va一区二区三区| 国产欧美日韩综合在线一区二区| 老熟女久久久| 少妇的丰满在线观看| 精品人妻在线不人妻| 黄片播放在线免费| 成人亚洲精品一区在线观看| 中文字幕精品免费在线观看视频| 最近最新中文字幕大全免费视频 | 免费播放大片免费观看视频在线观看| videos熟女内射| √禁漫天堂资源中文www| 欧美+日韩+精品| 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 男人爽女人下面视频在线观看| 国产极品天堂在线| 欧美日韩亚洲高清精品| 最近最新中文字幕免费大全7| 男人添女人高潮全过程视频| 国产一区二区 视频在线| 国产一区二区三区综合在线观看| 91精品国产国语对白视频| 永久网站在线| 三级国产精品片| 国产国语露脸激情在线看| 亚洲欧美色中文字幕在线| 青春草亚洲视频在线观看| 日韩熟女老妇一区二区性免费视频| 我要看黄色一级片免费的| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 日韩精品有码人妻一区| 天天影视国产精品| 国产片内射在线|