• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A review on Gaussian Process Latent Variable Models

    2016-03-20 06:51:40PingLiSongcanChen
    關(guān)鍵詞:啟明星政治素質(zhì)學(xué)風(fēng)

    Ping Li,Songcan Chen*

    College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    A review on Gaussian Process Latent Variable Models

    Ping Li,Songcan Chen*

    College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    Gaussian Process Latent Variable Model(GPLVM),as a flexible bayesian non-parametric modeling method,has been extensively studied and applied in many learning tasks such as Intrusion Detection,Image Reconstruction,Facial Expression Recognition,Human pose estimation and so on.In this paper,we give a review and analysis for GPLVM and its extensions.Firstly,we formulate basic GPLVM and discuss its relation toKernel Principal Components Analysis.Secondly,we summarize its improvements or variants and propose a taxonomy of GPLVM related models in terms of the various strategies that be used.Thirdly,we provide the detailed formulations of the main GPLVMs that extensively developed based on the strategies described in the paper.Finally,we further give some challenges in next researches of GPLVM.

    GPLVM;Non-parametric method;Gaussian process

    1.Introduction

    In many machine learning tasks,we are often faced with various complex,particularly high dimensional,data/observations[1-3]for which our goal is to learn the low dimensional underlying patterns from those observations[4,5].For example,in classification task[6-9],we want to identify a category of a new observation by a classifier learned from a set of training data.In clustering task,the goal is to group a set of observations in such a way that observations in the same group (called a cluster)are more similar(in some sense or another) to each other than to those in other groups[10,11],achieving to understand inherent(low dimensional)structure of a given data set.

    Recently,many machine learning models have been proposed to address the above problems[1,3,12,13].Among those models,latent variable models(LVMs)[3,14,15]as a kind of underlying patterns extraction methods,have been widely used in image recognition[16],information retrieval[17],speech recognition[18]and recommender systems[19].A latent variable model generally refers to a statistical model that relates a set of variables(so-called manifest variables)to a set of latent variables under the assumption that the responses on the manifest variables are controlled by the latent variables. Furthermore,we can provide latent variables with various meanings for specific tasks.InDimension Reduction(DR),we assume that the latent variables are the low dimensional representations of high dimensional samples.In clustering,the latent variables can be defined to represent the clustering membership of samples[20].This fl exible definition of latent variables has made LVMs widely be used in many machine learning tasks.

    LVMs have a history of several decades and many machine learning models can be actually considered as its special cases or variants,e.g.,neural networks[18],PCA[21],latent graphical models[3]and so on.Among these models,Gaussian Process Variable Models(GPLVMs)[15],as a large class of LVMs,have been explored and applied in many machine scenarios.They can be considered as the combination of LVM and a Bayesian non-parametricGaussian Process(GP) [22]model.GP is a probabilistic model and has been extensively applied in many machine learning tasks such as regression[23-25],classification[6-8]and clustering[26].In general,we can consider these GP-based models to be a set of LVMs where each observed variable is the sum of the corresponding latent variable and noise.Different from other LVMs,these latent variables can be thought of as functional variables which are the noise-free form of observed variables. In LVMs,our goal is to learn the latent variables or the underlying pattern of data.While the above GP-based models try to infer the targetvariable ofnew sample by integrating outthe latent variables.This is a major difference between GP-based model and other LVMs.

    In order to infer the latent variables,GPLVM assumes that the functional variables are generated by GP from some low dimensional latent variables.It is these latent variables that we should inferred from data.In model inference,we can learn the latent variables by integrating out the functional variables and maximizing the log marginal likelihood.Although originally proposed for dimension reduction,GPLVM has been extended and widely used in many machine learning scenarios,such as Intrusion Detection[27],Image Reconstruction [28],Facial Expression Recognition[29],Human pose estimation[30],Age Estimation[31]and Image-Text Retrieval [32].

    We can analyze the advantages of GPLVM from two aspects.Firstly,GPLVM can greatly benefit from the non-linear learning characteristic of GP which uses a non-linear kernel to replace the covariance matrix.Moreover,as a non-linear DR model,GPLVM has a strong link withKernel Principal Components Analysis(KPCA)[33](a popular DR method) and can be considered as aProbabilistic Kernel Principal Components Analysis(PKPCA).For such a link,we will discuss in next section.Secondly,most of the existing LVMs are parametric models in which there is a strong assumption on the projection function or data distribution.Such a parametric construction form partly loses flexibility in modeling. Therefore,in the past decades,many non-parametric machine learning methods have successively been proposed,such as Nearest Neighbor methods[34,35]and kernel estimates of probability densities[36,37].GP and GPLVM can be treated as a class of Bayesian non-parametric model whose distribution-free form makes the models have a flexible structure which can grow in size to accommodate the complexity of the data.

    Besides widely used in DR,GPLVM can also be extended to other machine learning tasks due to its characteristics below.Firstly,its distribution-free assumption on prior of latent variables provides us a lot of opportunities to improve it. Secondly,its generation process can be amenable to different tasks.Thirdly,we can also exert classical kernel methods for a further expansion of GPLVM,such as enhancing the scalability of the model,automatic selection of the feature dimension and so on.Despite GPLVM has been widely studied and extended,to our best knowledge,there has actually had no survey for those related models.So in this paper, we try to present a review and analysis of both GPLVM and its extensions.

    The rest of this paper is organized as follows:In Section 2, we formulate the GPLVMs and discuss its relation toKernelPrincipal Components Analysis(KPCA).In Section 3,we summarize its improvements or variants and propose a taxonomy of GPLVM related models.A specific review of GPLVM that extensively developed in the past decade is given in Section 4.Finally,in Section 5,we further give some challenges in next researches of GPLVM.

    2.Gaussian process and Gaussian Process Latent Variable Model

    2.1.Gaussian process

    GP,as the a flexible Bayesian nonparametric model and the building block for GPLVM,has been widely used in many machine learning applications[38-40]for data analysis.In GP,we model a finite set of random function variables f=[f(x1),…,f(xN)]Tas a joint Gaussian distribution with meanμand covariance K,where xiis theith input.If the functionfhas a GP prior,we can write it as

    where in many cases we can specify a zero mean(μ=0)and a kernel matrix K(with hyper-parameterθ)as covariance matrix.GP has been widely used in various machine learning scenarios such as regression,classification,clustering.In this section,we detailed the formulation ofGaussian Process Regression(GPR)to demonstrate the use of GP.

    In GPR,our goal is to predict the responsey*of a new input x*,given a training datasetofNtraining samples,where xiis the input variable andyiis the corresponding continuous response variable.We model the response variableyias a noise-version of the function valuef(xi)

    where the distribution of noise is Gaussian N(0,σ2)with varianceσ2.From the above definition,we can get the joint probability of the response variables and latent function variablesp(y,f)=p(y|f)p(f).Then we can know that the distribution of the latent function valuef*is a Gaussian distribution with meanμ(x*)and variancevar(x*):

    where kx*X=k(x*,X)is an-dimensional row vector of the covariance between x*and theNtraining samplesdenotes the kernel matrix of theNtraining samples.

