劉雪峰 張睿
?
糖尿病腎病與細胞因子的相關(guān)性研究進展
劉雪峰張睿
糖尿病腎病(DN)為糖尿病常見并發(fā)癥之一,其病因大致分為遺傳因素、糖脂代謝紊亂、細胞因子、炎性反應(yīng)、微循環(huán)障礙等,多種病因可單獨或協(xié)同對腎小球、腎血管、腎小管、腎間質(zhì)產(chǎn)生損害,最終導(dǎo)致腎衰竭,細胞因子激活是其病變形成的直接原因,細胞因子間相互作用形成了糖尿病腎病細胞因子網(wǎng)絡(luò),主要包括腫瘤壞死因子(TNF-α)、轉(zhuǎn)化生長因子(TGF-β)、白介素因子(IL-18、IL-6、IL-8)、胰島素樣生長因子-1(IGF-1)、單核細胞趨化蛋白-1(MCP-1)、結(jié)締組織生長因子(CTGF)、血管內(nèi)皮生長因子(VEGF)、血小板衍生因子(PDGF-BB)等。對DN與細胞因子的相關(guān)性研究為DN治療提供了理論基礎(chǔ)支持,對DN做出早期診斷和治療提供了參考。
細胞因子;糖尿病腎病
糖尿病腎病(DN)是糖尿病最嚴重的并發(fā)癥之一,是導(dǎo)致1型糖尿病患者死亡的主要原因,而在2型糖尿病中危險程度僅次于心腦的并發(fā)癥[1]。流行病學顯示1型糖尿病患糖尿病腎病的幾率為33%~40%,2型糖尿病患糖尿病腎病的幾率為20%左右[2]。1型和2型的糖尿病患者一旦出現(xiàn)蛋白尿,5年以后發(fā)生腎衰的患者超過50%,10年以后發(fā)生腎衰的患者超過80%[3]。Sun等[4]研究發(fā)現(xiàn)DN患者腎臟中有巨噬細胞的浸潤之后,后續(xù)研究表明內(nèi)皮因子-1(ET-1)、腫瘤壞死因子(TNF-α)、白介素-6(IL-6)等因子可以加重糖尿病患者的腎臟損害,加速糖尿病腎病的進程,逐漸證實了炎性因子介導(dǎo)DN的發(fā)生發(fā)展。炎性因子、生長因子與趨化因子等眾多細胞因子通過各自的旁分泌、自分泌發(fā)揮功能,之間又具有協(xié)同與拮抗的作用。細胞因子是由免疫細胞和非免疫細胞經(jīng)刺激而合成的一類具有生物學活性的小分子蛋白質(zhì),包括炎性細胞因子、趨化因子、生長因子等,在DN的發(fā)生發(fā)展過程中扮演重要角色[5]?,F(xiàn)將近年來學者對細胞因子造成DN腎臟組織損害機制的研究和進展綜述如下。
炎性細胞因子是參與各種炎性反應(yīng)的細胞因子,起主要作用的因子有腫瘤壞死因子(TNF-α)、轉(zhuǎn)化生長因子(TGF-β)、白介素因子(IL-18、IL-6、IL-8)等。
1.1TNF-αTNF-α為多功能細胞因子,其聯(lián)合高糖可損壞腎臟系膜細胞,通過擾亂血管擴張神經(jīng)及血管收縮神經(jīng)的平衡,導(dǎo)致腎臟血流動力學異常,最嚴重的是TNF-α可增加胰島素抵抗,使血糖維持高值,增加并發(fā)癥的發(fā)生幾率及進展速度[6,7]。TNF-α可使胰島素受體底物磷酸化受到抑制,并使外周組織對葡萄糖攝取減少,導(dǎo)致胰島素抵抗,脂肪分解受到刺激,從而胰島素受體底物激活,葡萄糖轉(zhuǎn)運易位干擾[8,9]。TNF-α可引起腎小球上皮細胞和系膜細胞毒性,可能引起腎損害[10,11]。TNF-α隨著DN的病情進展而升高,且TNF-α水平升高顯示發(fā)生DN的幾率增大[12],其可能機制為:與腎小管基膜增厚有關(guān);與足細胞數(shù)量減少和損傷有關(guān);促進系膜細胞酶原激活物抑制劑1、纖維連接蛋白的表達,使外基質(zhì)形成,并抑制其降解[13,14]。
1.2IL-8IL-8可促使血管活性因子產(chǎn)生,引起血管收縮,導(dǎo)致血管內(nèi)皮損傷,血管通透性改變,產(chǎn)生蛋白尿,又可誘導(dǎo)其他炎性因子的產(chǎn)生及氧化反應(yīng)的發(fā)生,共同加速DN的進展[15,16]。高血糖的環(huán)境又可促使IL-8的分泌增加,即使在DN早期也可發(fā)現(xiàn)IL-8的存在, IL-8水平升高與HbA1c有關(guān),且與糖尿病腎損害有一定關(guān)系[17]。
