• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identifcation of Risk Pathways and Functional Modules for Coronary Artery Disease Based on Genome-wide SNP Data

    2016-03-09 12:29:16XiangZhaoYiZhaoLuanXiaoyuZuoYeDaChenJihengQinLvJinYiqingTanMeihuaLinNaizunZhangYanLiangShaoQiRao
    Genomics,Proteomics & Bioinformatics 2016年6期
    關(guān)鍵詞:素質(zhì)教育育人英語

    Xiang ZhaoYi-Zhao LuanXiaoyu ZuoYe-Da Chen Jiheng QinLv JinYiqing TanMeihua LinNaizun Zhang Yan LiangShao-Qi Rao*k

    1Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology,School of Public Health,Guangdong Medical College,Dongguan 523808,China

    2School of Life Sciences,Sun Yat-sen University,Guangzhou 510080,China

    3Department of Medical Statistics and Epidemiology,School of Public Health,Sun Yat-sen University,Guangzhou 510080,China

    4Maoming People’s Hospital,Maoming 525000,China

    Identifcation of Risk Pathways and Functional Modules for Coronary Artery Disease Based on Genome-wide SNP Data

    Xiang Zhao1,#,a,Yi-Zhao Luan2,#,b,Xiaoyu Zuo3,c,Ye-Da Chen1,d, Jiheng Qin1,e,Lv Jin1,f,Yiqing Tan1,g,Meihua Lin1,h,Naizun Zhang3,i, Yan Liang4,j,Shao-Qi Rao1,3,*,k

    1Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology,School of Public Health,Guangdong Medical College,Dongguan 523808,China

    2School of Life Sciences,Sun Yat-sen University,Guangzhou 510080,China

    3Department of Medical Statistics and Epidemiology,School of Public Health,Sun Yat-sen University,Guangzhou 510080,China

    4Maoming People’s Hospital,Maoming 525000,China

    Coronary artery disease;

    Genome-wide SNP profling;

    Risk pathway;

    Functional module;

    Genetic network

    Coronary artery disease(CAD)is a complex human disease,involving multiple genes and their nonlinear interactions,which often act in a modular fashion.Genome-wide single nucleotide polymorphism(SNP)profling provides an effective technique to unravel these underlying genetic interplays or their functional involvements for CAD.This study aimed to identify the susceptible pathways and modules for CAD based on SNP omics.First,the Wellcome Trust Case Control Consortium(WTCCC)SNP datasets of CAD and control samples were used to assess the jointeffect of multiple genetic variants at the pathway level,using logistic kernel machine regression model.Then,an expanded genetic network was constructed by integrating statistical gene-gene interactions involved in these susceptible pathways with their protein-protein interaction(PPI) knowledge.Finally,risk functional modules were identifed by decomposition of the network.Of 276 KEGG pathways analyzed,6 pathways were found to have a signifcant effect on CAD.Other than glycerolipid metabolism,glycosaminoglycan biosynthesis,and cardiac muscle contraction pathways,three pathways related to other diseases were also revealed,including Alzheimer’s disease,non-alcoholic fatty liver disease,and Huntington’s disease.A genetic epistatic network of 95 genes was further constructed using the abovementioned integrative approach.Of 10 functional modules derived from the network,6 have been annotated to phospholipase C activity and cell adhesion molecule binding,which also have known functional involvement in Alzheimer’s disease. These fndings indicate an overlap of the underlying molecular mechanisms between CAD and Alzheimer’s disease,thus providing new insights into the molecular basis for CAD and its molecular relationships with other diseases.

    Introduction

    Coronary artery disease(CAD)is the leading cause of morbidity and mortality worldwide and has a strong genetic basis[1]. Advances in genome-wide association studies(GWAS)have provided insights into lots of different genetic factors that contribute to the disease.Since 2007,the Wellcome Trust Case Control Consortium(WTCCC)and Framingham Heart Study have achieved duplicated validation of 9p21,and identifcation of 13 novel loci associated with CAD[2,3].More similar studies have also been performed in different populations,leading to the excavation of more CAD-related single nucleotide polymorphisms(SNPs)[4,5].As a result,population-based studies with thousands of patients and healthy controls included have identifed more than 50 CAD-associated genetic loci in total [6-9].