    2.2.Gaussian Process Latent Variable Model

    GPLVM[15]is originally proposed for dimension reduction of high dimensional data.Its goal is to learn the low dimensional representation XN×Qof the data matrix Y∈?N×D, whereNandDare the number and dimensionality of trainingsamples,respectively.GPLVM assumes that the observed data is generated from a lower dimensional data X whereQ?D. The generation process of theith training sample yiis

    whereεis the noise with gaussian distributionε~N(0,σ2).fis a nonlinear function with GP priorAs a probabilistic model,GPLVM can also be represented by a directed graph as shown in Fig.1.In this paper,we use gray and white circles to denote the observed and latent variables, respectively.From the this graphical representation,we can know that the marginal likelihoodp(Y|X,θ)can be obtained by using Bayesian theorem and integrating outf,

    whereθdenotes the hyper-parameters of both kernel function and noise,y:,jdenotes thejth column of matrix Y.Thus,we can maximize the marginal likelihood with respect to X and the hyper-parameterθ,

    The object function of GPLVM can also be derived fromProbabilistic Kernel Principal Components Analysis.In PKPCA,we aim to learn a low-dimensional representation X of original data Y and assume that the projection(parameter) matrix W follows a spherical Gaussian distribution prior below:

    Fig.1.Gaussian process as a latent variable model:we use arrows to denote the dependency relations between variables.The gray and white circles denote the observed and latent variables,respectively.

    Then,we can get the marginal likelihood by integrating out W:

    As we can see from Eq.(8),GPLVM can be equivalent to PKPCA by replacing XXTin Eq.(8)with a kernel matrix K.

    Besides be used in DR,GPLVM has also been extended to adapt to many other machine learning problems,such as Image Reconstruction[28],Human pose estimation[30],Age Estimation[31]and so on.In addition,there have been many open-source softwares that are available for the implementation of GPs and GPLVMs.We give a brief description as follows:

    ·GPML1http://www.gaussianprocess.org/gpml/code/matlab.is an excellent GP toolkit.It contains a large number of GP-related codes such as various kernel functions,likelihood functions and inference methods.

    ·GPy2https://github.com/SheffieldML/GPy.is a Gaussian Process framework written in python, from the Sheffield machine learning group.It provides a set of tools for the implementation of GP-based methods.

    ·Matlab Toolbox for Dimensionality Reduction4http://lvdmaaten.github.io/drtoolbox/.is a dimension reduction toolkit.It provides the implementations of many techniques for dimensionality reduction and metric learning.It also contains an implementation of GPLVM.

    3.Extensions of GPLVM

    As shown in Section 2.2,due to its flexible structure in modeling,GPLVM has been adapted to various learning scenarios and led to corresponding learning methods.In this section,we first classify these methods into three types in terms of the variousstrategiesthat used and then provide a taxonomy of the main existing GPLVMs as shown in Fig.2. For more typical examples of specific applications refer to Section 4.

    Fig.2.A taxonomy of the GPLVMs.

    3.1.Constraint based GPLVMs

    From the generation process of GPLVM in Section 2.2,we can know that the conventional GPLVM needs not make any assumptions on the prior of latent variables.However,lack of such assumption makes the model inferred by justmaximizing the log marginal likelihood in Eq.(6)prone to over fitting.To tackle this problem,one of effective approaches is to impose a specific prior onto the latent variables for a posterior estimation.Thus,we can introduce various constraints into the prior for the estimation the latent variables in different tasks[41,6]. Specifically,we assume thatp(X)denotes the imposed prior. By using the Bayesian theorem,we can formulate the posterior probability of the latent variables X

    Thus,we get the posterior estimation of X by maximizing Eq.(9)instead of the marginal likelihoodp(Y|X,θ).

    In practical applications,many constraints can be introduced and embedded into the priors for problem at hand.In [41],pairwise constraints(which indicates whether two samples belong to the same class or different classes)are utilized to construct a specific prior of X for semi-supervised learning [6,7].Construct a discriminative prior based on the label information of data and use this prior directly predict the label of a new sample.In general,all these priors described above can be considered as such a set of constraints derived from given problems,which can be used to learn the latent variables of GPLVM.In some other learning scenarios,we can even also impose explicit constraints on the latent variable[42]for construction of the proper prior.

    3.2.Generation process based GPLVMs

    學(xué)霸寢室是高校學(xué)風(fēng)建設(shè)中的稀有資源,對(duì)高校學(xué)風(fēng)建設(shè)彌足珍貴,經(jīng)過(guò)充分開(kāi)發(fā)應(yīng)用,可發(fā)揮重要作用。因此,在學(xué)風(fēng)建設(shè)中,要將學(xué)霸寢室的發(fā)掘、打造和宣傳融為一體,讓學(xué)霸寢室成為學(xué)風(fēng)建設(shè)的啟明星。同時(shí),學(xué)霸寢室也要有高度責(zé)任感,主動(dòng)幫助后進(jìn)寢室,在幫扶中提升自我政治素質(zhì),成長(zhǎng)為政治修養(yǎng)高、綜合素質(zhì)強(qiáng)的寢室。

    The conventional GPLVM just defines the generation process of high dimensional data for dimension reduction. However,for more complex data,such as multi-view and/or multi-modal data,such a single generation process fails to fit the data.Therefore,we need to redefine the generation process to deal with differenttypes of data.By this approach,GPLVM is extended to be capable to model various complex data.

    In[30],aShared Gaussian Process Latent Variables Model(Shared GPLVM)is proposed to define the generation process of data from multiple sources and learn a low dimensional shared representation for these data.Besides the Shared GPLVM,there are yet many other methods to define the generation process from inputs to outputs for different learningtasks,for example[7]and[8]define the discriminant form generation processes to implement the prediction of labels [43].Construct the hierarchical GPLVM to learn more complicated functions.

    3.3.Kernel method based GPLVMs

    As described in Section 2.2,GPLVM can in fact also be considered as a kernel method,in which the selection of kernel can greatly influence its performance.In general,we can select various kernel to meet the demands of different tasks.For example,in order to automatically select the subset of the latents pace,we can use the automatic relevance determination (ARD)kernel in the construction of GPLVM[28].The definition of the ARD kernel is as follows,

    Besides ARD kernel,many other kernels can also be used to handle different tasks.In theStructure Consolidation Latent Variable Model(SCLVM)[44],a compositional kernel is used to solve the problem of label imbalance.In some situations, we can even learn the kernel matrix from data directly.Sparse GPLVMs[45-49]try to learn areduced-rank approximationsof the kernel matrix to improve the scalability of GPLVM. Specifically,they use the following equation to estimate the kernel matrix K,

    whereNdenotes the number of training samples andM?N. With this method,the computation of GPLVMs when inverting the kernel matrix has a time complexity of O(M2N)other than O(N3),which makes GPs and GPLVMs able to effectively solve problems with large scale data.

    4.Typical examples

    In Section 3,we summarized the main strategies for the extension of GPLVM.In this section,we will give a review and detailed formulations of the typical GPLVMs that extensively developed based on these strategies.Moreover,we also give a brief description of some other GPLVMs that proposed for special application scenarios.

    4.1.GPLVMs with various constraints

    As described in Section 3.1,various constraints can be imposed into the prior of latent variables according to the specific tasks.In general,the existing GPLVMs mainly utilize the following constraints:semi-supervised constraints[41,50], supervised constraints[6,7],cross-task constraints[51].

