辛穎 胡月 唐琪 布文奐 孫宏晨
吉林省口腔生物醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,吉林大學(xué)口腔醫(yī)院病理科,長春 130012
?
病原體相關(guān)分子模式與牙周炎的關(guān)系
辛穎 胡月 唐琪 布文奐 孫宏晨
吉林省口腔生物醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,吉林大學(xué)口腔醫(yī)院病理科,長春 130012
[摘要]病原體相關(guān)分子模式(PAMPs)是一類存在于病原體及其產(chǎn)物中的結(jié)構(gòu)保守的分子。它能被相關(guān)受體識(shí)別,并通過信號(hào)級聯(lián)反應(yīng)誘導(dǎo)炎癥因子的表達(dá)。近年來,PAMPs在牙周炎起始及發(fā)展中的作用逐漸得到關(guān)注。PAMPs在牙周被識(shí)別后,進(jìn)而誘導(dǎo)組織表達(dá)炎癥因子對牙周軟組織及骨組織進(jìn)行破壞,引發(fā)牙周炎。阻斷PAMPs致病途徑可能為牙周炎的治療提供新的思路。
[關(guān)鍵詞]病原體相關(guān)分子模式; 牙周炎; 細(xì)胞因子
牙周炎是牙菌斑微生物及其產(chǎn)物誘導(dǎo)的、以牙體支持組織破壞甚至牙體缺失為結(jié)局的慢性非特異性炎癥。它的發(fā)生、發(fā)展受多種因素影響,其中病原體相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)近年來受到廣泛關(guān)注。PAMPs是表達(dá)在病原體及其產(chǎn)物中的相對非特異性、高度保守且有一定致病性的分子結(jié)構(gòu),如脂多糖(lipopolysaccharide,LPS)、肽聚糖、CpG-DNA。在牙周組織中,PAMPs被受體識(shí)別并在短時(shí)間內(nèi)啟動(dòng)體內(nèi)的固有免疫反應(yīng),如巨噬細(xì)胞和補(bǔ)體對病原體的清除。PAMPs誘導(dǎo)牙周組織細(xì)胞和免疫細(xì)胞產(chǎn)生白細(xì)胞介素(interleukin,IL)-1β、IL-6、腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、核轉(zhuǎn)錄因子κB受體活化因子配體(receptor activator of NF-κB ligand,RANKL)等因子,進(jìn)而引起軟組織炎癥及骨代謝紊亂。進(jìn)一步被激活的獲得性免疫系統(tǒng)產(chǎn)生IL-17等細(xì)胞因子,協(xié)助上述細(xì)胞因子加速牙周炎的進(jìn)程[1]。
1.1 LPS
LPS是革蘭陰性細(xì)菌細(xì)胞壁的特有成分,由脂質(zhì)A、核心多糖和O特異性鏈組成。牙齦卟啉單胞菌是牙周炎最常見的致病菌之一,其LPS被巨噬細(xì)胞的Toll樣受體(Toll-like receptor,TLRs)中的TLR2識(shí)別后,誘導(dǎo)細(xì)胞釋放炎癥細(xì)胞因子,這些因子能促進(jìn)基質(zhì)金屬蛋白酶和破骨細(xì)胞因子的表達(dá),進(jìn)而引起軟組織與骨的破壞[2]。此外,牙齦卟啉單胞菌還能拮抗其他細(xì)菌激活的TLR4通路[3]。在侵襲性牙周炎中,伴放線放線桿菌的LPS被TLR4識(shí)別[4],能促進(jìn)人類牙齦成纖維細(xì)胞(human gingival fibroblast,HGF)的膠原吞噬作用從而導(dǎo)致牙周結(jié)締組織的降解[5]。
1.2 肽聚糖