    However,all these studies did not take into account the underlying genetic interplays or functional modules involved in CAD.Therefore,the genetic basis of CAD has remained largely unknown due to the limited understanding of just a small proportion of individual genetic variations.There is a developing consensus that genetic variations of CAD often function by sophisticated interactions through a modular fashion rather than individually[10].With the improvement of computational methods,gene set-based association analysis(GSA) aimed at evaluating the joint effects of a defned gene set by quantifying the susceptibility or statistical signifcance of individual functional units,e.g.,pathways or biological processes, associated with clinical phenotypes[11].

    In general,the gene sets in GSA can be generated according to the manually-curated pathways(e.g.,KEGG pathways),or gene lists related to specifc functions.Based on the differences in the theoretical models used,the pathway-based methods can be classifed into three categories,i.e.,functional enrichment analysis[12,13],topology-based analysis[14],and multivariate statistical analysis.Hereinto,functional enrichment analysis is the most widely used method for the identifcation of enriched pathways related to the phenotype of interest due to its straightforward statistical model.For instance,Ghosh et al. [15]applied Reactome gene sets-based gene set enrichment analysis(GSEA)to reveal novel associations between key biological processes and CAD.By contrast,topology-based methods were proposed based on the fact that biological pathways are not simple lists of genes,but rather complex interactions between genes with specifc topology.A list of topologybased methods and their applications have been reviewed previously[16].However,so far,such methods are largely under development and their applications on CAD have rarely been reported.Instead,logistic kernel machine regression[17,18],a semi-parametric regression model,is often used as the theoretical framework for multivariate analysis of multiple genetic variants in a gene set.It can be used to examine the signifcance of a gene set that corresponds to specifc functional units such as pathways.By mapping the feature vector of genes or SNPs to a phenotype similarity space that indicates the similarity between people carrying these genes or SNPs,the logistic kernel machine regression analysis considers the linear interactions among the genes and thus shows advantage over the classical GSEA,

    In this article,we report the fndings from genome-wide and pathway-based analysis of a publicly-available GWAS dataset provided by WTCCC.We frst systematically assessed the association of each KEGG pathway with CAD using the logistic kernel regression model.Then,we constructed an expanded genetic network by integrating gene-gene interactions involved in these susceptible pathways with their protein-protein interactions(PPIs).Finally,we identifed the risk functional modules(subnetworks)for CAD by decomposing the built genetic network.

    Results

    SNP set test identifed CAD susceptible KEGG pathways

    The raw WTCCC genotyping data for CAD contained 482,247 SNPs from 5000 individuals(3000 controls and 2000 CAD patients).After data processing,101,822 SNPs from 4864 individuals(2938 controls and 1926 CAD patients)were retained for further analysis.We defned the SNPs annotated to the genes of the same KEGG pathway as a SNP set.Hence,276 pathway-based SNP sets were generated in total.These SNP sets were tested by logistic kernel machine regression model to evaluate whether they jointly(i.e.,pathway-based)contribute signifcantly to CAD risk.As a result,totally 6 pathways were identifed to be signifcantly associated with CAD(Bonferroni-adjusted P<0.05;Table 1).These includeglycerolipid metabolism,glycosaminoglycan biosynthesis,and cardiac muscle contraction,as well as three disease-related pathways,i.e.,Alzheimer’s disease(AD),non-alcoholic fatty liver disease(NAFLD),and Huntington’s disease.