    4.1.1.Semi-supervised GPLVM

    In some machine learning scenarios,we assume that user can get both input data described in Section 2.2 and some semi-supervised information,such as pairwise constraints [41].Proposes the Semi-supervised GPLVM which utilizes such pairwise information to construct a specific prior of X. Firstly,it defines a weight matrix W∈?N×N

    Then,we use the Bayesian theorem in Eq.(9)to get the posterior probability of the latent variables X.Thus,maximizing marginal likelihood can be replaced by maximizing the log posterior given by

    4.1.2.Discriminative GPLVM

    In supervised learning scenarios,the goalis to learn models from labeled data and predict the labels of new samples directly[6-8].As described in Section 3.1,we can also introduce label constraint information into GPLVM for supervised learning.Discriminative Gaussian Process Latent Variable Model(Discriminative GPLVM)[6]imposes a discriminative prior to the latent variables which can significantly improve the discriminant property of GPLVM.Specifically,this discriminative prior is constructed by borrowing the idea ofLinear Discriminant Analysis(LDA)[21],as shown in the following equation,

    where Swand Sbdenote within-class and between-class divergence matrices,respectively.The definition of Swand Sbis as follows,

    where Miis the mean of the elements of classi,M0is the mean of all the training points of all classes,are theNitraining points of classi.By maximizing the object function of LDA,we can find a transformation that maximizes between-class separability and minimizes within-class variability.Inspired by this motivation, Discriminative GPLVMconstructs a prior over latentvariables that forces the latent points of the same class to be close together and far from those of other classes,as shown in Eq. (19)

    By using Bayes theorem described in Eq.(9),we can get the posterior distribution of latent variable X.Then,we can minimize the negative log posterior in Eq.(20)to learn these latent variables,

    where Lrrepresents the negative log likelihood of GPLVM,denotes the prior of hyper-parameters,can be c onsidered as the coefficient that balances the discriminant capability and the fitness to data Y.Furthermore,since the kernel matrix learned in the discriminative GPLVM is more discriminative and fl exible,it can directly be used inGaussian Process Classification(GPC)[22]forsupervised learning tasks.

    4.1.3.Supervised GPLVM

    Gao et al.[7]proposes aSupervised Gaussian Processes Latent Variables Model(Supervised GPLVM)by using latent variables to connect observations and their corresponding labels.Specifically,it assumes that X∈?N×D,Y∈?N×L, Z∈?N×Qdenote the matrices of inputs,labels and the corresponding latent variables,respectively.The graphical representation is shown in Fig.3.As we can see,Supervised GPLVM assumes that both X and Y are generated from the same latent variables Z by GPs.The latentvariable Z can serve as a bridge between two observed matrices.This approach has already been extensively studied in many machine learning models such as joint manifold model[52]and supervised probabilistic PCA (SPPCA)[53].As shown in Fig.3,each dimension of X and Y is independent conditioned on Z.Thus,the log marginal likelihood of the model can be obtained the following equation,

    Fig.3.The graphical representation of Supervised GPLVM.The latent variable Z can serve as a bridge between two observed matrices X and Y.

    4.1.4.Transfer Latent Variable Model

    When using GPLVM to predict new samples,we make a strong assumption that both training and testing samples are drawn from anindependent identity distribution(iid).However,when these two data sets are drawn from different distributions,the GPLVM trained by using training data set will have a poor performance on the new test samples.One useful tool for this problem is the transfer learning strategy[51]. Transfer learning is widely studied by researchers in machine learning,which focuses on storing knowledge which gained when solving one problem and applying it to a different but related problem.

    Gao et al.[54]proposes a transfer learning framework for GPLVM(Transfer Latent Variable Model,TLVM)based on the distance between training and testing data sets.Specifically,it assumes that the training set Y=[y1,…,yN]Tand testing set Yt=[yt1,…,ytM]Tare drawn from two different distribution and their corresponding latent variables matrix are X and Xt,respectively.TLVM uses KL-divergence to measure the distance between the training and testing data set,

    where K and Ktare the kernel matrices of X and Xt,respectively.The object functionF(X,θ)can be written as

    Then,we can minimize Eq.(23)to find the optimal values of latent variable X and hyper-parameterθ.

    4.2.GPLVMs based on generation process

    reconstruction

    In general,there are mainly two strategies to reconstruct the generation process,data-driven approaches and task-driven approaches.In data-driven approaches,we can reconstructthe generation process of GPLVM with respect to the characteristics of the data,such as the works in[30,9]for multi view learning.In task-driven approaches,the generation process is reconstructed to meet the demands of the tasks[8].In this section,we will demonstrate the concrete examples of these two approaches.

    4.2.1.Shared GPLVM

    In computer science,many tasks are associated with data coming from multiple streams or views of the same underlying phenomenon[9,29,30,42,55].In video processing,there may be many cameras each of which focus on objects from different viewpoints.In user-centric social networks,information from different sources(text,image,video,audio and social information)can be obtained[56].Our goal is to utilize these complementary information to fulfill machine learning tasks such as person re-Identification[57],human pose estimation[30],facial expression recognition[9]and so on.

    Shared GPLVM[30]can efficiently capture the correlations among different sets of corresponding features and is applied in machine learning tasks.Specifically for two data views, Y=[y1,…,yN]T∈?N×Dand Z=[z1,…,zN]T∈?N×L(where ynand zndenote the representations of thenthsample in the two views,respectively),the goal of Shared GPLVM is to learn a common low-dimensional representation X for Y and Z. Its graphical representation is shown in Fig.4.As we can see, it assumes that both Y and Z are generated by GP from a shared latent variable X and its corresponding generation processes can respectively be written as

    wherefYandfZdenote the functions with GP prior,εYandεZdenote the noises,respectively.According to the assumption that Y and Z are independent conditioned on X,the likelihood of Shared GPLVM is formulated as,

    Fig.4.The graphical of Shared GPLVM.The generation process is redefined by assuming that both Z and Y are generated by GP from X.Z and Y are independent conditioned on X.

    4.2.2.Discriminative shared GPLVM

    By redefining the generation process,Shared GPLVM that described in[30]can efficiently capture the correlations among different sets of corresponding features and is applied in many machine learning tasks[9,58][9].ProposedDiscriminative Shared Gaussian Processes Latent Variable Model(DS-GPLVM)by considering the situation in which user has observed the label information of each view.It uses such label information to construct a discriminant prior based on the Laplacian matrix[59].Specifically,the joint Laplacian matrix has the following form:

    4.2.3.Supervised Latent Linear GPLVM(SLLGPLVM)

    The work in[8]implements supervised learning of GPLVM by redefining the generation process.Specifically,as shown in Fig.5,the model assumes that the latent variable Z is generated by a linear transformation of X.Then,the target variable Y is generated by a GP with latent variables as inputs.The whole generation process is as follows:

    where W represents the projection(parameter)matrix from input space to latent space.The functiong(·)denotes themapping that transforms the latent variables to the output variables andThus,the prior distribution of g can be written as

    Fig.5.The graphical representation of Supervised Latent Linear GPLVM.As we can see,both X and Y are observed.Our goalis to learn the project matrix W for prediction.

    where KZ,Zdenotes the kernel matrix of latent variables Z=XW.Based on this prior,we can construct GPLVM and maximize the log marginal likelihood to learn the matrix W as in Section 2.2.

    4.3.GPLVMs based on specific kernels

    As a kernel method,GPLVMcan utilize various kernels for specific tasks.Firstly,many existing kernels can be introduced into GPLVM to address different problems[28,60].Secondly, we can also construct kernels by combining multiple kernels [44]or learning the kernel matrices directly[45-49].

