房曉燕 丘一諾 李萌萌(審校)
(1.解放軍總醫(yī)院第一附屬醫(yī)院麻醉科,北京 100048;2.錦州醫(yī)科大學(xué)研究生院,遼寧 錦州 121001;3.濱州醫(yī)學(xué)院煙臺(tái)校區(qū),山東 煙臺(tái) 264000)
運(yùn)動(dòng)對(duì)發(fā)育期大腦認(rèn)知功能的影響
房曉燕1,2丘一諾3李萌萌1(審校)
(1.解放軍總醫(yī)院第一附屬醫(yī)院麻醉科,北京 100048;2.錦州醫(yī)科大學(xué)研究生院,遼寧 錦州 121001;3.濱州醫(yī)學(xué)院煙臺(tái)校區(qū),山東 煙臺(tái) 264000)
隨著醫(yī)療水平的提高,嬰幼兒手術(shù)逐年增加,傷害性刺激及麻醉等因素均可能影響其隨后的神經(jīng)功能,使成年后感覺(jué)或認(rèn)知行為發(fā)生改變[1]。生后發(fā)育期大腦具有強(qiáng)大的神經(jīng)可塑性潛能,過(guò)去數(shù)十年的研究證實(shí),運(yùn)動(dòng)作為外界環(huán)境刺激的一部分,尤其在兒童及青春期是認(rèn)知功能快速發(fā)展的重要階段,其運(yùn)動(dòng)形式的變化和時(shí)長(zhǎng)對(duì)腦部結(jié)構(gòu)和功能的影響會(huì)從運(yùn)動(dòng)區(qū)域延伸到與學(xué)習(xí)、記憶等相關(guān)大腦區(qū)域,運(yùn)動(dòng)可提高認(rèn)知能力,促進(jìn)受損大腦功能的恢復(fù)[2]。本文就運(yùn)動(dòng)對(duì)于發(fā)育期大腦認(rèn)知功能的影響及可能的機(jī)制綜述如下。
研究表明,運(yùn)動(dòng)參與人類(lèi)各年齡段認(rèn)知過(guò)程的形成,尤其在兒童時(shí)期。出生后至青春期是大腦結(jié)構(gòu)和功能發(fā)育的重要時(shí)期,該階段運(yùn)動(dòng)對(duì)大腦發(fā)育和成熟有明顯的積極作用[3]。盡管具體機(jī)制尚不清楚,但至少有3條通路通過(guò)有氧運(yùn)動(dòng)促進(jìn)認(rèn)知功能[4]:目標(biāo)導(dǎo)向性鍛煉提高急性認(rèn)知能力,執(zhí)行復(fù)雜運(yùn)動(dòng)及有氧運(yùn)動(dòng),引起大腦中短期和長(zhǎng)期的生理變化[5]。運(yùn)動(dòng)對(duì)發(fā)育期不同年齡段的影響有差異。對(duì)4~18歲人群的44項(xiàng)觀察指標(biāo)的Meta分析研究發(fā)現(xiàn),被試者在智商測(cè)試、數(shù)學(xué)、語(yǔ)言表達(dá)及學(xué)習(xí)成績(jī)等方面的認(rèn)知改善與運(yùn)動(dòng)具有明顯相關(guān)性,所有年齡組均能在運(yùn)動(dòng)中獲益,但相比8~10和14~18歲組,運(yùn)動(dòng)對(duì)認(rèn)知能力的提高在4~7和11~13歲組更為顯著,7~12歲接受規(guī)律運(yùn)動(dòng)訓(xùn)練的兒童在注意力方面明顯強(qiáng)于非運(yùn)動(dòng)組[6]。另外,Hillman等[8]對(duì)200名7~9歲兒童進(jìn)行為期9個(gè)月的課外運(yùn)動(dòng)干預(yù)實(shí)驗(yàn),通過(guò)測(cè)定事件相關(guān)電位(event-related bain potentials,ERPs)中P3的振幅及潛伏期,評(píng)價(jià)受試者的腦電活動(dòng)。P3是與注意力和工作記憶相關(guān)的大腦神經(jīng)電活動(dòng),其振幅越大代表注意力資源分配越多,潛伏期越短提示認(rèn)知處理速度越快[7]。研究結(jié)果顯示,相比其他各組,中等運(yùn)動(dòng)強(qiáng)度組兒童P3振幅、任務(wù)反應(yīng)準(zhǔn)確性及正確率明顯提高,執(zhí)行力增強(qiáng),為運(yùn)動(dòng)改善兒童認(rèn)知能力及腦部功能提供了電生理學(xué)證據(jù)[8]。