    Table 1 Signifcant susceptible pathways for CAD

    Interestingly,potential correlation between some of these pathways and CAD has been reported in previous studies. For example,de las Fuentes et al.[19]performed a pathwaybased analysis of another independent GWAS dataset for the Framingham Heart Study and identifed glycerolipid metabolism pathway to be signifcantly associated with CAD.In agreement with this study,a previous report showed that the level of serum triglyceride,a key element in glycerolipid metabolism,could be used as an effective predictor for CAD risk [20].There is also evidence showing relevance of glycosaminoglycan biosynthesis with CAD.Glycosaminoglycan is present extensively in various cell types,to maintain the resilience and permeability of vascular wall or play a key role in anticoagulation and antihyperlipidemia[21].Therefore,genetic variation in this pathway may cause dysfunction of blood vessels. It is not surprising that cardiac muscle contraction(hsa04260) was identifed to be the risk pathway for CAD.Myocardial contraction is an initial process of potential shift of cardiac muscle cells,to produce longitudinal,radical,and rotational motion.Li et al.[22]applied an ultrasonic imaging technique and showed that cardiac muscle motion of CAD patients is signifcantly different from that of health subjects at various directions,implying the correlation between myocardial dysfunction and myocardial contraction in CAD patients.

    Notably,our study revealed that three pathways related to other diseases were linked with CAD.It has been reported that among all kinds of fatty liver diseases examined,NAFLD shows the strongest correlation with CAD[23],and NAFLD patients have a higher risk for cardiovascular disease[24]. The correlation between AD,a chronic neurodegenerative disease,and CAD was also noticed because of occurrence of cognitive impairment in CAD patients[25].Nevertheless,there is dearth of evidence supporting the relevance of CAD with Huntington’s disease,a Mendelian neurodegenerative disorder with autonomic dominant inheritance.

    Taken together,most of the pathways identifed in this study have clear evidence supporting their involvement in the underlying pathogenesis for CAD.

    CAD-related genetic network analysis identifed PIK3R1 and APP as hub genes

    Epistasis analysis of all SNP-SNP pairs within or across the identifed pathways was performed.Totally 186,640 SNP-SNP signifcant interactions(P<0.05)were identifed. We then mapped the involved SNPs onto genes.By integrating prior PPI knowledge,we constructed genetic networks using 121 unique genes and 149 gene-gene pairs.As shown in Figure 1,most of these genes were connected to each other, producing the largest sub-network with 95 unique genes and 135 edges.There were also 9 small sub-networks including seven sub-networks with only one edge,one sub-network with two edges,and one sub-network with three edges.Furthermore,there are three genes that were not linked to any other genes at all due to the lack of PPI evidence.

    Figure 1 Epistatic network for CAD

    Figure 2 Frequency distribution of node connectivity for the largest genetic network of CAD

    We focused on the largest sub-network for the following topological analysis.The connection degree distribution of the largest sub-network(Figure 2)indicated that this network is not a random network.Furthermore,Kolmogorov-Smirnov (KS)test[26]showed that this network was a scale-free network with an exponential parameter α=3.023 (P=0.884).Among all the genes,two genes,PIK3R1 and APP,showed the highest connectivity,which are connected with 11(Bonferroni-adjusted P=0.0041)and 12 other genes (Bonferroni-adjusted P=0.00088),respectively.These two genes were thus defned as the hub genes.

    PIK3R1 encodes the regulatory subunit α of phosphatidylinositol 3-kinase(PIK3),which orchestrates a series of cell function regulation,such as cell proliferation,cell differentiation,apoptosis,and glucose transport[27].PIK3 can be activated by angiotensin II,and the activated PIK3 plays a vital role in vascular smooth muscle cells through angiotensin II stimulated Ca2+entry[28].APP,which encodes β-amyloid precursor protein,is generally recognized to be closely related to AD[29].Abnormal expression of APP can lead to dysfunction of endothelial cells due to cytotoxicity and damage induced by long-term exposure to Aβ peptide[30,31].These studies provide supporting evidence of PIK3R1 and APP on the development of CAD.