    4.3.1.Structure consolidation latent variable model

    As described in Section 3.3,many kernels can be introduced into GPLVM to meet the demands of different tasks. The SCLVM[44]uses a compositional kernel to address the problem of labe limbalance.Specifically,it separates the latent space into a shared space with the dimensionalityQsand a private space with the dimensionalityQp.Thus,the latent representation can be denoted asandare the latent representations in shared and private space respectively.Then,the compositional kernel can be defined as follows:

    whereksis the kernel function for the shared space andkpis the kernel function for the private space.The private kernel is defined as follows:

    wherek′is a common kernel function andcxis the label of data point x.By such a definition the shared space can capture the common regularities among categories and the private spaces can model the variance specific to individual categories.Thus the data in each category can be modeled appropriately to solve the problem of label imbalance.

    4.3.2.Matrix-valued Gaussian process

    Recently,transposable data(such as proteins interaction networks in biology and movies rating data in recommendation system)which describes the relationships between pairs of entities,has been analyzed.Such data can often be organized as a matrix,with one set of entities as the rows,the other set of entities as the columns[60].Proposes aMatrixvalued Gaussian Process(MV-GP)to model such data.Specifically,it assumes that Y∈?N×Ddenotes the transposable data matrix withNrows andDcolumns.It models Y as a matrix-variate normal distribution with iid Gaussian observation noise.

    where latent variables Z can be thought of as the noise-free observations andvec(Y)denotes the vector obtained by concatenating the columns of Y.

    A further assumption is that Z is drawn from a MV-GP,

    where matrix C is aD×Dcolumn covariance matrix and R is anN×Nrow covariance matrix.Obviously,MV-GP can be considered as a multivariate normal distribution by writing the MV-GP as

    where?denotes theKronecker product.Furthermore,it can also be considered as a GPLVM in which the common kernel function is replaced with the product of two kernel functions. Based on this formulation,the MV-GP has been applied in many machine learning tasks[61-64]which try to learn the relation between pairwise entities.

    4.4.Other GPLVMs for special applications

    Apart from the various GPLVMs that described above, there are also many other GPLVMs that try to address the special problems in machine learning.These GPLVMs can be considered as a set of self-contained models that are difficult to be accommodated to one of the three strategies described in Section 3.In this section we just give a simple description for these models.

    4.4.1.Bayesian Gaussian Process Latent Variable Model

    GPLVM can also be used in the situation with uncertain inputs.In this case,we can take a Bayesian estimation of GPLVM whose latent variables are integrated out instead of optimized[28].However,as described in[28],the main difficulty is that,to apply Bayes inference to GP-LVM,we need to approximately integrate out the latent variables nonlinearly in the inverse kernel matrix of the GP model[28].Proposes a variational Bayesian GPLVM model by using variational inference[65]in an expanded probability model to tackle the above problem.This model and its extension have been widely used in many machine learning tasks,such as gaussian process regression with uncertain inputs[66],hybrid discriminativegenerative approach[67]and so on.

    4.4.2.Gaussian Process Dynamical Systems

    In robot control,computer vision,computational biology, users are often faced with high dimensional time series data [68].By assuming x as a multivariate gaussian process indexed by timet,GPLVM can be extended to a dynamical model which are called Gaussian Process Dynamical System (GPDS)[43,68-70]to adapt such dynamic environment.In fact,this model can be considered as Hierarchical GPLVMand obtain a satisfactory performance in analysis of data with time series information.Models based on GPDS have been used in many tasks such as human pose recognition[69],modeling raw high dimensional video sequences[68],video repair[71] and some other related applications.

    4.4.3.Deep GPLVM

    Although Gaussian Process Latent Variables Modelprovides a fl exible,non-parametric,non-linear dimension reduction strategy,their representation ability is still restricted by the kernelfunctions[72].In general,GPLVM,as a shallow model, can be stacked to a deep architecture[73].This structure has been widely used in many deep models[74,75].And some deep models based on GPLVM have been proposed such as autoencoded deep gaussian processes[72],deep gaussian processes[76],deep gaussian processes for regression[77].

    5.Conclusion and discussion

    In this paper,we first give a detail formulation of GPLVM and its relation to PKPCA.Then,we summarize the main strategies to improve GPLVM and a taxonomy is constructed in terms of the various strategies used.We also review the main GPLVMs that extensively developed based on the methods described in Section 3.In this section,we will draw some promising lines for future researches of GPLVM.

    5.1.GPLVM for discrete variables

    The conventional GPLVMand its extensions are suitable for analysis of continuous data.However,in many machine learning task such as naturallanguage processing and medical diagnosis, users often get discrete variables.Although[78],has proposed a GPLVM for the estimation of multivariate categorical data,its inference is based on the variational approximation and sampling approaches which have a high computational complexity. To overcome the difficulty,we mainly should consider two factors:the construction of likelihood and the inference method of latent variables,which deserve more attentions.

    5.2.Scalable inference in GPLVM

    During the inference of GPLVM,we should evaluate the distributionp(Y|X)which has a time complexity of O(N3)by computing the inversion of theN×Nkernel matrix.Although, there have been many methods for the sparse estimation of GP and GPLVM[45-49],they can not improve the scalability of GPLVM without the risk of accuracy loss.For this reason,the scalable inference of GP and GPLVM has become a popular research content recent years and will be paid more attention in the future.

    5.3.Similarity Gaussian Process Latent Variable Model

    Recent years,metric learning methods are widely studied. Its goal is to learn a suitable metric by using the distance constraints of pairwise samples[42].To our best knowledge, there is only one model[32]that uses GPLVM to construct a similarity learning model(m-SimGP)of multi-modal data. This modelcan be applied to various tasks to discover the nonlinear correlations and obtain the comparable low-dimensional representation for heterogeneous modalities.This kind of GPLVM-based metric learning model has a more flexible structure than the conventional metric models and is likely to receive increasing interest in the near future.

    [1]G.Darnell,S.Georgiev,S.Mukherjee,B.E.Engelhardt,Adaptive randomized dimension reduction on massive data,arXiv preprint arXiv: 1504.03183.

    [2]A.Sarveniazi,Am.J.Comput.Math.04(2)(2014)55-72.

    [3]D.M.Blei,A.Y.Ng,M.I.Jordan,J.Mach.Learn.Res.3(2003) 993-1022.

    [4]M.A.Carreira-Perpin,M.A.Carreira-Perpin,Perpinan(1997)1-69.

    [5]S.T.Roweis,L.K.Saul,Science 290(5500)(2000)2323-2326.

    [6]R.Urtasun,T.Darrell,Discriminative gaussian process latent variable model for classification,in:Proceedings of the 24th International Conference on Machine Learning,ICML’07,2007.

    [7]X.Gao,X.Wang,D.Tao,X.Li,IEEE Trans.Syst.Man Cybern.Part B 41(2)(2011)425-434.

    [8]X.Jiang,J.Gao,T.Wang,L.Zheng,IEEE Trans.Syst.Man Cybern.Part B 42(6)(2012)1620-1632.

    [9]S.Eleftheriadis,O.Rudovic,M.Pantic,IEEE Trans.Image Process.24 (1)(2015)189-204.

    [10]A.K.Jain,M.N.Murty,P.J.Flynn,ACM Comput.Surv.31(3)(1999) 264-323.

    [11]J.A.Hartigan,M.A.Wong,Appl.Stat.28(1)(2013)100-108.

    [12]M.M.Adankon,M.Cheriet,Support Vector Machine,Springer,US, 2015.

    [13]S.C.Kothari,H.Oh,Neural Networks for Pattern Recognition,MIT Press,1993.

    [14]C.M.Bishop,Pattern Recognition and Machine Learning(Information Science and Statistics),Springer-Verlag New York,Inc.,2006.

    [15]N.Lawrence,J.Mach.Learn.Res.6(3)(2005)1783-1816.