1.3IL-6IL-6可通過促進T、B細胞過度激活和增殖,加速細胞凋亡,促進胰島B細胞破壞,加重病情,又可促進腎臟系膜增殖,產(chǎn)生蛋白尿[18,19]。IL-6刺激系膜細胞,氧自由基生成,過氧化脂質(zhì)代謝產(chǎn)物增加,細胞內(nèi)膜和基膜損傷,產(chǎn)生蛋白尿,致使DN發(fā)生[20,21]。
1.4IL-18IL-18促進腎小球系膜細胞有絲分裂、增殖,產(chǎn)生、釋放細胞因子,加重炎性細胞在腎小球內(nèi)積聚,加速DN的進程[22,23]。IL-18可使細胞外基質(zhì)蛋白分子合成增加,抑制基質(zhì)蛋白分子降解,引起腎小球纖維化或硬化[24]; IL-18促進體內(nèi)其他炎性因子聚集和合成,加劇腎小球損傷[25]。
1.5IL-17α有研究發(fā)現(xiàn)IL-17α可介導(dǎo)產(chǎn)生胰島素,加重糖尿病病情,還與腎間質(zhì)、腎小管的病變有關(guān)[26]。
2.1轉(zhuǎn)化生長因子(TGF)TGF-β可促使腎小球肥大,刺激細胞外基質(zhì)合成,腎小球細胞外基質(zhì)合成增加,因介導(dǎo)足細胞損傷致腎小球硬化,導(dǎo)致蛋白尿形成[27]。TGF-β的過度產(chǎn)生還可促進腎小管上皮-肌成纖維細胞轉(zhuǎn)分化引起腎間質(zhì)纖維化,加速DN的進程[28]。TGF-β1可刺激細胞外基質(zhì)的大量分泌, 同時抑制基質(zhì)蛋白降解酶,促使腎組織硬化,加重DN。TGF-β1可直接誘導(dǎo)腎臟間質(zhì)纖維化;可誘導(dǎo)足細胞凋亡[29]。
2.2胰島素樣生長因子-1(IGF-1)IGF-1是腎臟正常生長發(fā)育所需的一種重要生長因子,具有促進細胞增生、擴張微血管、促進細胞外基質(zhì)生成的作用,導(dǎo)致腎小球肥大、腎間質(zhì)化[30]。IGF-1在DN發(fā)生發(fā)展中主要作用機制為:促進腎臟系膜細胞外基質(zhì)增多和細胞增生[31];刺激纖維鏈接蛋白、Ⅳ型膠原蛋白、層黏蛋白等細胞外基層蛋白合成[32];增加系膜細胞對葡萄糖攝取[33];IGF-1聚集與腎小球肥大有關(guān), 同時IGF-1刺激腎小球系膜細胞增生也可致腎小球肥大,IGF-1通過誘導(dǎo)腎臟緩激肽表達,促進NO產(chǎn)生[34]。另研究表明IGF-1可以損害足細胞,產(chǎn)生尿蛋白[35]。
2.3血管內(nèi)皮生長因子(VEGF)VEGF是一種高度特異性血管內(nèi)皮細胞生長因子,實驗研究表明VEGF可在糖尿病大鼠腎臟發(fā)生病變時在腎小球內(nèi)的表達上調(diào),增加腎臟新血管產(chǎn)生,參與糖尿病腎病早期病變,VEGF又稱為血管通透因子,使腎小球血管通透性增加,處于高濾過狀態(tài),加重糖尿病腎病蛋白尿的癥狀[36]。VEGF參與DN主要發(fā)病機制:促進上皮細胞和成纖維細胞增生,使腎小管細胞和腎小球肥大;促進腎小球基膜纖維化和增厚;刺激血管內(nèi)皮細胞增殖、分化, 增加血管內(nèi)皮細胞通透性,導(dǎo)致大量血漿蛋白滲出,促進蛋白尿產(chǎn)生; 促進膠原生成,致細胞外基質(zhì)增厚[37-39]。
2.4結(jié)締組織生長因子(CTGF)CTGF主要通過增加細胞外基質(zhì)及纖維原細胞,加速腎間質(zhì)纖維化[40];作為TGF-β的下游因子,還可介導(dǎo) TGF-β1促使腎小球細胞肥大、腎小管上皮細胞向肌成纖維細胞轉(zhuǎn)分化,加速腎臟損傷[41]。CTGF在DN中主要作用機制:與腎小管基膜增厚有關(guān);與足細胞數(shù)量減少和損傷有關(guān);通過上調(diào)系膜細胞纖維連接蛋白表達,促進系膜細胞外基質(zhì)形成,并抑制其降解[42,43]。
2.5血小板衍生因子(PDGF-BB)PDGF-BB在腎臟中的作用主要包括誘導(dǎo)腎小球系膜細胞增生,使腎小球肥大,促進細胞外基質(zhì)積聚使基底膜增生,進而使腎小球基底膜的增厚,腎小球硬化,通透性增加,產(chǎn)生蛋白尿[44]。研究表明PDGF-BB還可誘導(dǎo)TGF-β及其受體的合成增多,使細胞外基質(zhì)合成增加,加速腎小球細胞增生、肥大[45]。