    CAD-related genetic network module analysis reveals the involvement of various molecular functions

    To identify the most compact functional subnetworks,we further decomposed the largest network into smaller modular units.We obtained totally 10 modules,which consist of 4-14 genes(Figure 3).The corresponding gene lists can be found in Table S1.Interestingly,KS test revealed that all modules were scale-free with P values ranging 0.8-1.0,except the smallest one which only contained 4 genes(Table 2).The estimates of the scaling exponent(α)of power law distribution,KS testing statistics,and some other topological properties for each module are also shown in Table 2.

    Figure 3 Modular partitions of CAD risk genes

    To understand the function involvements of each module, we performed a gene ontology(GO)-based enrichment analysis using the database for annotation,visualization and integrated discovery(DAVID).Only modules containing more than 10 genes were analyzed and the signifcantly-enriched GO terms for each module are listed in Table 3.We found that different modules had some characteristic functional involvements.For examples,M3 and M5 were signifcantly enriched with the cellular component of cytosol,M9 with cell nucleus,and M6 with neuron related structures,indicating that these modules had very different‘working places’.In addition,these modules also exhibited varied molecular functions.For instances,M3 was linked to the lipid-related functions,M2 to peptidase activity, and M6 to cell adhesion molecule binding activity.Notably, M6 was also enriched with biological process neuronal activity,which could be the molecular bridge between AD and CAD.

    Among all these enriched GO terms,phospholipase C activity(GO:0004629)and cell adhesion molecule binding(GO: 0050839)took special attention.Phospholipase C(PLC), which is distributed widely in various tissues,is a key enzyme in phosphatidylinositol signaling pathway[31].There exist different isozyme types of PLC,including PLC-β,PLC-γ,and PLC-δ.Theseisozymespossessconserved and specifc domains,and therefore PLC activation may be induced in various ways[32].PLC-γ is mostly activated through protein tyrosine kinases(PTKs).As a result,activated PLC-γ would induce a series of signal transduction,which may lead to trans-activation of epidermal growth factor(EGF),a key element in inhibition of vascular wall deposition and thrombogenesis [33,34]. Additionally, by mediating inter-cellular interactions,cell adhesion molecules(CAMs)can regulate multiple biological processes,such as signal transduction, infammation and immune responses,coagulation and tissue repairing[35].The changes in adhesion of vascular endothelial cellsurface,e.g.,caused by injury,promotemonocyteadhesion.During the migration and transformation to macrophages,monocyte may stimulate lymphocytes to produce multiple cytokines,thus promoting proliferation of smooth muscle and formation of fbrous plaque eventually[36].

    Table 2 The topological features of the risk modules for CAD

    Table 3 The GO terms enriched for each risk module for CAD

    Discussion

    Studies of genetic variants in various molecular biological processes will greatly promote our understanding of CAD and its pathogenesis.In the present study,a pathway-based approach is applied to identify the risk pathways and functional modules for CAD.This study demonstrated that multiple pathways may be involved in the underlying molecular processes for CAD,such as cardiac muscle contraction,glycerolipid metabolism,and glycosaminoglycan biosynthesis. Meanwhile,this study reveals that some other diseases,e.g., non-alcoholic fatty liver disease,Huntington’s disease,and AD,may share molecular mechanisms with CAD.Furthermore,2 hub genes,PIK3R1 and APP,and 6 risk functional modules for CAD have been identifed.Our fndings are different from Liu’s study[37].Using gene co-expression network analysis,Liu et al.identifed specifc modules and hub genes that are mainly related to membrane-associated processes and hypertrophic cardiomyopathy pathway.The possible reasons for the difference may be manifold,one of which is the difference in the choice of omics data type.They evaluated gene expression changes at mRNA level,whereas we analyzed the genomic mutations within DNA sequences. Overall,our study provides new insights into the molecular basis for CAD and its molecular relationships with several related diseases.

    Genetic studies are traditionally based on single gene analysis,which poses tremendous challenges for elucidating complicated genetic interplaysinvolved in complex human diseases.Modern pathway-based analysis allows a comprehensive understanding of the molecular mechanisms underlying complex diseases by considering the joint effect and integrality as function unit of multiple genes.Extensive studies utilizing pathway-based analysis have signifcantly advanced our capacity to explore large-scale omics data that have been rapidly accumulating in biomedical felds[38].