肽聚糖是細(xì)菌細(xì)胞壁所共有的成分,它能被細(xì)胞膜上的TLR2和細(xì)胞內(nèi)的NOD1受體、NOD2受體、含熱蛋白結(jié)構(gòu)域3富含亮氨酸重復(fù)序列的核苷酸結(jié)合寡聚化結(jié)構(gòu)域(nucleotide-binding oligomerization domain-leucine-rich repeats containing pyrin domain 3,NLRP3)識(shí)別。NOD1識(shí)別二氨基庚二酸(diaminopimelic acid,DAP),DAP是存在于革蘭陰性細(xì)菌的肽聚糖。而NOD2與NLRP3識(shí)別胞壁酰二肽(muramyl dipeptide,MDP),MDP是存在于所有細(xì)菌的肽聚糖[6]。實(shí)驗(yàn)證明,用DAP和MDP分別刺激NOD1和NOD2,能促進(jìn)β-防御素2、IL-6和IL-8的表達(dá)[7]。此外,在人類牙周成纖維細(xì)胞中,NOD1和NOD2能介導(dǎo)牙齦卟啉單胞菌誘導(dǎo)的細(xì)胞間黏附分子-1(intracellular adhesion molecule-1,ICAM-1)的產(chǎn)生,ICAM-1的表達(dá)水平和牙周炎嚴(yán)重性相關(guān)[8]。
1.3 CpG-DNA
CpG-DNA是具有免疫激活功能的以未甲基化的CpG基序?yàn)楹诵牡腄NA序列,它包括含CpG的人工合成的寡聚脫氧核苷酸和自然界中細(xì)菌、病毒、無脊椎動(dòng)物等低等生物的基因組DNA。巨噬細(xì)胞、成骨細(xì)胞的TLR9識(shí)別口腔細(xì)菌的非甲基化CpG-DNA后,TNF-α能促進(jìn)破骨細(xì)胞分化[9]。顯示非甲基化CpG-DNA能引起炎癥和骨組織破壞,加劇牙周炎。
1.4 其他
除上述PAMPs外,細(xì)菌的鞭毛及細(xì)菌表面的甘露糖殘基、磷酸膽堿在牙周炎的發(fā)展中起一定作用。鞭毛被TLR5識(shí)別能促進(jìn)防御素、免疫細(xì)胞化學(xué)趨化物、熱休克蛋白的表達(dá)[10]。研究[11]表明,鞭毛能誘導(dǎo)小鼠成骨細(xì)胞表達(dá)單核細(xì)胞趨化物蛋白-1(monocyte chemoattractant protein-1,MCP-1),MCP-1趨化炎癥細(xì)胞并誘導(dǎo)破骨細(xì)胞分化。進(jìn)一步研究[12]發(fā)現(xiàn),血清MCP-1水平和牙周疾病嚴(yán)重性呈正相關(guān)。
PAMPs的受體稱作模式識(shí)別受體(pattern recognition receptors,PRRs)。存在于細(xì)胞表面或內(nèi)涵體/溶酶體膜上的PRRs,也稱膜型PRRs,包括TLRs、C型凝集素受體;存在于胞漿中的PRRs,包括NOD樣受體(nucleotide binding oligomerization domainlike receptors,NLRs)、RIG-I樣受體、DNA感受器;存在于血清中的PRRs為分泌型PRRs,又叫作調(diào)理素,包括甘露糖結(jié)合凝集素(mannose binding lectin,MBL)、C反應(yīng)蛋白、纖維膠凝蛋白、血清淀粉樣蛋白。
2.1 TLRs
TLRs廣泛存在于免疫系統(tǒng)的細(xì)胞。至今,在人類中已發(fā)現(xiàn)10種TLRs。牙周組織的細(xì)胞也表達(dá)TLRs,TLRs的結(jié)構(gòu)特點(diǎn)是胞外的亮氨酸重復(fù)序列和胞內(nèi)的Toll/IL-1受體結(jié)構(gòu)域(Toll/IL-1 receptor homologous region,TIR)。TLRs識(shí)別相應(yīng)PAMPs后,形成二聚體且結(jié)構(gòu)發(fā)生變化,并招募誘導(dǎo)干擾素(interferon,IFN)-β的含有TIR結(jié)構(gòu)域的接頭蛋白(TIR-domaincontaining adaptor inducing IFN-β,TRIF)或髓樣分化蛋白 88(myeloid differentiation primary response protein 88,MyD88)。TRIF和TLRs結(jié)合后,通過腫瘤壞死因子受體作用因子3激活腫瘤壞死因子受體相關(guān)因子(TNF-receptor associated factor,TRAF)3家族成員相關(guān)的核轉(zhuǎn)錄因子κB(nuclear transcription factor kappa B,NF-κB)激動(dòng)劑結(jié)合激酶1。該激酶包含的NF-κB抑制劑(inhibitor of NF-κB,IκB)激酶能直接磷酸化IFN-調(diào)節(jié)因子3和7,最終誘導(dǎo)Ⅰ型IFN和IFN可誘導(dǎo)基因的表達(dá)。