2.6單核細胞趨化蛋白-1(MCP-1)MCP-1主要參與單核細胞及巨噬細胞的活化和浸潤,作為糖尿病腎病最重要的生物學標志物,通過趨化巨噬細胞浸潤腎小球及腎小管間質(zhì),引起糖尿病腎血管損傷及腎基質(zhì)纖維化,以及與體內(nèi)氧化應(yīng)激狀態(tài)相結(jié)合共同損傷腎組織[46]。MCP-1在DN患者中作用機制:高血糖刺激蛋白含量增高及MCP-1 mRNA高表達;DN患者PDGF等細胞因子水平升高,MCP-1在腎內(nèi)皮細胞、系膜細胞的高表達; DN患者存在血脂代謝紊亂,使低密度脂蛋白升高,刺激系膜細胞MCP-1 mRNA表達增高[47,48]。
2.7肝細胞生長因子(HGF)HGF作為一種抗纖維化、誘導(dǎo)和調(diào)節(jié)的因子,可對腎臟起保護作用, 防止腎纖維化。HGF與中期因子是一對抗損傷與損傷因子, DN早期HGF分泌增加, 抑制TGF-β產(chǎn)生,但隨中期因子增多,TGF-β占優(yōu)勢,抑制HGF產(chǎn)生,抗纖維化作用減弱,導(dǎo)致DN發(fā)展[49]。HGF是一種強烈的有絲分裂原而作用于成熟肝細胞, 有促細胞遷移、 形態(tài)發(fā)生、有絲分裂等作用。早期高血糖時, 細胞損傷引發(fā)機體發(fā)生防御反應(yīng), 使 HGF/c-met上調(diào),促進細胞有絲分裂, 修復(fù)損傷細 胞;持續(xù)的高血糖,使細胞防御能力下降,逐漸降低HGF/c-met表達,轉(zhuǎn)化TGF-β、CTGF增多,使ECM蛋白表達增多, 抑制降解, 致細胞肥大,最終引起腎纖維化[50]。
3.1內(nèi)皮素(ET)ET有ET-1、ET-2、ET-3三種異構(gòu)肽,由內(nèi)皮細胞合成分泌。ET-1有強而持久的縮血管作用,并可促進平滑肌增值作用。ET-1致DN的主要機制為:與TNF-α、PDGF-BB等因子對腎臟損害相關(guān);誘導(dǎo)TGF-β、血管緊張素轉(zhuǎn)換酶產(chǎn)生,使系膜增生、腎肥大管收縮及細胞外基質(zhì)堆積;抑制腎臟對水重吸收,使腎小球動脈硬化,腎系膜增生,腎小球濾過率下降[51]。腎組織ET升高又通過多種機制加速DN的發(fā)展,形成惡性循環(huán)[52]。
3.2核因子κB(NF-κB)NF-κB是一種核轉(zhuǎn)錄因子,調(diào)控細胞增殖分化、炎癥和免疫等過程,DN早期存在核因子B信號轉(zhuǎn)導(dǎo)途徑的激活和持續(xù)高表達,NF-κB可促進腎組織巨噬、單核細胞浸潤,使組織纖維化及炎癥,從而損傷腎間質(zhì)[53]。糖基化終末產(chǎn)物是DN的重要相關(guān)因子,其與相應(yīng)受體結(jié)合后能激活NF-κB,致細胞間黏附分子1 釋放,從而參與DN發(fā)生、發(fā)展[54]。
DN是糖尿病主要并發(fā)癥之一,其發(fā)病機制復(fù)雜,細胞因子網(wǎng)絡(luò)調(diào)控在DN發(fā)生發(fā)展過程中起重要作用。細胞因子間相互影響,相互協(xié)調(diào)。在血流動力學變化、晚期糖基化終末產(chǎn)物和高血糖等作用下,多種細胞因子分泌增加,細胞因子部分被激活,被激活的細胞因子又激活或抑制其他細胞因子,促進成纖維細胞增殖,和ECM堆積,ET-1可收縮球后毛細血管床而影響球后微循環(huán),引起腎小管上皮細胞缺血,加重腎臟損害。如ET-1可誘導(dǎo)TGF-β產(chǎn)生,TGF-β誘導(dǎo)和激活VEGF又抑制了NF-κB的活性,并使血清HGF水平降低。TGF-β功能多樣, 在細胞因子網(wǎng)絡(luò)中起到了重要作用, 故被稱為細胞因子網(wǎng)絡(luò)的核心因子, 與其他各種細胞因子共同促進D N的發(fā)生、發(fā)展。