    Pathway-based approach has some advantages over the conventionalGWASapproach.Thesinge-locusanalysis widely used in GWAS is only capable of capturing a small portion of susceptible SNPs with prominent marginal effects,leaving the important genetic component,such as epistasis or joint effects between multiple genes,undetected.Identifying the complex interplays among multiple genes in the genome-wide context is an essential task to systematically unravel the molecular mechanisms underlying complex diseases.In this study, we employed the newly-developed logistic kernel machine regression model in the pathway-level analysis to capture the joint effects of multiple genes involved in the pathways.In this way,we are not only able to avoid the curse of‘high dimensionality and small sample size’associated with analysis of GWAS data,but also able to estimate the missing genetic components and epistasis,thus helping elucidate the sophisticated molecular interplays between or across the risk pathways for CAD.

    There are also limitations in this study.First,the whole pathogenic process of CAD may involve a long cascade of multiple biological pathways.Ideally,the accumulative effects of these risk pathways on CAD should be examined,which is practically diffcult to achieve because of the unpredictability of joint action among different pathways and the possibility of over-ftting.Second,we replaced missing genotypes with the most frequent allele.Such simplifcation for data imputation could lead to expansion of major alleles,resulting in a decreased minor allele frequency(MAF).On the other hand, genotype imputation is a complex process in GWAS research, which can address the failures occurring during genotyping assay to some extent[39,40].However,in practice,most imputation methods require external reference panel of SNPs that may introduce noise of genetic background,and the success of imputation is largely determined by the patterns of linkage disequilibrium(LD)[41].In our analysis,the missing genotypes were imputed after fltering SNPs and subjects with missing rate≥5%,which help restrain the expansion of major alleles. Moreover,a gene-set-based method rather than a singlelocus-based method was applied in our further analysis,reducing the bias of single SNPs resulting from the imputation. Third,in the epistatic analysis,we used the nominal P value of 0.05 to identify the putative epistatic gene pairs,which could lead to an infated type I error.Correction for multiple tests is a very complicated and challenging issue for the analysis of largescale GWAS data,especially for epistatic analysis because of correlation of gene pairs or correlations stemming from LD. To address this concern,we applied an additional criterion of experimentally-confrmed PPI support for gene pairs,which might alleviate the issue of the infated type I errors to some extent.Finally,this study only integrated GWAS data with PPI data for genetic network analysis.Integrating more omics data such as epigenetic or epidemiological data would help illustrate the genetic,epigenetic,and environmental factors for CAD,which is the focus in our future studies.

    Materials and methods

    Data sources

    WTCCC genotyping data of 482,247 SNPs from 2000 CAD subjects and 3000 health control subjects[42]were analyzed in this study.For identifcation of susceptible pathways,283 human pathways[43,44]were extracted and downloaded from KEGG database.We removed the more general pathways that contain several specifc pathways,and ultimately included 276 KEGG pathways.Genetic information for mapping SNPs to genes was extracted from Ensembl/GRCh37[16].Information on PPIs was retrieved from the Human Protein Reference Database(HPRD)[45]for genetic networking(epistatic interactions).To enhance the reliability of the depicted genetic relationships,only experimentally-confrmed PPIs were taken as the prior knowledge.

    Data preprocessing

    To improve the data quality,several data preprocessing procedures were performed.First,SNPs were excluded if they did not meet all the following criteria:(1)genotype missing rate<5%,(2)individualmissing rate<5%,and (3) MAF>0.01.Furthermore,all the included loci must meet Hardy-Weinberg equilibrium (HWE) proportions (P>1×10-4)in the control group.Second,for loci with missing values after the fltering above,missing genotypes were replaced with the most frequent one.Third,to remove data redundancy due to LD,only tag SNPs that were representative in the corresponding genomic regions were utilized for the current analysis.For identifcation of these tag SNPs,each individual chromosome was scanned using the‘moving window’method in which the window size was set to 50 SNPs with step length of 5 SNPs.The cutoff of LD r2was set as 0.8.Finally, SNPs were considered as mapped onto genes if these SNPs are situated in the fanking regions spanning from 5 kb upstream to 5 kb downstream of the genes,as described previously [46].All the data processing procedures were performed using PLINK program[47]and R platform(http://www.r-project. org/).