MyD88和TLRs的胞漿部分結(jié)合后,招募IL-1R相關(guān)的激酶(interleukin-1 receptor-associated kinase,IRAK),主要是IRAK-4 和IRAK-1。同時(shí),招募TRAF6,TRAF6和E2泛素蛋白連接酶復(fù)合體共同促進(jìn)TRAF6上的K63連接多聚泛素鏈的形成,并催化NF-κB必要的調(diào)節(jié)劑。這個(gè)泛素化作用激活了由TGF-β激活性激酶1(TGF-betaactivated kinase 1,TAK1)和TAK1結(jié)合蛋白組成的復(fù)合體。之后,TAK1使IκB激酶β和絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)激酶6磷酸化,進(jìn)而調(diào)節(jié)NF-κB和MAPK的激活[13]。
2.2 NLRs
NLRs和TLRs類似,都是信號(hào)傳導(dǎo)型模式識(shí)別受體。已經(jīng)在人體中發(fā)現(xiàn)23個(gè)NLR家族成員,包括NOD1、NOD2、NLRP3等。在健康的牙齦組織中,NOD1和NOD2比TLRs的表達(dá)更豐富。NOD1和NOD2是最先被發(fā)現(xiàn)的NLRs,它們包含N端半胱天冬酶招募結(jié)構(gòu)域和C端富含亮氨酸重復(fù)序列。NOD1和NOD2被激活后,招募一系列下游分子,最終激活NF-κB和MAPK[7]。此外,小分子PAMPs通過細(xì)胞膜上的泛連接蛋白-1半通道進(jìn)入細(xì)胞溶質(zhì)并激活NLRP3。該過程促使炎癥小體的組裝。天冬氨酸特異性半胱氨酸蛋白酶(cysteine-containing aspartate-specific proteases,caspase)前體1在炎癥小體的效應(yīng)分子里自主激活,形成caspase1并促進(jìn)IL-1β和IL-18的加工[6]。
2.3 MBL
MBL不同于上述的TLRs和NLRs,它不能進(jìn)行信號(hào)傳導(dǎo)。MBL有一系列的配基,包括病毒、細(xì)菌和不正常的自身組織的分子。MBL利用其碳水化合物識(shí)別區(qū)域結(jié)合微生物表面的碳水化合物,如甘露糖殘基、N-?;?D-葡萄糖胺,并發(fā)揮調(diào)理素的效能。盡管沒有直接證據(jù)顯示牙齦卟啉單胞菌能被MBL識(shí)別,已有許多革蘭陰性細(xì)菌如沙門氏菌和奈瑟菌[14]被證明能結(jié)合MBL,并被巨噬細(xì)胞清除。此外,MBL與MBL相關(guān)的絲氨酸蛋白酶形成復(fù)合物,能級聯(lián)激活補(bǔ)體系統(tǒng),促進(jìn)牙周病原體的清除。
TLR和NLR信號(hào)通路最終結(jié)果為NF-κB和MAPK的激活。NF-κB能促進(jìn)IL-1β、IL-2、IL-6、IL-8、IL-10、IL-12和TNF-α等轉(zhuǎn)錄。MAPK包括p38、Jun-N末端激酶和細(xì)胞外信號(hào)調(diào)節(jié)蛋白激酶,它們和細(xì)胞的生長、發(fā)育、分裂、分化、死亡等細(xì)胞過程相關(guān)。
3.1 牙周軟組織破壞
研究[15]發(fā)現(xiàn),在慢性牙周炎和侵襲性牙周炎的齦溝液中,細(xì)胞因子/趨化因子水平?jīng)]有顯著差異。NF-κB能促進(jìn)一系列促炎和抗炎因子的轉(zhuǎn)錄,這些細(xì)胞因子對牙周軟組織有一定影響。伴放線放線桿菌的LPS通過TLR4信號(hào)通路促進(jìn)炎癥介質(zhì)的釋放,最終導(dǎo)致牙周組織的破壞[16]。調(diào)查顯示,牙周炎患者齦溝液與健康人相比,IL-6和IL-2的表達(dá)降低,CXCL8和TGF-β1的表達(dá)升高[17]。其中,IL-2對T細(xì)胞的生長和分化是必要的。IL-2的低表達(dá)使細(xì)胞免疫活性下降,從而促進(jìn)病原體對牙周組織的破壞。
3.2 破骨效應(yīng)