    [16]J.Philbin,J.Sivic,A.Zisserman,Int.J.Comput.Vis.95(2)(2011)138-153.

    [17]B.Brosseau-Villeneuve,J.Y.Nie,N.Kando,Inf.Retr.17(1)(2014) 21-51.

    [18]G.Hinton,L.Deng,D.Yu,G.E.Dahl,A.Mohamed,N.Jaitly,A.Senior, V.Vanhoucke,P.Nguyen,T.N.Sainath,IEEE Signal Process.Mag.29 (6)(2012)82-97.

    [19]S.Maneeroj,A.Takasu,Hybrid recommender system using latent features,in:International Conference on Advanced Information NETWORKING and Applications Workshops,2009,pp.661-666.

    [20]X.Y.Liu,Z.W.Liao,Z.S.Wang,W.F.Chen,Int.Conf.Mach.Learn. Cybern.(2006)4155-4159.

    [21]A.M.Martínez,A.C.Kak,IEEE Trans.Pattern Anal.Mach.Intell.23(2) (2001)228-233.

    [22]D.Petelin,Int.J.Neural Syst.14(6)(2006)3011-3015.

    [23]R.Calandra,J.Peters,C.E.Rasmussen,M.P.Deisenroth,Manifold gaussian processes for regression,arXiv preprint arXiv:1402.5876.

    [24]Z.Qiang,J.Ma,Automatic Model Selection of the Mixtures of Gaussian Processes for Regression,Springer International Publishing,2015.

    [25]E.V.Bonilla,K.M.A.Chai,C.K.I.Williams,Multi-task gaussian process prediction,in:Conference on Neural Information Processing Systems, Vancouver,British Columbia,Canada,December,2007.

    [26]H.C.Kim,J.Lee,Neural Comput.19(11)(2007)3088-3107.

    [27]B.Abolhasanzadeh,Gaussian process latent variable model for dimensionality reduction in intrusion detection,in:ElectricalEngineering,2015.

    [28]M.K.Titsias,N.D.Lawrence,Bayesian gaussian process latent variable model,in:Proceedings of the Thirteenth International Workshop on ArtificialIntelligence&Statistics Jmlr W&Cp,vol.9,2010,pp.844-851(9).

    [29]S.Eleftheriadis,O.Rudovic,M.Pantic,Shared gaussian process latent variable model for multi-view facial expression recognition,in:International Symposium on Visual Computing,2013,pp.527-538.

    [30]C.H.Ek,P.H.S.Torr,N.D.Lawrence,Gaussian process latent variable models for human pose estimation,in:Machine Learning for Multimodal Interaction,International Workshop,Mlmi 2007,Czech Republic,Brno, 2007,pp.132-143.June 28-30,2007,Revised Selected Papers.

    [31]L.Cai,L.Huang,C.Liu,Multimedia Tools Appl.(2015)1-18.

    [32]G.Song,S.Wang,Q.Huang,Q.Tian,Similarity gaussian process latent variable model for multi-modal data analysis,in:IEEE International Conference on Computer Vision,2015,pp.4050-4058.

    [33]B.Schlkopf,A.Smola,K.Mller,NeuralComput.10(5)(1998)1299-1319.

    [34]T.Cover,P.Hart,IEEE Trans.Inf.Theory 13(1)(1967)21-27.

    [35]M.L.Zhang,Z.H.Zhou,Pattern Recognit.40(7)(2007)2038-2048.

    [36]P.Hall,T.C.Hu,J.S.Marron,Ann.Stat.23(1)(1995)1-10.

    [37]L.Devroye,A.Krzyak,Stat.Prob.Lett.44(3)(1999)299-308.

    [38]F.Bohnert,I.Zukerman,D.F.Schmidt,Using gaussian spatial processes to modeland predictinterests in museum exhibits,in:The Workshop on Intelligent Techniques for Web Personalization&Recommender Systems,2009.

    [39]W.Herlands,A.Wilson,H.Nickisch,S.Flaxman,D.Neill,W.V. Panhuis,E.Xing,Scalable gaussian processes for characterizing multidimensional change surfaces,arXiv preprint arXiv:1511.04408.

    [40]A.Datta,S.Banerjee,A.O.Finley,A.E.Gelfand,J.Am.Stat.Assoc. (2015)(just-accepted).

    [41]X.Wang,X.Gao,Y.Yuan,D.Tao,J.Li,Neurocomputing 73(10-12) (2010)2186-2195.

    [42]C.Kang,S.Liao,Y.He,J.Wang,W.Niu,S.Xiang,C.Pan,Cross-modal similarity learning:a low rank bilinear formulation,in:Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,CIKM’15,2015.

    [43]N.D.Lawrence,A.J.Moore,Hierarchicalgaussian process latentvariable models,in:Machine Learning,Proceedings of the Twenty-Fourth International Conference,2007,pp.481-488.

    [44]F.Yousefi,Z.Dai,C.H.Ek,N.Lawrence,Unsupervised learning with imbalanced data via structure consolidation latent variable model,arXiv preprint arXiv:1607.00067.

    [45]E.Snelson,Z.Ghahramani,Adv.Neural Inf.Process.Syst.18(1)(2006) 1257-1264.

    [46]E.Snelson,Z.Ghahramani,Local and global sparse gaussian process approximations,in:Proceedings of Artificial Intelligence and Statistics (AISTATS 2),2007,pp.524-531.

    [47]T.V.Nguyen,E.V.Bonilla,Fastallocation of gaussian process experts,in: In International Conference on Machine Learning,2014.

    [48]Y.Gal,M.V.D.Wilk,Variational inference in sparse gaussian process regression and latent variable models-a gentle tutorial,arXiv preprint arXiv:1402.1412.

    [49]N.D.Lawrence,J.Mach.Learn.Res.2(2007)243-250.

    [50]N.D.Lawrence,J.Qui~nonero Candela,Localdistance preservation in the gp-lvm through back constraints,in:Proceedings of the 23rd International Conference on Machine Learning,ICML'06,2006.

    [51]S.J.Pan,Q.Yang,IEEETrans.Knowl.Data Eng.22(10)(2010)1345-1359.

    [52]S.Roweis,Adv.Neural Inf.Process.Syst.10(1999)626-632.

    [53]S.Yu,K.Yu,V.Tresp,H.P.Kriegel,M.Wu,Supervised probabilistic principal component analysis,in:Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Philadelphia, PA,USA,August,2006,pp.464-473.

    [54]X.Gao,X.Wang,X.Li,D.Tao,Pattern Recognit.44(10-11)(2011) 2358-2366.

    [55]Y.Fu,L.Wang,Y.Guo,Comput.Sci.12(7)(2014)717-729.

    [56]P.Xie,E.P.Xing,Multi-modal distance metric learning,in:Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,IJCAI'13,2013.

    [57]T.Wang,S.Gong,X.Zhu,S.Wang,IEEE Trans.Pattern Anal.Mach. Intell.(2016),1-1.

    [58]A.P.Shon,K.Grochow,A.Hertzmann,R.P.N.Rao,Adv.Neural Inf. Process.Syst.(2005)1233-1240.

    [59]R.K.C.Fan,Spectralgraph theory,Published forthe Conference Board of the Mathematical Sciences by the American MathematicalSociety,1997.

    [60]O.Stegle,C.Lippert,J.M.Mooij,N.D.Larence,K.Borgwardt,Adv. Neural Inf.Process.Syst.(2011)2011.

    [61]F.Yan,Z.Xu,Y.A.Qi,Sparse matrix-variate gaussian process blockmodels for network modeling,arXiv preprint arXiv:1202.3769.