另外,還可以運(yùn)用功能磁共振成像(fMRI)測(cè)定兒童在執(zhí)行任務(wù)時(shí)大腦功能區(qū)活躍度。將171名7~11歲缺乏活動(dòng)肥胖兒童隨機(jī)分為運(yùn)動(dòng)組(20 或40 min/day)和對(duì)照組,實(shí)驗(yàn)進(jìn)行13周,標(biāo)準(zhǔn)化評(píng)估兒童認(rèn)知及學(xué)業(yè)成績(jī)等項(xiàng)目,結(jié)果顯示,執(zhí)行任務(wù)及數(shù)學(xué)運(yùn)算能力與運(yùn)動(dòng)量呈正相關(guān);同時(shí),運(yùn)動(dòng)明顯增強(qiáng)相關(guān)認(rèn)知的大腦區(qū)域-雙側(cè)前額葉皮質(zhì)活躍度,而降低后頂葉皮質(zhì)活躍度,為運(yùn)動(dòng)影響認(rèn)知功能提供了重要的影像學(xué)依據(jù)[9]。
運(yùn)動(dòng)與認(rèn)知功能改善具有相關(guān)性,這一結(jié)論同樣在基礎(chǔ)研究中得到證實(shí)。對(duì)發(fā)育期、成年及老年嚙齒類(lèi)動(dòng)物研究,輪轉(zhuǎn)式跑步訓(xùn)練可以提高實(shí)驗(yàn)動(dòng)物完成空間記憶測(cè)試任務(wù)的能力,如水迷宮中的表現(xiàn)[10]。發(fā)育期動(dòng)物跑步機(jī)鍛煉(forced exercise,受迫運(yùn)動(dòng))明顯促進(jìn)海馬神經(jīng)元發(fā)育,提高成年后空間學(xué)習(xí)和記憶能力(生后60~65 d水迷宮測(cè)試),并增強(qiáng)記憶的喚起能力(生后96 d水迷宮測(cè)試)[11]。動(dòng)物自愿運(yùn)動(dòng)(voluntary exercise)也明顯改善其認(rèn)知能力。采用自由接觸轉(zhuǎn)輪的運(yùn)動(dòng)方式,監(jiān)測(cè)運(yùn)動(dòng)速度及里程,并應(yīng)用物體識(shí)別實(shí)驗(yàn),評(píng)估大鼠非空間記憶能力(辨識(shí)記憶),結(jié)果發(fā)現(xiàn),與非運(yùn)動(dòng)組相比,青春期接受運(yùn)動(dòng)訓(xùn)練的大鼠辨識(shí)記憶明顯增高,且這種增強(qiáng)效應(yīng)可持續(xù)到訓(xùn)練結(jié)束后2~4周;而成年運(yùn)動(dòng)組大鼠辨別記憶的增強(qiáng)效應(yīng)是短暫的,運(yùn)動(dòng)結(jié)束后與對(duì)照組相比無(wú)明顯差異。該結(jié)果與人類(lèi)研究結(jié)果相似:運(yùn)動(dòng)促進(jìn)認(rèn)知,但對(duì)于不同年齡段產(chǎn)生的影響有差異[12]。