    Identifcation of CAD susceptible pathways

    Logistic kernel machine regression model was applied to identify the susceptible pathways related to CAD.Suppose that a pathway contains p SNPs(their genotypes are denoted as zi*) and P(yi=1)be the probability of the ith subject being affected(i.e.,who has the disorder).This model can be described as follows:

    where α0is the intercept,and h(·)is a general function of p SNPs contained in the pathway,which is often defned as a positive,semi-defnite kernel function K(·,·).In this study,this kernel function is defned as

    where the weight wiis calculated as described previously[48]. More intuitively,K(.,.)can be viewed as a function that measures the similarity between two individuals based on the genotypes of the SNPs in the SNP set.There are three options for K (.,.):the linear,Gaussian,and identical-by-state kernels.The null hypothesis for testing a pathway is that its overall effect is zero,i.e.,H0:h(·)=0.The signifcance of the pathwaybased SNP set was tested by Q statistics that follows a χ2mixeddistribution.To adjust for multiple pathways to be evaluated, Bonferronicorrection was applied and signifcancewas claimed if P×N<0.05(N is the number of pathways evaluated).More details about the methods used are described previously[48,49].

    Genetic networking

    Function enrichment analysis

    To characterize the functional involvement of the putative modules for CAD,GO analysis was performed for each module using DAVID[51,52]with the whole human genome genes as background,and the gene list within each module as foreground.To control false positive rate of signifcance of GO terms,Bonferroni correction was used.In order to better characterize the putative modules,we reported the GO terms with node depth≥4.The information for GO hierarchy was retrieved from Bioconductor GO.db and the node depth for each GO term was defned by the minimum distance between target GO term and GO root term in the tree structure.

    Authors’contributions

    SQR conceived the project and wrote the manuscript.XZ and YZL performed the analysis and wrote the manuscript.XZ, YDC,JQ,LJ,YT,ML,NZ,YL participated in writing the computing codes and analyzing the public datasets.All authors read and approved the fnal manuscript.

    Competing interests

    The authors declare no competing interests.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China(Grant Nos.31071166 and 81373085),Natural Science Foundation of Guangdong Province,China(Grant No.8251008901000007),Science and Technology Planning Project of Guangdong Province(Grant No.2009A030301004),Dongguan Science and Technology Project,Guangdong,China(Grant No.2011108101015),and the funds from Guangdong Medical College,China(Grant Nos.XG1001,JB1214,XZ1105,STIF201122,M2011024, and M2011010).

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.04.008.

    [1]Albert R,Baraba′si AL.Statistical mechanics of complex networks.Rev Mod Phys 2002;74:47.

    [2]Samani NJ,Erdmann J,Hall AS,Hengstenberg C,Mangino M, Mayer B,et al.Genomewide association analysis of coronary artery disease.N Engl J Med 2007;357:443-53.

    教材是語言教學(xué)的載體,教師應(yīng)該深挖教材內(nèi)容且運(yùn)用得當(dāng),以點(diǎn)帶面,對比中西方文化差異,去粗取精,借鑒西方優(yōu)秀文化,弘揚(yáng)中國傳統(tǒng)文化,營造濃厚的育人氛圍。例如,我們在基礎(chǔ)英語部分的教學(xué)重視對學(xué)生的人文素質(zhì)教育,幫助學(xué)生初步了解中西文化的相異之處,并進(jìn)行品德、心理、審美等教育,提高學(xué)生文化涵養(yǎng);行業(yè)英語部分突出職業(yè)人文素質(zhì)與專業(yè)結(jié)合的特色,培養(yǎng)學(xué)生高尚的職業(yè)道德和職業(yè)觀念。

    [3]Larson M,Atwood L,Benjamin E,Cupples LA,D’Agostino R, Fox C,et al.Framingham Heart Study 100K project:genomewide associations for cardiovascular disease outcomes.BMC Med Genet 2007;8:S5.