    [62]O.Koyejo,C.Lee,J.Ghosh,Mach.Learn.97(1-2)(2014)103-127.

    [63]O.Koyejo,L.Cheng,J.Ghosh,The trace norm constrained matrixvariate gaussian process for multitask bipartite ranking,arXiv preprint arXiv:1302.2576.

    [64]N.Houlsby,J.M.Hernndez-Lobato,F.Huszr,Z.Ghahramani,Adv. Neural Inf.Process.Syst.3(2012)2096-2104.

    [65]M.J.Wainwright,M.I.Jordan,Found.Trends Mach.Learn.1(12)(2010) 1-305.

    [66]A.C.Damianou,M.K.Titsias,N.D.Lawrence,Variationalinference for uncertainty on the inputs of gaussian process models,arXiv preprint arXiv:1409.2287.

    [67]R.Andrade Pacheco,J.Hensman,M.Zwiessele,N.Lawrence,Hybrid discriminative-generative approach with gaussian processes,in:Proceedings of the Thirteenth International Workshop on Artificial Intelligence&Statistics Jmlr W&Cp,2014,pp.47-56.

    [68]J.M.Wang,D.J.Fleet,A.Hertzmann,Gaussian process dynamical models,in:In NIPS,MIT Press,2006,pp.1441-1448.

    [69]J.M.Wang,D.J.Fleet,A.Hertzmann,IEEE Trans.Pattern Anal Mach. Intell.30(2)(2008)283-298.

    [70]A.C.Damianou,M.K.Titsias,N.D.Lawrence,Variational gaussian process dynamical systems,in:Advances in Neural Information Processing System,IEEE Conf.Publications,2011,pp.2510-2518.

    [71]H.Xiong,T.Liu,D.Tao,H.Shen,IEEE Trans.Image Process.25(8) (2016),1-1.

    [72]Z.Dai,A.Damianou,J.Gonzlez,N.Lawrence,Comput.Sci.14(9) (2015)3942-3951.

    [73]Y.Bengio,Found.Trends Mach.Learn.2(1)(2009)1-127.

    [74]G.E.Hinton,Scholarpedia 4(6)(2009)786-804.

    [75]J.Masci,U.Meier,J.Schmidhuber,Stacked convolutionalauto-encoders for hierarchical feature extraction,in:In International Conference on Artificial Neural Networks,2011.

    [76]A.C.Damianou,N.D.Lawrence,Comput.Sci.(2012)207-215.

    [77]T.D.Bui,D.Hernndezlobato,Y.Li,J.M.Hernndezlobato,R.E.Turner, Deep gaussian processes for regression using approximate expectation propagation,arXiv preprint arXiv:1602.04133.

    [78]Y.Gal,Y.Chen,Z.Ghahramani,Statistics(2015)645-654.

    Ping Lireceived his B.S.and M.S.degree in Management Science&Engineering from Anhui University of Technology in 2011 and 2014.He is currently pursuing the Ph.D.degree with the College of Computer Science&Technology,Nanjing University of Aeronautics and Astronautics.Her research interests include pattern recognition and machine learning.

    Songcan Chenreceived his B.S.degree in mathematics from Hangzhou University(now merged into Zhejiang University)in 1983.In 1985,he completed his M.S.degree in computer applications at Shanghai Jiaotong University and then worked at NUAA in January 1986.There he received a Ph.D.degree in communication and information systems in 1997. Since 1998,as a full-time professor,he has been with the College of Computer Science&Technology at NUAA.His research interests include pattern recognition,machine learning and neural computing.

    Available online 14 November 2016

    *Corresponding author.

    E-mail addresses:ping.li.nj@nuaa.edu.cn(P.Li),s.chen@nuaa.edu.cn(S. Chen).

    Peer review under responsibility of Chongqing University of Technology.

    http://dx.doi.org/10.1016/j.trit.2016.11.004

    2468-2322/Copyright?2016,Chongqing University of Technology.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NCND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Copyright?2016,Chongqing University of Technology.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    啟明星政治素質(zhì)學(xué)風(fēng)
    啟明星辰
    啟明星辰
    輔導(dǎo)員視角下的“抓學(xué)風(fēng)”
    閱讀——散發(fā)智慧光芒的啟明星
    淺談企業(yè)保衛(wèi)人員提高思想政治素質(zhì)的必要性
    活力(2019年19期)2020-01-06 07:35:38
    淺談國(guó)有企業(yè)領(lǐng)導(dǎo)干部思想政治素質(zhì)的提高
    活力(2019年22期)2019-03-16 12:47:06
    唐啟升:海上升起啟明星
    商周刊(2019年1期)2019-01-31 02:36:26
    提高醫(yī)院干部隊(duì)伍思想政治素質(zhì)的思考
    陳嘉庚精神與“誠(chéng)毅”學(xué)風(fēng)的形成
    關(guān)于改進(jìn)高校學(xué)風(fēng)的思考
    河南科技(2014年24期)2014-02-27 14:20:00
    404 Not Found