牙周炎導(dǎo)致牙槽骨的破壞可被分為以下幾個(gè)過程:1)破骨細(xì)胞前體細(xì)胞從外周血遷移到炎癥部位;2)形成成熟的破骨細(xì)胞?;|(zhì)細(xì)胞衍生因子1 (stromal cell-derived factor 1,SDF-1)能夠高度趨化人類破骨細(xì)胞前體,并刺激其融合。TNF-α能夠抑制骨髓基質(zhì)細(xì)胞表達(dá)SDF-1,并促進(jìn)破骨細(xì)胞前體遷移到炎癥部位。此外,TNF-α和破骨細(xì)胞前體上的受體結(jié)合,誘導(dǎo)破骨細(xì)胞的形成。目前,認(rèn)為NF-κB受體活化因子(receptor activator of NF-κB,RANK)與其配體RANKL的識(shí)別對誘導(dǎo)破骨細(xì)胞形成起主要作用。RANKL和破骨細(xì)胞前體的RANK識(shí)別后,招募TRAF6,并使NF-κB進(jìn)入細(xì)胞核促進(jìn)破骨細(xì)胞基因的轉(zhuǎn)錄。RANKL的表達(dá)受促炎和抗炎細(xì)胞因子的調(diào)節(jié)。在成骨細(xì)胞和牙周膜細(xì)胞中,RANKL的表達(dá)可以被促炎因子提高。研究[18]表明,TNF-α還能提高牙齦上皮細(xì)胞RANKL的表達(dá)。此外,伴放線放線桿菌的LPS能激活MAPK途徑的全部通路,其中MAPK激活蛋白激酶2和MAKP磷酸酶1在牙周疾病中調(diào)節(jié)炎癥性骨喪失[19]。
由于TLR和NLR信號(hào)通路最終激活NF-κB和MAPK,而NF-κB和炎癥、破骨的關(guān)系更為密切,因此阻斷NF-κB可能會(huì)阻止牙周炎的發(fā)展。最新研究[20]表明,NLRP6能抑制NF-κB和MAPK通路,并抑制免疫細(xì)胞的遷移和分泌功能。TRAF6是TLR信號(hào)通路重要的傳導(dǎo)分子,并且也是RANKL-RANK信號(hào)的關(guān)鍵分子。研究[21]表明,去除RANK的TRAF6結(jié)合區(qū)域,將完全阻斷RANK激活的NF-κB活性。因此,抑制TRAF6能夠同時(shí)抑制炎癥細(xì)胞因子的表達(dá)和破骨細(xì)胞的形成。已經(jīng)發(fā)現(xiàn)細(xì)胞內(nèi)存在去泛素化酶[13],它們作用于TRAF6,進(jìn)而抑制NF-κB通路。因此,其可被用于牙周炎的治療。目前,學(xué)者[22]提出miR-146a是一種治療關(guān)節(jié)炎的新手段。他們將雙鏈的miR-146a注射入關(guān)節(jié)炎小鼠的靜脈,發(fā)現(xiàn)TNF-α、IL-1β和IL-6的表達(dá)下降,并且骨和軟骨的破壞受到抑制。近期發(fā)現(xiàn),miR-451能夠削弱中性粒細(xì)胞的趨化作用,從而減少炎性細(xì)胞的浸潤并緩解小鼠關(guān)節(jié)炎[23]。牙周炎和關(guān)節(jié)炎類似,均表現(xiàn)為軟組織的炎癥和骨組織的破壞。因此,microRNA的靶向治療可能為牙周炎的治療提供一種全新的手段。
PAMPs在牙周炎的發(fā)生和發(fā)展中起著重要作用。在牙周炎初期,可能是細(xì)菌表面的PAMPs如LPS、肽聚糖發(fā)揮作用。隨著免疫細(xì)胞對細(xì)菌的清除,細(xì)菌的CpG-DNA被牙周組織中的受體識(shí)別從而加劇牙周炎的進(jìn)程。值得注意的是,并非PAMPs的種類越多牙周炎就越嚴(yán)重。臨床調(diào)查發(fā)現(xiàn),只有1種牙周致病菌的患者比有2種或3種致病菌的患者牙周疾病更加嚴(yán)重[24]。實(shí)驗(yàn)也證明,牙齦卟啉單胞菌的LPS在一定條件下可作為TLR4的拮抗劑,并拮抗其他牙周病原體誘導(dǎo)產(chǎn)生的炎癥細(xì)胞因子如IL-1α[25]。因此,隨著齦下菌斑微生物種類的減少,菌群間的拮抗作用也減少,這可能引起更為嚴(yán)重的牙周炎。所以在牙周炎治療過程中,應(yīng)分析牙周中主要的PAMPs及其致病機(jī)制,并針對該機(jī)制進(jìn)行疾病的阻斷以達(dá)到治療效果。
[參考文獻(xiàn)]
[1]Beklen A, Sorsa T, Konttinen YT. Toll-like receptors 2 and 5 in human gingival epithelial cells co-operate with T-cellcytokine interleukin-17[J]. Oral Microbiol Immunol, 2009,24(1):38-42.