既往研究證實(shí),運(yùn)動(dòng)對(duì)成年動(dòng)物神經(jīng)系統(tǒng)影響的相關(guān)機(jī)制包括細(xì)胞水平上的變化,如突觸發(fā)生、血管及神經(jīng)形成[13],以及分子水平上特異性生長(zhǎng)因子的上調(diào)與結(jié)構(gòu)變化,如腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)的作用等[14]。但有關(guān)運(yùn)動(dòng)對(duì)于發(fā)育期大腦神經(jīng)系統(tǒng)的影響并未見(jiàn)到系統(tǒng)的文獻(xiàn)回顧,其可能的機(jī)制有以下幾方面。
3.1 運(yùn)動(dòng)促進(jìn)發(fā)育期大腦海馬神經(jīng)細(xì)胞增殖 對(duì)生后29 d大鼠進(jìn)行1周的跑步機(jī)鍛煉,與非運(yùn)動(dòng)組相比,運(yùn)動(dòng)組大鼠海馬齒狀回中細(xì)胞增殖標(biāo)記物BrdU+細(xì)胞數(shù)量明顯升高,且不同運(yùn)動(dòng)強(qiáng)度對(duì)神經(jīng)形成的影響也不盡相同,相比高強(qiáng)度運(yùn)動(dòng)組,低強(qiáng)度組成年小鼠BrdU+細(xì)胞數(shù)量升高明顯,證實(shí)運(yùn)動(dòng)促進(jìn)大腦海馬神經(jīng)形成,且與運(yùn)動(dòng)強(qiáng)度相關(guān)[15-16]。與行為學(xué)研究相一致的是,相比中、高強(qiáng)度,低強(qiáng)度運(yùn)動(dòng)對(duì)海馬齒狀回神經(jīng)形成影響最大,新生神經(jīng)細(xì)胞具有融入齒狀回顆粒細(xì)胞的趨勢(shì)且具有功能性,明顯改善未成年大鼠認(rèn)知功能[17]。如果應(yīng)用γ射線照射運(yùn)動(dòng)后動(dòng)物大腦海馬區(qū),其在隨后的水迷宮測(cè)試中表現(xiàn)明顯下降,提示,抑制海馬神經(jīng)形成可減弱運(yùn)動(dòng)對(duì)空間記憶能力的提高,從而證實(shí),運(yùn)動(dòng)促進(jìn)空間記憶能力的基礎(chǔ)可能在于促進(jìn)海馬神經(jīng)細(xì)胞形成[18]。更為有趣的是,針對(duì)不同發(fā)育階段大鼠進(jìn)行不同強(qiáng)度運(yùn)動(dòng),用Ki67標(biāo)記增殖海馬神經(jīng)細(xì)胞,結(jié)果發(fā)現(xiàn),生后1~30 d,低強(qiáng)度運(yùn)動(dòng)組被Ki67標(biāo)記的細(xì)胞增殖數(shù)量明顯高于其他各組;而生后31~40 d,高強(qiáng)度運(yùn)動(dòng)組(18 m/min)的增殖細(xì)胞數(shù)卻明顯增高;而其他各階段,細(xì)胞增殖數(shù)無(wú)顯著差異;這進(jìn)一步從機(jī)制上證實(shí),運(yùn)動(dòng)促進(jìn)發(fā)育期大鼠海馬齒狀回神經(jīng)細(xì)胞增殖,且運(yùn)動(dòng)強(qiáng)度與發(fā)育階段都是重要的影響因素[19]。
3.2 運(yùn)動(dòng)影響發(fā)育期海馬齒狀回顆粒細(xì)胞形態(tài) 加拿大研究人員使用改良Golgi-Cox染色法標(biāo)記自愿運(yùn)動(dòng)大鼠海馬齒狀回神經(jīng)細(xì)胞,發(fā)現(xiàn),其顆粒細(xì)胞樹(shù)突總長(zhǎng)度及復(fù)雜性在實(shí)驗(yàn)動(dòng)物完成自愿運(yùn)動(dòng)后升高,樹(shù)突上棘突密度增加,呈現(xiàn)更多偽足狀,考慮是齒狀回顆粒細(xì)胞下層新生細(xì)胞部分遷移到顆粒細(xì)胞層,分化為顆粒細(xì)胞,產(chǎn)生樹(shù)突、軸突,形成突觸聯(lián)系。這一形態(tài)學(xué)改變可有效改善神經(jīng)細(xì)胞處理和加工信息的能力,整合到海馬功能的神經(jīng)環(huán)路中,參與學(xué)習(xí)記憶等認(rèn)知功能,是自愿運(yùn)動(dòng)增強(qiáng)大腦海馬齒狀回神經(jīng)可塑性的形態(tài)學(xué)證據(jù)[20]。