    404 Not Found


    nginx
    成人黄色视频免费在线看| 熟妇人妻不卡中文字幕| 18禁动态无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 国产伦在线观看视频一区| 全区人妻精品视频| 五月玫瑰六月丁香| 成年人午夜在线观看视频| 99热这里只有精品一区| 欧美最新免费一区二区三区| 26uuu在线亚洲综合色| 青春草亚洲视频在线观看| 狂野欧美激情性bbbbbb| 国产又色又爽无遮挡免| 黄片无遮挡物在线观看| 精品少妇久久久久久888优播| 曰老女人黄片| 国产色婷婷99| 美女大奶头黄色视频| 九九久久精品国产亚洲av麻豆| 久久精品久久精品一区二区三区| 一级av片app| 80岁老熟妇乱子伦牲交| 亚洲精品亚洲一区二区| 男女国产视频网站| 欧美3d第一页| 国产在线免费精品| 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| av线在线观看网站| 免费观看av网站的网址| 在线观看三级黄色| 乱系列少妇在线播放| 美女中出高潮动态图| 午夜福利在线观看免费完整高清在| 女人精品久久久久毛片| 五月天丁香电影| 一级爰片在线观看| 日韩一本色道免费dvd| 一级片'在线观看视频| 免费观看的影片在线观看| av黄色大香蕉| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 精品国产国语对白av| 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区| 亚洲精品乱码久久久久久按摩| 午夜久久久在线观看| 国产淫片久久久久久久久| 国产色婷婷99| 国产精品国产三级专区第一集| 国产亚洲最大av| 狂野欧美激情性bbbbbb| 亚洲精品一二三| 亚洲精品视频女| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 国产免费一区二区三区四区乱码| 国产成人午夜福利电影在线观看| 成年人免费黄色播放视频 | 色5月婷婷丁香| av有码第一页| 精品国产露脸久久av麻豆| 永久免费av网站大全| 国产欧美亚洲国产| 欧美+日韩+精品| 精品一品国产午夜福利视频| 观看免费一级毛片| 久久精品夜色国产| 黄色视频在线播放观看不卡| 久久午夜福利片| 18禁在线无遮挡免费观看视频| 国产黄片视频在线免费观看| 亚洲情色 制服丝袜| 成人18禁高潮啪啪吃奶动态图 | 国产精品不卡视频一区二区| h视频一区二区三区| 国产探花极品一区二区| 99精国产麻豆久久婷婷| 久久久久久久久久人人人人人人| 亚洲第一区二区三区不卡| 精品国产一区二区三区久久久樱花| 国产熟女欧美一区二区| 亚洲欧美一区二区三区黑人 | 在线观看美女被高潮喷水网站| 久久99热这里只频精品6学生| 午夜91福利影院| 我要看黄色一级片免费的| 亚洲高清免费不卡视频| 日韩 亚洲 欧美在线| 午夜精品国产一区二区电影| 欧美成人午夜免费资源| 国产乱人偷精品视频| 99热这里只有精品一区| av黄色大香蕉| 日韩一区二区视频免费看| 精品亚洲成国产av| 秋霞伦理黄片| 亚洲性久久影院| 成年美女黄网站色视频大全免费 | 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久久久大奶| 99视频精品全部免费 在线| 午夜福利,免费看| av黄色大香蕉| 在线观看www视频免费| 在线免费观看不下载黄p国产| 成人无遮挡网站| 我要看日韩黄色一级片| 男女国产视频网站| 国产成人精品婷婷| 亚洲av成人精品一二三区| 99久久精品热视频| 亚洲精品视频女| 日韩一本色道免费dvd| 交换朋友夫妻互换小说| 亚洲欧美精品专区久久| 国产伦精品一区二区三区视频9| 一区二区三区精品91| 亚洲欧美一区二区三区黑人 | 亚洲av二区三区四区| 看十八女毛片水多多多| 最近中文字幕2019免费版| 国产女主播在线喷水免费视频网站| 欧美+日韩+精品| 成人亚洲欧美一区二区av| 大话2 男鬼变身卡| a级毛片在线看网站| 亚洲无线观看免费| 涩涩av久久男人的天堂| 欧美日韩av久久| 在线观看国产h片| 欧美日韩视频精品一区| 黄色一级大片看看| 国产高清三级在线| 成年人午夜在线观看视频| 搡老乐熟女国产| 男女边摸边吃奶| 99久久精品一区二区三区| 亚洲va在线va天堂va国产| 一区二区三区乱码不卡18| 国产精品久久久久成人av| 丝袜脚勾引网站| 特大巨黑吊av在线直播| av在线老鸭窝| 久久久久国产网址| 91久久精品电影网| 亚洲av.av天堂| 国产视频首页在线观看| 能在线免费看毛片的网站| 一本一本综合久久| 91精品国产国语对白视频| 成人无遮挡网站| 国产老妇伦熟女老妇高清| 啦啦啦啦在线视频资源| 国产乱人偷精品视频| 久久久a久久爽久久v久久| 黄色欧美视频在线观看| 国产欧美日韩精品一区二区| 国产在线视频一区二区| 免费观看在线日韩| 一级毛片黄色毛片免费观看视频| 欧美激情极品国产一区二区三区 | 少妇人妻久久综合中文| 久久人人爽人人爽人人片va| 免费观看的影片在线观看| 啦啦啦啦在线视频资源| 丝袜喷水一区| 男人添女人高潮全过程视频| 国产伦在线观看视频一区| 国产精品.久久久| 久久久久久久久久人人人人人人| 免费av不卡在线播放| 大陆偷拍与自拍| 欧美精品一区二区大全| 久久久久久久久久久免费av| 色94色欧美一区二区| 日韩一区二区视频免费看| 午夜免费观看性视频| 国国产精品蜜臀av免费| 天堂8中文在线网| 色婷婷久久久亚洲欧美| 国产精品国产三级国产专区5o| 黑人巨大精品欧美一区二区蜜桃 | 大陆偷拍与自拍| 免费观看av网站的网址| 国产黄频视频在线观看| 免费播放大片免费观看视频在线观看| 日本wwww免费看| 我要看日韩黄色一级片| 国产精品久久久久成人av| 极品教师在线视频| 老女人水多毛片| 人妻一区二区av| 高清午夜精品一区二区三区| 日韩一本色道免费dvd| 国产欧美日韩综合在线一区二区 | 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| www.av在线官网国产| 少妇人妻一区二区三区视频| 成人影院久久| 久久久久网色| 秋霞在线观看毛片| 国产91av在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 久久99一区二区三区| 国产一区二区三区av在线| 少妇人妻 视频| 亚洲欧美成人综合另类久久久| 午夜久久久在线观看| 久久 成人 亚洲| 国产老妇伦熟女老妇高清| 超碰97精品在线观看| 国产日韩欧美在线精品| 久久精品国产亚洲av涩爱| av.在线天堂| 日韩中字成人| 色吧在线观看| 97在线视频观看| 久久6这里有精品| 国产精品嫩草影院av在线观看| 麻豆精品久久久久久蜜桃| 91精品国产九色| 精品一区二区三卡| 久久鲁丝午夜福利片| 永久网站在线| 国产亚洲5aaaaa淫片| 中文精品一卡2卡3卡4更新| 精品少妇内射三级| 在线 av 中文字幕| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品古装| 国产一级毛片在线| 80岁老熟妇乱子伦牲交| a级毛片在线看网站| av视频免费观看在线观看| 自线自在国产av| 在线播放无遮挡| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 欧美性感艳星| 免费看av在线观看网站| 亚洲精华国产精华液的使用体验| 国产免费福利视频在线观看| 色吧在线观看| 少妇猛男粗大的猛烈进出视频| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 高清午夜精品一区二区三区| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| 又爽又黄a免费视频| 大陆偷拍与自拍| 国产国拍精品亚洲av在线观看| 免费黄色在线免费观看| 99re6热这里在线精品视频| 26uuu在线亚洲综合色| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 熟女av电影| 亚洲图色成人| 国产成人精品无人区| 成人影院久久| 亚洲成人一二三区av| 99久久人妻综合| 久久久久久久久久久久大奶| 久久久久久久精品精品| 丝袜喷水一区| 一区在线观看完整版| 中文字幕精品免费在线观看视频 | 久久免费观看电影| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 3wmmmm亚洲av在线观看| av不卡在线播放| 午夜免费男女啪啪视频观看| 国产精品无大码| 能在线免费看毛片的网站| 成人综合一区亚洲| 久久99蜜桃精品久久| 美女内射精品一级片tv| 日本欧美视频一区| 美女主播在线视频| 亚洲婷婷狠狠爱综合网| 亚洲国产成人一精品久久久| av.