[2]Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages[J]. Infect Immun, 2001,69(3):1477-1482.
[3]Coats SR, Reife RA, Bainbridge BW, et al. Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at toll-like receptor 4 in human endothelial cells[J]. Infect Immun, 2003, 71(12):6799-6807.
[4]Mahanonda R, Pichyangkul S. Toll-like receptors and their role in periodontal health and disease[J]. Periodontol 2000,2007, 43:41-55.
[5]Takahashi N, Kobayashi M, Takaki T, et al. Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates collagen phagocytosis by human gingival fibroblasts[J]. Oral Microbiol Immunol, 2008, 23(3):259-264.
[6]Miyaji EN, Carvalho E, Oliveira ML, et al. Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants[J]. Braz J Med Biol Res, 2011, 44(6):500-513.
[7]Jeon DI, Park SR, Ahn MY, et al. NOD1 and NOD2 stimulation triggers innate immune responses of human periodontal ligament cells[J]. Int J Mol Med, 2012, 29(4):699-703.
[8]Liu J, Duan J, Wang Y, et al. Intracellular adhesion molecule-1 is regulated by Porphyromonas gingivalis through nucleotide binding oligomerization domain-containing proteins 1 and 2 molecules in periodontal fibroblasts[J]. J Periodontol, 2014,85(2):358-368.
[9]Zou W, Schwartz H, Endres S, et al. CpG oligonucleotides: novel regulators of osteoclast differentiation[J]. FASEB J,2002, 16(3):274-282.
[10]Vijay-Kumar M, Gewirtz AT. Flagellin: key target of mucosal innate immunity[J]. Mucosal Immunol, 2009, 2(3): 197-205.
[11]Nakamura K, Deyama Y, Yoshimura Y, et al. Toll like receptor 5 ligand induces monocyte chemoattractant protein-1 in mouse osteoblastic cells[J]. Biomed Res, 2012, 33(1):39-44.
[12]Agrawal A, Singh PP, Bottazzi B, et al. Pattern recognition by pentraxins[J]. Adv Exp Med Biol, 2009, 653:98-116.
[13]Wang J, Hu Y, Deng WW, et al. Negative regulation of Toll-like receptor signaling pathway[J]. Microbes Infect,2009, 11(3):321-327.