3.3 運(yùn)動(dòng)影響發(fā)育期大腦海馬體積 Herting等[21]對(duì)34名15~18歲男性進(jìn)行研究,探究有氧運(yùn)動(dòng)與海馬體積的相關(guān)性。發(fā)現(xiàn),有氧運(yùn)動(dòng)與青少年雙側(cè)海馬體積增大有關(guān)。運(yùn)動(dòng)增強(qiáng)海馬的神經(jīng)形成,尤其是有氧運(yùn)動(dòng)促進(jìn)海馬齒狀回中細(xì)胞增殖和生存。盡管MRI技術(shù)尚未在細(xì)胞水平上提供有力證據(jù)解釋這些改變,但神經(jīng)形成的增加、存在于齒狀回外的錐體細(xì)胞樹(shù)突棘和樹(shù)突狀分枝增殖都可能是海馬體積增大的原因[22]。雖然海馬體積增大的具體神經(jīng)解剖學(xué)基礎(chǔ)尚未明確,但人類(lèi)研究已證實(shí),有氧運(yùn)動(dòng)影響海馬體積發(fā)生在整個(gè)人類(lèi)生命各個(gè)階段中[23]。
3.4 運(yùn)動(dòng)促進(jìn)BDNF蛋白及mRNA表達(dá)增高 BDNF是腦內(nèi)合成的一種蛋白質(zhì),大量表達(dá)于海馬,并廣泛分布于中樞神經(jīng)系統(tǒng),參與神經(jīng)元的存活、分化、生長(zhǎng)發(fā)育等,具有防止神經(jīng)元損傷、死亡,改善神經(jīng)元的病理狀態(tài),促進(jìn)受損傷神經(jīng)元再生及分化等生物學(xué)效應(yīng)[24]。Hopkins等[12]和Akhavan 等[25]研究發(fā)現(xiàn),運(yùn)動(dòng)組大鼠腦中BDNF水平明顯升高,而阻斷TrkB介導(dǎo)的BDNF通路后,運(yùn)動(dòng)相關(guān)的認(rèn)知改善也隨之消失。提示,運(yùn)動(dòng)改善認(rèn)知能力與BDNF水平升高相關(guān)。未成年小鼠(生后6~53 d)自由接觸轉(zhuǎn)輪超過(guò)1周后,運(yùn)動(dòng)組小鼠海馬內(nèi)BDNF mRNA的表達(dá)明顯升高,為非運(yùn)動(dòng)組的128%;邊緣皮質(zhì)區(qū)BDNF水平也相應(yīng)升高;同時(shí)還發(fā)現(xiàn),發(fā)育期接受運(yùn)動(dòng)訓(xùn)練的大鼠腦內(nèi)BDNF水平不會(huì)立即升高,而是在訓(xùn)練結(jié)束后2~4周,且運(yùn)動(dòng)組邊緣皮質(zhì)區(qū)BDNF水平高于海馬區(qū)的水平[19]。還有大量研究證實(shí),運(yùn)動(dòng)影響海馬以外區(qū)域的BDNF水平,增強(qiáng)非空間記憶和學(xué)習(xí)能力[24]。