在线天堂| 日韩大片免费观看网站| 国模一区二区三区四区视频| 男人添女人高潮全过程视频| 3wmmmm亚洲av在线观看| 嫩草影院入口| 精品一区二区三卡| 自拍偷自拍亚洲精品老妇| 一级二级三级毛片免费看| 另类精品久久| 国产高清不卡午夜福利| 2018国产大陆天天弄谢| 男人狂女人下面高潮的视频| 国产免费福利视频在线观看| 久久97久久精品| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 97超碰精品成人国产| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 国产成人午夜福利电影在线观看| 一区二区av电影网| 国产黄色视频一区二区在线观看| 三级经典国产精品| 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 亚洲一区二区三区欧美精品| 国产精品久久久久久av不卡| 久久狼人影院| 免费播放大片免费观看视频在线观看| 熟女人妻精品中文字幕| 黄色配什么色好看| 亚洲内射少妇av| 久久久久久久大尺度免费视频| 国产精品一区二区性色av| 久久99热这里只频精品6学生| 亚洲三级黄色毛片| 精品久久久久久久久亚洲| 日韩欧美精品免费久久| 国产午夜精品一二区理论片| 草草在线视频免费看| 性色av一级| 精品国产露脸久久av麻豆| 日韩强制内射视频| av黄色大香蕉| 3wmmmm亚洲av在线观看| 最近2019中文字幕mv第一页| 国产一区二区三区综合在线观看 | 亚洲,欧美,日韩| 97超视频在线观看视频| 久久久久国产精品人妻一区二区| 国产欧美亚洲国产| 亚洲国产av新网站| 熟女人妻精品中文字幕| 精品国产一区二区三区久久久樱花| 国产精品一区二区在线不卡| 丝袜喷水一区| 成人黄色视频免费在线看| 亚洲国产色片| 在线精品无人区一区二区三| 亚洲内射少妇av| 又爽又黄a免费视频| 我的老师免费观看完整版| 观看美女的网站| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 一级片'在线观看视频| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 99九九在线精品视频 | 99热国产这里只有精品6| 91在线精品国自产拍蜜月| 在线观看美女被高潮喷水网站| 狠狠精品人妻久久久久久综合| 91午夜精品亚洲一区二区三区| 精品卡一卡二卡四卡免费| 秋霞伦理黄片| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 九九在线视频观看精品| 久久久精品94久久精品| 蜜桃久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 国产色婷婷99| 五月伊人婷婷丁香| 亚洲国产精品成人久久小说| 免费大片黄手机在线观看| 寂寞人妻少妇视频99o| 狂野欧美激情性xxxx在线观看| 18禁动态无遮挡网站| 国产精品一区二区性色av| 亚洲一级一片aⅴ在线观看| 另类精品久久| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| 久久婷婷青草| 国产精品秋霞免费鲁丝片| 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验| 亚洲av国产av综合av卡| 伦理电影免费视频| 久热久热在线精品观看| 日本免费在线观看一区| 狂野欧美激情性xxxx在线观看| 久久久久久人妻| 寂寞人妻少妇视频99o| 精品一区在线观看国产| 国产亚洲一区二区精品| 赤兔流量卡办理| 欧美bdsm另类| 欧美 亚洲 国产 日韩一| 少妇的逼水好多| 久久久久精品久久久久真实原创| 精品国产国语对白av| 国产成人午夜福利电影在线观看| 久久精品久久久久久噜噜老黄| 一本一本综合久久| 日韩,欧美,国产一区二区三区| 我的女老师完整版在线观看| 简卡轻食公司| 国产精品一区二区三区四区免费观看| 精品午夜福利在线看| 特大巨黑吊av在线直播| 男女边摸边吃奶| 最后的刺客免费高清国语| 91精品一卡2卡3卡4卡| 成人国产麻豆网| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 男女免费视频国产| 国国产精品蜜臀av免费| 丝袜在线中文字幕| 欧美最新免费一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 亚洲性久久影院| 亚洲熟女精品中文字幕| 成人漫画全彩无遮挡| 国产精品99久久99久久久不卡 | 97在线人人人人妻| 国产真实伦视频高清在线观看| 丝袜脚勾引网站| 高清午夜精品一区二区三区| 国产黄片视频在线免费观看| 欧美精品高潮呻吟av久久| 男人舔奶头视频| 精品少妇内射三级| 精品视频人人做人人爽| 美女主播在线视频| 青春草国产在线视频| 国产熟女欧美一区二区| 国产欧美日韩综合在线一区二区 | av线在线观看网站| 精品人妻偷拍中文字幕| 热re99久久国产66热| 久久久精品免费免费高清| 少妇人妻一区二区三区视频| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说| 女人久久www免费人成看片| 狂野欧美激情性xxxx在线观看| 国产精品三级大全| 亚洲av.av天堂| 国产精品伦人一区二区| 亚洲激情五月婷婷啪啪| 99久久精品国产国产毛片| 看免费成人av毛片| 成人特级av手机在线观看| 免费黄频网站在线观看国产| 2022亚洲国产成人精品| 插阴视频在线观看视频| 日韩成人伦理影院| 97超视频在线观看视频| 色视频www国产| 你懂的网址亚洲精品在线观看| 久久影院123| 丝袜喷水一区| 如日韩欧美国产精品一区二区三区 | 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 最新的欧美精品一区二区| 国模一区二区三区四区视频| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站 | 国产极品粉嫩免费观看在线 | 七月丁香在线播放| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 亚洲精品国产成人久久av| 一个人免费看片子| av在线观看视频网站免费| 国产在视频线精品| 国产一区二区三区综合在线观看 | 精品人妻熟女毛片av久久网站| 又粗又硬又长又爽又黄的视频| 久久精品国产鲁丝片午夜精品| 日韩人妻高清精品专区| 嫩草影院入口| 国产精品.久久久| 亚洲av电影在线观看一区二区三区| 国产高清三级在线| 精品国产一区二区久久| 如何舔出高潮| 久久久久久久久久久久大奶| 嫩草影院入口| 少妇被粗大的猛进出69影院 | 亚洲精品国产色婷婷电影| 精品亚洲乱码少妇综合久久| 国产精品福利在线免费观看| 一本一本综合久久| 国产av精品麻豆| 日本av手机在线免费观看| 国产欧美日韩精品一区二区| 亚洲av.av天堂| 午夜精品国产一区二区电影| 男女边摸边吃奶| 美女cb高潮喷水在线观看| 久久女婷五月综合色啪小说| 色视频在线一区二区三区| 日韩视频在线欧美| 精品国产一区二区久久| 超碰97精品在线观看| 永久免费av网站大全| 午夜91福利影院| 亚洲,欧美,日韩| av天堂久久9| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 国产乱人偷精品视频| 少妇人妻 视频| 极品教师在线视频| 免费人妻精品一区二区三区视频| 亚洲欧美中文字幕日韩二区| 中文字幕人妻丝袜制服| 一级毛片我不卡| 国产黄片美女视频| 一级毛片久久久久久久久女| 伦精品一区二区三区| 丰满乱子伦码专区| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 香蕉精品网在线| 国产亚洲5aaaaa淫片| 简卡轻食公司| 在线天堂最新版资源| 日日爽夜夜爽网站| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 日韩视频在线欧美| 桃花免费在线播放| 久久精品国产a三级三级三级| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频| 大香蕉久久网| 亚洲精品久久午夜乱码| 亚洲国产精品999| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 亚洲国产最新在线播放| 美女中出高潮动态图| 最黄视频免费看| 丝袜在线中文字幕| 午夜av观看不卡| 国产精品国产三级国产专区5o| 久久99精品国语久久久| 国产精品久久久久久久久免| 自拍偷自拍亚洲精品老妇| 妹子高潮喷水视频| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 国产黄频视频在线观看| 免费黄色在线免费观看| 22中文网久久字幕| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看| av不卡在线播放| 两个人的视频大全免费| 麻豆成人午夜福利视频| 久久热精品热| 少妇 在线观看| a级毛片在线看网站| 最近的中文字幕免费完整| 天天操日日干夜夜撸| 大香蕉97超碰在线| 最近中文字幕2019免费版| 亚洲精品国产av成人精品| 精品熟女少妇av免费看| 免费观看的影片在线观看| 制服丝袜香蕉在线| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 精品人妻熟女av久视频| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 永久网站在线| 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 欧美 亚洲 国产 日韩一| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 精品熟女少妇av免费看| 久久国内精品自在自线图片| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 我的老师免费观看完整版| 欧美xxxx性猛交bbbb| 欧美精品一区二区免费开放| 啦啦啦啦在线视频资源| 精品国产乱码久久久久久小说| 伊人久久国产一区二区| 国产一区亚洲一区在线观看| 一级爰片在线观看| 夫妻午夜视频|