[14]Tsutsumi A, Kobayashi T, Ito S, et al. Mannose binding lectin gene polymorphism and the severity of chronic periodontitis[J]. Nihon Rinsho Meneki Gakkai Kaishi, 2009, 32(1):48-52.
[15]Duarte PM, Bastos MF, Fermiano D, et al. Do subjects with aggressive and chronic periodontitis exhibit a different cytokine/chemokine profile in the gingival crevicular fluid? A systematic review[J]. J Periodont Res, 2015, 50(1):18-27.
[16]Dunmyer J, Herbert B, Li Q, et al. Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss[J]. Mol Oral Microbiol, 2012, 27(5):397-407.
[17]Khalaf H, L?nn J, Bengtsson T. Cytokines and chemokines are differentially expressed in patients with periodontitis: possible role for TGF-β1 as a marker for disease progression [J]. Cytokine, 2014, 67(1):29-35.
[18]Fujihara R, Usui M, Yamamoto G, et al. Tumor necrosis factor-α enhances RANKL expression in gingival epithelial cells via protein kinase A signaling[J]. J Periodont Res, 2014,49(4):508-517.
[19]Yu H, Li Q, Herbert B, et al. Anti-inflammatory effect of MAPK phosphatase-1 local gene transfer in inflammatory bone loss[J]. Gene Ther, 2011, 18(4):344-353.
[20]Anand PK, Kanneganti TD. Targeting NLRP6 to enhance immunity against bacterial infections[J]. Future Microbiol,2012, 7(11):1239-1242.
[21]Zhang Z, Jimi E, Bothwell AL. Receptor activator of NF-kappa B ligand stimulates recruitment of SHP-1 to the complex containing TNFR-associated factor 6 that regulates osteoclastogenesis[J]. J Immunol, 2003, 171(7):3620-3626.
[22]Pauley KM, Cha S. miRNA-146a in rheumatoid arthritis: a new therapeutic strategy[J]. Immunotherapy, 2011, 3(7): 829-831.
[23]Murata K, Yoshitomi H, Furu M, et al. MicroRNA-451 downregulates neutrophil chemotaxis via p38 MAPK[J]. Arthritis Rheumatol, 2014, 66(3):549-559.
[24]Ready D, D’Aiuto F, Spratt DA, et al. Disease severity associated with presence in subgingival plaque of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans,and Tannerella forsythia, singly or in combination, as detected by nested multiplex PCR[J]. J Clin Microbiol, 2008, 46(10): 3380-3383.
[25]Bostanci N, Allaker R, Johansson U, et al. Interleukin-1alpha stimulation in monocytes by periodontal bacteria: antagonistic effects of Porphyromonas gingivalis[J]. Oral Microbiol Immunol, 2007, 22(1):52-60.
(本文編輯 杜冰)
[中圖分類號(hào)]R 781.4
[文獻(xiàn)標(biāo)志碼]A [doi] 10.7518/hxkq.2016.01.019
[收稿日期]2015-04-23; [修回日期] 2015-09-07
[作者簡介]辛穎,碩士,E-mail:1211007606@qq.com
[通信作者]孫宏晨,教授,博士,E-mail:1270240797@qq.com
Correlation between pathogen-associated molecular patterns and periodontitis
Xin Ying, Hu Yue, Tang Qi, Bu Wenhuan,Sun Hongchen.
(Key Laboratory of Oral Biology Medicine of Jilin Province, Dept. of Pathology, School of Stomatology,Jilin University, Changchun 130012, China)
Correspondence: Sun Hongchen, E-mail: 1270240797@qq.com.
[Abstract]Pathogen-associated molecular patterns (PAMPs) are conservative molecules associated with groups of pathogens or their products. These molecules are recognized by relevant receptors. PAMPs induce the expression of inflammatory cytokines through the signal cascade. The role of PAMPs in the initiation and development of periodontitis is recently attracting attention. PAMPs induce the expression of inflammatory mediators after they are recognized in the periodontium. This process damages the periodontal soft tissue and osseous tissue, thus resulting in periodontitis. The results of this study will provide an excellent resolution for the treatment of periodontitis by blocking the pathogenic pathway of PAMPs.
[Key words]pathogen-associated molecular patterns; periodontitis; cytokine