3.5 運(yùn)動(dòng)影響海馬小清蛋白(parvalbumin)的表達(dá) 小清蛋白常作為運(yùn)動(dòng)引起海馬神經(jīng)元改變的標(biāo)志物[26],發(fā)育期接受有氧訓(xùn)練的大鼠海馬CA1、CA2和CA3區(qū)小清蛋白陽(yáng)性神經(jīng)元數(shù)量及蛋白水平明顯升高[27]。盡管小清蛋白在細(xì)胞水平上的生理作用尚不明確,但它是腦組織中最為豐富的鈣結(jié)合蛋白之一。大量研究表明,中樞神經(jīng)系統(tǒng)的生物學(xué)過(guò)程均通過(guò)與細(xì)胞內(nèi)鈣結(jié)合蛋白相互作用來(lái)實(shí)現(xiàn),以此作為鈣離子緩沖劑,防止鈣超載,使神經(jīng)細(xì)胞更好地耐受神經(jīng)興奮性毒性[28]。同時(shí),鈣結(jié)合蛋白(如鈣調(diào)蛋白、鈣視網(wǎng)膜蛋白、鈣蛋白酶、小清蛋白等)也與很多腦部疾病有關(guān)[29],如在戊四唑引發(fā)的癲癇模型中,神經(jīng)元中小清蛋白的缺失降低癲癇發(fā)作閾值,加重癲癇發(fā)作[30]。在皮質(zhì)中間神經(jīng)元發(fā)育基因缺陷的小鼠中,也發(fā)現(xiàn)中間神經(jīng)元小清蛋白含量降低,癲癇敏感性升高,小清蛋白神經(jīng)元表達(dá)的下調(diào)與腦部疾病如癲癇的發(fā)展相關(guān)[31]。生后16 d癲癇模型大鼠在成年期有明顯的物體識(shí)別記憶損傷,而運(yùn)動(dòng)鍛煉逆轉(zhuǎn)了其動(dòng)物行為學(xué)損害[26,32]。在納入1 173 079名瑞典男性、歷時(shí)40年的心血管適能(cardiovascular fitness)與癲癇發(fā)生的隊(duì)列研究中發(fā)現(xiàn),早期低心血管適能與癲癇風(fēng)險(xiǎn)增高相關(guān),早期運(yùn)動(dòng)明顯提高心血管適能,較好地預(yù)防癲癇進(jìn)一步發(fā)展[33]。以上研究?jī)H從行為學(xué)方面探索早期運(yùn)動(dòng)對(duì)于癲癇的影響,其機(jī)制是否與腦中小清蛋白表達(dá)增加相關(guān)尚需進(jìn)一步研究。
3.6 發(fā)育期運(yùn)動(dòng)影響腦內(nèi)神經(jīng)遞質(zhì)水平 在運(yùn)動(dòng)對(duì)空間記憶影響的機(jī)制研究中發(fā)現(xiàn),除大腦海馬區(qū)所發(fā)生的神經(jīng)解剖學(xué)變化外,神經(jīng)遞質(zhì)水平,尤其是與學(xué)習(xí)/記憶相關(guān)的神經(jīng)遞質(zhì),如多巴胺和乙酰膽堿也與發(fā)育期運(yùn)動(dòng)呈正相關(guān)[21,34]。運(yùn)動(dòng)激活投射到海馬的幾條神經(jīng)通路,如去甲腎上腺素、5-羥色胺、乙酰膽堿及γ-氨基丁酸(GABA)通路,還有β受體介導(dǎo)的去甲腎上腺素能神經(jīng)促使BDNF表達(dá)增強(qiáng)和神經(jīng)元發(fā)生的增強(qiáng)。上述過(guò)程可能的胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)機(jī)制主要涉及G-蛋白偶聯(lián)受體-促分裂原活化蛋白激酶-磷脂酰肌醇(-3)激酶(GPCR-MAPK-PI-3K)等細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路的交互及正反饋調(diào)控[35]。其次,運(yùn)動(dòng)增強(qiáng)大腦新陳代謝及皮質(zhì)功能,增加腦電頻率及無(wú)氧代謝,運(yùn)動(dòng)后視覺(jué)皮質(zhì)谷氨酸及GABA表達(dá)明顯增加;甚至于1周前運(yùn)動(dòng)也增加谷氨酸水平[36]。還有許多研究證實(shí)運(yùn)動(dòng)通過(guò)增加腦內(nèi)BDNF水平產(chǎn)生抗抑郁作用,當(dāng)運(yùn)動(dòng)強(qiáng)度提高時(shí),紋狀體多巴胺釋放增加[37]。