隨著細胞因子研究的不斷深入,為診斷和治療DN提供了新的方法和新靶點。如GTGF可為預(yù)防腎小球纖維化的重要指標,血清IL-18水平可作為診斷DN的重要手段,而抗內(nèi)皮素受體 A阻斷劑、TGF-β抗體等可作為潛在治療DN藥物。HGF等細胞因子也有可能為治療DN臨床研究的新思路。細胞因子在DN發(fā)病機制中具有重要作用,細胞因子網(wǎng)絡(luò)的相關(guān)研究為DN的預(yù)防和個體化藥物治療開辟了新途徑,有利于阻止或延緩DN發(fā)生、發(fā)展,提高DN患者的生活質(zhì)量。
1Kim BH,Lee ES,Choi R,et al.Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 fiabetic nephropathy.Yonsei Med J,2016,57:664-673.
2Ziqiang X,Yunqiang H,Hongxing F,et al.Islet transplantation restores the damage of glomerulus filtration membrane in a rat model of streptozotocin-induced diabetic nephropathy.J Pak Med Assoc,2016,66:296-301.
3Shimizu M,Furuichi K,Toyama T,et al.Serum autotaxin levels are associated with proteinuria and kidney lesions in japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy.Intern Med,2016,55:215-221.
4Sun L,Kanwar YS.Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy.Kidney Int,2015,88:662-665.
5Jacoby AS,Munkholm K,Vinberg M,et al.Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder-Results from a prospective study.J Affect Disord,2016,197:167-174.
6Gülü A,Erken HA,Erken G,et al.The effects of ozone therapy on caspase pathways,TNF-α,and HIF-1α in diabetic nephropathy.Int Urol Nephrol,2016,48:441-450.
7Peng Y,Li LJ.TNF-α-308G/A polymorphism associated with TNF-α protein expression in patients with diabetic nephropathy.Int J Clin Exp Pathol,2015,8:3127-3131.
8Dabhi B,Mistry KN.Oxidative stress and its association with TNF-α-308 G/C and IL-1α-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy.Gene,2015,562:197-202.
9Gupta S,Mehndiratta M,Kalra S,et al.Association of tumor necrosis factor (TNF) promoter polymorphisms with plasma TNF-α levels and susceptibility to diabetic nephropathy in North Indian population.J Diabetes Complications,2015,29:338-342.
10Omote K,Gohda T,Murakoshi M,et al.Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice.Am J Physiol Renal Physiol,2014,306:1335-1347.
