郭杰榮 何怡剛 劉長青
摘要:提出了一個高精確、可工作在非常微弱電流的開關(guān)電流鏡電路,采用一種可以自動調(diào)整鏡像MOS管柵源電壓的方法進行失配補償,可實現(xiàn)因物理參數(shù)失配造成輸出誤差的補償.根據(jù)可重構(gòu)模擬單元CAB的設(shè)計需要,提出了雙相位多輸出電流鏡及其失配補償電路,討論了工作時序與可編程開關(guān)的一體化設(shè)計.所提出的設(shè)計對于20%的失配只產(chǎn)生小于1%的誤差,電流范圍1 nA~1 μA.該電路可以使用CMOS單晶工藝實現(xiàn).給出的仿真結(jié)果驗證了理論設(shè)計.
關(guān)鍵詞: 電流鏡;電流控制;CMOS電流; 可重構(gòu)模擬單元; 可編程開關(guān)網(wǎng)絡(luò)
中圖分類號:TN710文獻標識碼:A
文章編號:1674-2974(2016)02-0119-05
開關(guān)電流(Switched Current SI)電路由存儲單元、不同工作相位控制開關(guān)以及電流鏡電路構(gòu)成,實現(xiàn)對電流信號的處理,具有較強的低功耗工作潛力,兼容標準數(shù)字CMOS工藝.理論上,SI技術(shù)有著種種優(yōu)勢以取代開關(guān)電容技術(shù).然而,在現(xiàn)實應(yīng)用中,由于CMOS電流鏡的幾何、跨導(dǎo)等失配特性使得SI電路在精度、速度和線性等方面受到限制,必須采用各種補償電路以及更有效的電路設(shè)計方法[1].目前廣泛研究與應(yīng)用的SI技術(shù)都是以第二代SI(S2I)電流鏡電路為基本模塊的[2-6] .然而.改進后的結(jié)構(gòu)其存儲的精度對在存儲節(jié)點注入電荷非常敏感,因此電荷注入限制了這種電路的實用性.另外,采用浮柵技術(shù)補償失配參數(shù)的方法也有報道, 如采用低功耗class AB 柵極接地存儲電路來構(gòu)成CAB[7-9],用柵極接地技術(shù)減少輸入輸出跨導(dǎo)比誤差.但這樣的補償電路的實現(xiàn)需要雙聚工藝.Chris Taillefer 提出柵源電壓補償方法[10],只針對基本電流鏡結(jié)構(gòu),對于多相位開關(guān)電流結(jié)構(gòu)未作討論.此外,當(dāng)通過晶體對管的電流減小時,失配的效果會變得更加明顯.如果一個電流鏡的晶體管是在弱反模式下,失配可能會導(dǎo)致電流鏡故障[11-12].因此,如果一個電流鏡需要采用弱電流驅(qū)動工作,如傳感器或低功耗操作,就必須在電路中采用補償方法消除或減小失配效應(yīng).本文提出的SI電流鏡電路可以有效地補償晶體管的參數(shù)失配.該電路在幾何不匹配達到20%的情況下,鏡像輸出電流誤差小于1%,且可工作在一系列非常微弱的電流條件下.
1SI電路原理及失配
因此,SI電流鏡運行的準確性高度依賴于晶體對管的匹配程度.然而,因硅材料的非均勻物理參數(shù)導(dǎo)致的晶體管不匹配是不可避免的,產(chǎn)生的電參數(shù)的變化,往往是很弱的弱相關(guān).兩個相同設(shè)計的晶體管由于物理參數(shù)的變化,如氧化層厚度和摻雜濃度,可能產(chǎn)生20%~30%的特征失配.
2補償電路原理
5結(jié)束語
本文提出一種開關(guān)電流鏡失配補償方法,采用單獨調(diào)節(jié)柵源電壓補償晶體對管跨導(dǎo)失配,從而獲得一致的輸入輸出電流.提出了一種在極端電流情況下可以運行的電流鏡電路,對于20%的失配可以獲得1%的精度匹配.基于輸入輸出間的負反饋電路,各類變量如幾何尺寸、偏移、閾值電壓等產(chǎn)生的誤差都將通過負反饋有效抑制.電路可以很容易地采用單聚CMOS工藝實現(xiàn).
參考文獻
[1]SAETHER G E, TOUMAZOU C, TAYLOR G, et al. Concurrent self test of switched current circuits based on the S2I-technique[C]//1995 IEEE International Symposium on Circuits and Systems: Vol 2. New York: IEEE, 1995: 841-844.
[2]LONG Di, HONG Xian-long, DONG She-qin. Optimal two-dimension common centroid layout generation for MOS transistors unit-circuit[C]//Proceedings of IEEE International Symposium on Circuits and Systems: Vol.3[J]. New York: IEEE, 2005: 2999-3002.