綜上所述,基礎(chǔ)研究證實(shí)運(yùn)動(dòng)促進(jìn)神經(jīng)營(yíng)養(yǎng)因子表達(dá)及神經(jīng)形成,提高發(fā)育期大鼠的認(rèn)知表現(xiàn),有利于形成更為復(fù)雜的神經(jīng)回路,降低或逆轉(zhuǎn)神經(jīng)損傷帶來(lái)的認(rèn)知障礙[10,12]。就目前人類(lèi)研究文獻(xiàn)系統(tǒng)性的評(píng)價(jià),發(fā)育期運(yùn)動(dòng)對(duì)于大腦發(fā)育具有促進(jìn)作用,并對(duì)認(rèn)知、學(xué)習(xí)、執(zhí)行能力和閱讀能力等方面具有積極的影響。但由于各研究采用的運(yùn)動(dòng)類(lèi)型、頻率等形式多樣,認(rèn)知評(píng)價(jià)、考評(píng)指標(biāo)紛雜,而致研究結(jié)果并不完全一致,但并沒(méi)有文獻(xiàn)顯示運(yùn)動(dòng)會(huì)帶來(lái)負(fù)面影響[38]。因此,該領(lǐng)域還需更多的研究以闡明具體發(fā)育階段、運(yùn)動(dòng)形式,包括強(qiáng)度和時(shí)長(zhǎng),以及其內(nèi)在的神經(jīng)機(jī)制。研究結(jié)果也將為臨床中可能的發(fā)育期神經(jīng)損害,如嬰幼兒傷害性刺激、麻醉藥物的應(yīng)用及發(fā)育期癲癇發(fā)作等,提供可行的預(yù)防和治療策略。
[1]李萌萌,劉瑛輝,陳會(huì)生,郝建華,陳軍. 持續(xù)炎癥傷害性刺激對(duì)新生后發(fā)育期大鼠痛行為的影響[J]. 感染、炎癥、修復(fù), 2011,12(2):73-77.
[2]Tandon PS, Tovar A, Jayasuriya AT, Welker E, Schober DJ, Copeland K, Dev DA, Murriel AL, Amso D, Ward DS. The relationship between physical activity and diet and young children's cognitive development: a systematic review[J]. Prev Med Rep, 2016, 22(3):379-390.
[3]Soch A, Bradburn S, Sominsky L, De Luca SN, Murgatroyd C, Spencer SJ. Effects of exercise on adolescent and adult hypothalamic and hippocampal neuroinflammation[J]. Hippocampus, 2016, 26:1435-1446.
[4]Carson, V, Kuzik, N, Hunter, S, Wiebe SA, Spence JC, Friedman A, Tremblay MS, Slater LG, Hinkley T. Systematic review of sedentary behavior and cognitive development in early childhood[J]. Prev Med, 2015,78:115-122.
[5]Best JR. Effects of physical activity on children's executive function: contributions of experimental research on aerobic exercise[J]. Dev Rev, 2010, 30: 331-551.