11Zhao Y,Yang J,Zhang L,et al.Association between TNF-α -308G/A polymorphism and diabetic nephropathy risk: a meta-analysis.Int Urol Nephrol,2013,45:1653-1659.
12Rakitianskaia IA,Riabov SI,Azanchevskaia SV,et al.Role of intrarenal product TNF-alpha in the development of glomerular and tubulointerstitial tissues changes in elderly patients with diabetic nephropathy.Adv Gerontol,2013,26:658-665.
13Bolignano D.TNF-alpha receptors (TNFRS):the biomarkers of progressive diabetic nephropathy we were waiting for?G Ital Nefrol, 2012,29:262.
14Fernández-Real JM,Vendrell J,García I,et al.Structural damage in diabetic nephropathy is associated with TNF-α system activity.Acta Diabetol,2012,49:301-305.
15Khajehdehi P,Pakfetrat M,Javidnia K,et al.interleukin-8 levels in patients with overt type 2 diabetic nephropathy:a randomized,double-blind and placebo-controlled study. Scand J Urol Nephrol,2011,45:365-370.
16Tashiro K,Koyanagi I,Saitoh A,et al.Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8),and renal injuries in patients with type 2 diabetic nephropathy.J Clin Lab Anal,2002,16:1-4.
17Verhave JC,Bouchard J,et al.Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy:a prospective study.Diabetes Res Clin Pract,2013,101:333-340.
18Karadeniz M,Erdogan M,Berdeli A,et al.Association of interleukin-6 -174 G>C promoter polymorphism with increased risk of type 2 diabetes mellitus patients with diabetic nephropathy in Turkey.Genet Test Mol Biomarkers,2014,18:62-65.
19Shelbaya S,Amer H,Seddik S,et al.Study of the role of interleukin-6 and highly sensitive C-reactive protein in diabetic nephropathy in type 1 diabetic patients.Eur Rev Med Pharmacol Sci,2012,16:176-182.
20Rakitianskaia IA,Riabov SI,Dubrova AG,et al.The role of IL-6 in the development of morphological changes in renal tissue in elderly patients with type 2 diabetes complicated by diabetic nephropathy.Adv Gerontol,2012,25:632-637.
21Svensson MK,Eriksson JW.Change in the amount of body fat and IL-6 levels is related to altered insulin sensitivity in type 1 diabetes patients with or without diabetic nephropathy.Horm Metab Res,2011,43:209-215.
22Elsherbiny NM,Al-Gayyar MM.The role of IL-18 in type 1 diabetic nephropathy: The problem and future treatment.Cytokine,2016,81:15-22.
23Luo C,Li T,Zhang C,Chen Q,et al.Therapeutic effect of alprostadil in diabetic nephropathy: possible roles of angiopoietin-2 and IL-18.Cell Physiol Biochem,2014,34:916-928.
24Elsherbiny NM,Abd El,Galil KH,et al.Reno-protective effect of NECA in diabetic nephropathy:implication of IL-18 and ICAM-1.Eur Cytokine Netw,2012,23:78-86.
25Fujita T,Shimizu C,Fuke Y,et al.Serum interleukin-18 binding protein increases with behavior different from IL-18 in patients with diabetic nephropathy.Diabetes Res Clin Pract,2011,92:66-69.
26Yu R,Bo H,Villani V,et al.Low-Dose IL-17 therapy prevents and reverses diabetic nephropathy,metabolic syndrome,and associated organ fibrosis.Kidney Blood Press Res,2016,41:55-69.
27Al-Onazi AS,Al-Rasheed NM,Attia HA,et al.Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways.J Pharm Pharmacol,2016,68:219-232.
28Xin C,Xia Z,Jiang C,et al.Xiaokeping mixture inhibits diabetic nephropathy in streptozotocin-induced rats through blocking TGF-β1/Smad7 signaling.Drug Des Devel Ther,2015,9:6269-6274.
29Wang T,Chen SS,Chen R,et al.Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway.Int J Clin Exp Med,2015,8:6852-6865.
30Bach LA,Dean R,Youssef S,et al.Aminoguanidine ameliorates changes in the IGF system in experimental diabetic nephropathy.Nephrol Dial Transplant,2000,15:347-354.
31Wang SN,Lapage J,Hirschberg R.Glomerular ultrafiltration of IGF-I may contribute to increased renal sodium retention in diabetic nephropathy.J Lab Clin Med,1999,134:154-160.