[3]YANG S H, KIM K H, YOU Y, et al. A novel CMOS operational transconductance amplifier based on a mobility compensation technique[J]. IEEE Transactions on Circuits Systems II: Express Briefs, 52(1): 37-42.
[4]TARCAN R C, KUNTMAN H. CMOS high precision current-mode squarer/divider circuit[C]//Proceedings of IEEE 15th Signal Processing and Communications Applications. New York: IEEE, 2007:1-4.
[5]SEON J K. Design and application of precise analog computational circuits[J]. Analog Integrated Circuits and Signal Processing, 2008,54(1): 55-66.
[6]戴力,莊奕琪,景鑫, 等. 一種新型高性能CMOS電流模式的動態(tài)規(guī)劃電路[J]. 西安交通大學(xué)學(xué)報, 2012,46(6): 29-35.
DAI Li, ZHUANG Yi-qi, JING Xin, et al. A novel dynamic programming circuit with high-performance CMOS current-mode[J]. Journal of Xian Jiaotong University, 2012, 46(6): 29-35. (In Chinese)
[7]CONSTANDINOU T, GEORGIOU J, TOUMAZOU C. An auto-input-offset removing floating gate pseudo-differential transconductor [C]//Proceedings of the 2003 International Symposium on Circuits and Systems. New York: IEEE, 2003: I-169-I-172.
[8]王友仁,祝明濤,任晉華, 等.面向多功能模擬信號處理的開關(guān)電流型可重構(gòu)模擬電路研究[J]. 電子學(xué)報,2011,39(5) : 1047-1052.
WANG You-ren,ZHU Ming-tao,REN Jin-hua, et al. Switched-current technology based reconfigurable analog circuit for multifunction analog signal processing[J].Acta Electronica Sinica,2011,39(5) : 1047-1052.(In Chinese)
[9]DATTA T, ABSHIRE P. Mismatch compensation of CMOS current mirrors using floating-gate transistors[C]// Proceedings of IEEE International Symposium on Circuits and Systems. New York: IEEE, 2009: 1823-1826.
[10]TAILLEFER C, WANG C. Current mirror compensation for transistor mismatch[C]//Proceedings of the 2000 IEEE International Symposium on Circuits and Systems: Vol.2. New York: IEEE, 2000: 509-512
[11]彭靜玉. MOS管工作于弱反型區(qū)時的失調(diào)分析[J]. 蘇州大學(xué)學(xué)報:工科版, 2008, 28(3): 40-43.
PENG Jing-yu. The offset analysis of MOSFET biased in weak inversion[J]. Journal of Suzhou University: Engineering Science Edition, 2008, 28(3): 40-43. (In Chinese)
[12]WANG C, AHMAD M O, SWAMY M N S. Design and implementation of a switched-current memory cell for low-power and weak-current operations [J]. IEEE Journal of Solid-State Circuits, 2001, 36(2): 304-304.
[13]李儒章.開關(guān)電流技術(shù): 一種新的模擬抽樣數(shù)據(jù)處理方法[ J] . 微電子學(xué),1996,26(4):209-215.
LI Ru-zhang. Switched current: a new technique for analog sampled-data proeessing[J]. Microelectronics, 1996,26(4): 209-215. (In Chinese)
[14]WILSON P R, WILCOCK R. Fully integrated 533 MHz programmable switched current PLL in 0.012 m2[J]. Electronics Letters, 2008, 44(22): 1297-1298.
[15]KEYMEULEN D, STOICA A, ZEBULUM R, et al. Self-reconfigurable analog array integrated circuit architecture for space applications[C]//Proceedings of AHS08 NASA/ESA Conference on Adaptive Hardware and Systems. New York: IEEE, 2008:83- 90.
[16]王友仁, 祝鳴濤, 崔江. 面向多功能模擬信號處理的可重構(gòu)模擬陣列研究[ J]. 儀器儀表學(xué)報, 2010, 31(6): 1269-1275.
WANG You-ren, ZHU Ming-tao, CUI Jiang. Research on reconfigurable analog array for multifunctional analog signal processing[J] . Chinese Journal of Scientific Instrument, 2010, 31(6) :1269- 1275. (In Chinese)
[17]郭杰榮,李長生,劉長青. 基于0.18 μm CMOS的電流模單元最優(yōu)化設(shè)計[J]. 湖南文理學(xué)院學(xué)報:自然科學(xué)版. 2012, 24(1): 39-41.
GUO Jie-rong, LI Chang-sheng, LIU Chang-qing. Optimization design on low-pass filter of channel transmission[J]. Journal of Hunan University of Arts and Science: Natural Science Edition, 2012, 24(1): 39-41. (In Chinese)