[6]Benjamin AS, Etnier JL. The relationship between physical activity and cognition in children: a meta-analysis[J]. Pediatr Exerc Sci, 2003,15:243-256.
[7]Polich J. Updating P300: an integrative theory of P3a and P3b[J]. Clin Neurophysiol, 2007,118:2128-2148.
[8]Hillman CH, Pontifex MB, Castelli DM, Khan NA, Raine LB, Scudder MR, Drollette ES, Moore RD, Wu CT, Kamijo K. Effects of the FITKids randomized controlled trial on executive control and brain function[J]. Pediatrics, 2014,134:e1063-e1071.
[9]Davis CL,Tomporowski PD,McDowell JE,Austin BP, Miller PH, Yanasak NE, Allison JD, Naglieri JA. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial[J]. Health Psychol, 2011,30:91-98.
[10]Winkler AM, Sabuncu MR, Yeo BT, Fischl B, Greve DN, Kochunov P, Nichols TE, Blangero J, Glahn DC. Measuring and comparing brain cortical surface area and other areal quantities[J]. Neuroimage,2012,61:1428-1443.
[11]Gomes Da Silva S, Unsain N, Masco DH, Toscano-Silva M, de Amorim HA, Silva Araujo BH, Simoes PS, Naffah-Mazzacoratti MG, Mortara RA, Scorza FA, Cavalheiro EA, Arida RM. Early exercise promotes positive hippocampal plasticity and improves spatial memory in the adult life of rats[J]. Hippocampus, 2012,22:347-358.
[12]Hopkins ME, Nitecki R, Bucci DJ. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels[J]. Neuroscience, 2011,194:84-94.
[13]Swain RA, Berggren KL, Kerr, AL, Patel A, Peplinski C, Sikorski AM. On aerobic exercise and behavioral and neural plasticity[J]. Brain Sci, 2012,2:709-744.
[14]Herting MM, Keenan MF, Nagel BJ. Aerobic fitness linked to cortical brain development in adolescent males: preliminary findings suggest a possible role of BDNF genotype[J]. Front Hum Neurosci, 2016,10:327.
[15]Kim Young-Pyo, Kim Hong, Shin Mal-Soon, Chang Hyun-Kyung, Jang Mi-Hyeon, Shin Min-Chul, Lee Sam-Jun, Lee Hee-Hyuk, Yoon Jin-Hwan, Jeong Ill-Gyu, Kim Chang-Ju. Age-dependence of the effect of treadmill exercise on cell proliferation in the dentate gyrus of rats[J]. Neurosci Lett, 2004,355:152-154.
[16]Lou SJ, Liu JY, Chang H, Chen PJ. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats[J]. Brain Res, 2008,1210:48-55.
[17]O’Callaghan RM, Griffin EW, Kelly AM. Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampus[J]. Hippocampus, 2009,19:1019-1029.
[18]Clark PJ, Brzezinska WJ, Thomas MW, Ryzhenko NA, Toshkov SA, Rhodes JS. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice[J]. Neuroscience, 2008,155:1048-1058.
[19]de Almeida AA, Gomes Da Silva S, Fernandes J, Peixinho-Pena LF, Scorza FA, Cavalheiro EA, Arida RM. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development[J]. Neurosci Lett, 2013,553:1-6.
[20]Eadie BD, Redila VA, Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density[J]. J Comp Neurol,2005,486:39-47.
[21]Herting MM, Nagel BJ. Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents[J]. Behavi Brain Res, 2012,233:517-525.
[22]Erickson KI, Voss MW, Prakash, RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF. Exercise training increases size of hippocampus and improves memory[J]. Proc Natl Acad Sci, 2011,108:3017-3022.
[23]Kandola A, Hendrikse J, Lucassen PJ, Yücel M. Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: practical implications for mental health treatment[J]. Front Hum Neurosci,2016,10:373.