32Lupia E,Elliot SJ,Lenz O,et al.IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.Diabetes,1999,48:1638-1644.
33Bazzaz JT,Amoli MM,Taheri Z,et al.TGF-β1 and IGF-I gene variations in type 1 diabetes microangiopathic complications.J Diabetes Metab Disord,2014,13:45.
34Troib A,Landau D,Youngren JF,et al.The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease.Growth Horm IGF Res,2011,21:285-291.
35Levin-Iaina N,Iaina A,Raz I.The emerging role of NO and IGF-1 in early renal hypertrophy in STZ-induced diabetic rats. Diabetes Metab Res Rev,2011,27:235-243.
36Huang H, Hu L, Lin J,et al.Effect of fosinopril on chemerin and VEGF expression in diabetic nephropathy rats. Int J Clin Exp Pathol,2015,8:11470-11474.
37Carranza K, Veron D, Cercado A, et al.Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.Nefrologia,2015,35:131-138.
38Patel L, Thaker A.The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail,2014,36:916-924.
39Tufro A, Veron D.VEGF and podocytes in diabetic nephropathy. Semin Nephrol,2012,32:385-393.
40Wang J, Duan L, Guo T,et al. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J Diabetes Complications,2016,30:406-414.
41Koga K, Yokoi H, Mori K,et al.MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia,2015,58:2169-2180.
42Rooney B, O'Donovan H, Gaffney A,et al.CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: implications for the pathogenesis of diabetic nephropathy. FEBS Lett,2011,585:531-538.
43Lin FL, Shen HC, Zhu B,et al.Effects of simvastatin on expression of CTGF and α-SMA in renal tubulointerstitium of rats with diabetic nephropathy. Zhejiang Da Xue Xue Bao Yi Xue Ban,2010,39:511-516.
44Drela E, Kulwas A, Jundzi W,et al. VEGF-A and PDGF-BB-angiogenic factors and the stage of diabetic foot syndrome advancement. Endokrynol Pol,2014,65:306-312.
45Wang QY, Guan QH, Chen FQ. The changes of platelet-derived growth factor-BB (PDGF-BB) in T2DM and its clinical significance for early diagnosis of diabetic nephropathy. Diabetes Res Clin Pract,2009,85:166-170.
46Yi B, Hu X, Zhang H,et al. Nuclear NF-κB p65 in peripheral blood mononuclear cells correlates with urinary MCP-1, RANTES and the severity of type 2 diabetic nephropathy. PLoS One,2014,9:99633.
47Tumlin JA, Galphin CM, Rovin BH. Advanced diabetic nephropathy with nephrotic range proteinuria: a pilot study of the long-term efficacy of subcutaneous ACTH gel on proteinuria, progression of CKD, and urinary levels of VEGF and MCP-1. J Diabetes Res,2013,48:9869.
48Xu ZZ, Wang M, Wang YJ, et al.Effect of nitrotyrosine on renal expressions of NF-κB, MCP-1 and TGF-β1 in rats with diabetic nephropathy. Nan Fang Yi Ke Da Xue Xue Bao,2013,33:346-350.
49Mizuno S, Nakamura T.Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol,2004,286:134-143.
50Kagawa T, Takemura G, Kosai K, et al.Hepatocyte growth factor gene therapy slows down the progression of diabetic nephropathy in db/db mice. Nephron Physiol,2006,102:92-102.
51Lenoir O, Milon M, Virsolvy A, et al.Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J Am Soc Nephrol,2014,25:1050-1062.
52Zanatta CM, Veronese FV, Loreto Mda S, et al.Endothelin-1 and endothelin a receptor immunoreactivity is increased in patients with diabetic nephropathy. Ren Fail,2012,34:308-315.
53Ka SM, Yeh YC, Huang XR,et al.Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia,2012,55:509-519.
54Li L, Emmett N, Mann D,et al.Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy. Exp Biol Med (Maywood),2010,235:383-391.
10.3969/j.issn.1002-7386.2016.21.038·綜述與講座·
項目來源:國家自然科學基金項目(編號:81400812)
054001河北省邢臺市第一醫(yī)院藥劑科(劉雪峰);河北醫(yī)科大學第一醫(yī)院科研中心(張睿)
R 587.24
A
1002-7386(2016)21-3323-04
2016-04-12)