[24]Herting MM, Keenan MF, Nagel BJ. Aerobic fitness linked to cortical brain development in adolescent males: preliminaryfindings suggest a possible role of BDNF genotype[J]. Front Hum Neurosci, 2016,10:327.
[25]Akhavan MM, Miladi-Gorji H, Emami-Abarghoie M, Safari M, Sadighi-Moghaddam B, Vafaei AA, Rashidy-Pour A. Maternal voluntary exercise during pregnancy enhances the spatial learning acquisition but not the retention of memory in rat pups via a TrkB-mediated mechanism: the role of hippocampal BDNF expression[J]. Iran J Basic Med Sci, 2013,16:955-961.
[26]Gomes DS, Arida RM. Physical activity and brain development[J]. Expert Rev Neurother, 2015,15:1041-1051.
[27]Gomes da Silva S, Doná F, da Silva Fernandes MJ, Scorza FA, Cavalheiro EA, Arida RM. Physical exercise during the adolescent period of life increases hippocampal parvalbumin expression[J]. Brain Dev, 2010,32(2):137-142.
[28]Varga C, Oijala M, Lish J, Szabo GG, Bezaire M, Marchionni I, Golshani P, Soltesz I. Functional fission of parvalbumin interneuron classes during fast network events[J]. Elife,2014-11-06. doi: 10.7554/eLife.04006.
[29]Hermanowicz-Sobieraj B, Robak A. The ontogenetic development of neurons containing calcium-binding proteins in the septum of the guinea pig: late onset of parvalbumin immunoreactivity versus calbindin and calretinin[J]. J Chem Neuroanat, 2016-10-19. pii: S0891-0618(16)30098-9. doi: 10.1016/j.jchemneu.2016.10.001. [Epub ahead of print]
[30]Schwaller B, Tetko IV, Tandon P, Silveira DC, Vreugdenhil M, Henzi T, Potier MC, Celio MR, Villa AE. Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures[J]. Mol Cell Neurosci, 2004,25:650-663.
[31]Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, Escayg A. Preferential inactivation of Scn1a inparvalbumin interneurons increases seizure susceptibility[J]. Neurobiol Dis,2013,49:211-220.
[32]Gomes FG Novaes, Gomes Da Silva S, Cavalheiro EA, Arida RM. Beneficial influence of physical exercise following status epilepticus in the immature brain of rats[J]. Neuroscience, 2014,274:69-81.
[33]Nyberg J, Aberg MA, Toren K, Nilsson M, Ben-Menachem E, Kuhn HG. Cardiovascular fitness and later risk of epilepsy: a Swedish population-based cohort study[J]. Neurology, 2013,81:1051-1057.
[34]楊靜,李萌萌.全身麻醉藥物導(dǎo)致發(fā)育大腦神經(jīng)凋亡的可能機(jī)制[J]. 感染、炎癥、修復(fù), 2015,16(1):59-61.
[35]Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health[J]. Neurosci Bull, 2008,24:265-270.
[36]Maddock RJ, Casazza GA, Fernandez DH, Maddock MI. Acute modulation of cortical glutamate and GABA content by physical activity[J]. J Neurosci, 2016,36:2449-2457.
[37]Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, Souza PS1, Quevedo J Souza CT,Pinho RA. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson's disease[J]. Brain Res Bull,2014,108:106-112.
[38]Donnelly JE, Hillman CH, Castelli D, Etnier JL, Lee S, Tomporowski P, Lambourne K, Szabo-Reed AN. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review[J]. Med Sci Sports Exerc, 2016,48:1197-1222.
2016-05-25)
10. 3969/j. issn. 1672-8521. 2016. 03. 019
國(guó)家自然科學(xué)基金項(xiàng)目(81272030);吳階平醫(yī)學(xué)基金會(huì)臨床科研專(zhuān)項(xiàng)資助基金 (320.6750.13220)
李萌萌,副主任醫(yī)師(E-mail: mmli304@163.com)