    [4]Barbalic M,Reiner AP,Wu C,Hixson JE,Franceschini N,Eaton CB,et al.Genome-wide association analysis of incident coronary heart disease(CHD)in African Americans:a short report.PLoS Genet 2011;7:e1002199.

    [5]Polfus LM,Smith JA,Shimmin LC,Bielak LF,Morrison AC, Kardia SL,et al.Genome-wide association study of gene by smoking interactions in coronary artery calcifcation.PLoS One 2013;8:e74642.

    [6]Erbilgin A,Civelek M,Romanoski CE,Pan C,Hagopian R, Berliner JA,et al.Identifcation of CAD candidate genes in GWAS loci and their expression in vascular cells.J Lipid Res 2013;54:1894-905.

    [7]Peden JF,Farrall M.Thirty-fve common variants for coronary artery disease:the fruits of much collaborative labour.Hum Mol Genet 2011;20:R198-205.

    [8]Roberts R,Stewart AF.Genes and coronary artery disease:where are we?J Am Coll Cardiol 2012;60:1715-21.

    [9]Gao H,Li L,Rao S,Shen G,Xi Q,Chen S,et al.Genome-wide linkage scan identifes two novel genetic loci for coronary artery disease:in genequest families.PLoS One 2014;9:e113935.

    [10]Li H,Zuo X,Ouyang P,Lin M,Zhao Z,Liang Y,et al. Identifying functional modules for coronary artery disease by a prior knowledge-based approach.Gene 2014;537:260-8.

    [11]Fridley BL,Biernacka JM.Gene set analysis of SNP data: benefts,challenges,and future directions.Eur J Hum Genet 2011;19:837-43.

    [12]Wang K,Li M,Bucan M.Pathway-based approaches for analysis ofgenomewide association studies.Am J Hum Genet 2007;81:1278-83.

    [13]Barry WT,Nobel AB,Wright FA.Signifcance analysis of functional categories in gene expression studies:a structured permutation approach.Bioinformatics 2005;21:1943-9.

    [14]Draghici S,Khatri P,Tarca AL,Amin K,Done A,Voichita C, et al.A systems biology approach for pathway level analysis. Genome Res 2007;17:1537-45.

    [15]Ghosh S,Vivar J,Nelson CP,Willenborg C,Segre`AV,Ma¨kinen VP,et al.Systems genetics analysis of genome-wide association study reveals novel associations between key biological processes and coronary artery disease.Arterioscler Thromb Vasc Biol 2015;20:2081-6.

    [16]Mitrea C,Taghavi Z,Bokanizad B,Hanoudi S,Tagett R,Donato M,et al.Methods and approaches in the topology-based analysis of biological pathways.Front Physiol 2013;4:278.

    [17]Liu D,Ghosh D,Lin X.Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models.BMC Bioinformatics 2008;9:292.

    [18]Wu MC,Kraft P,Epstein MP,Taylor DM,Chanock SJ,Hunter DJ,et al.Powerful SNP-set analysis for case-control genome-wide association studies.Am J Hum Genet 2010;86:929-42.

    [19]de las Fuentes L,Yang W,Da′vila-Roma′n VG,Gu CC.Pathwaybased genome-wide association analysis of coronary heart disease identifes biologically important gene sets.Eur J Hum Genet 2012;20:1168-73.

    [20]Manninen V,Tenkanen L,Koskinen P,Huttunen J,Ma¨ntta¨ri M, Heinonen O,et al.Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study:implications for treatment.Circulation 1992;85:37-45.

    [21]Zhang YM,Li BC,Zhu LP,Dai WF,Fan JH.Research advancement on chemistry and bioactivities of natural polysaccharide. J Kunming Univ Sci Technol (Sci Technol) 2003;28:140-9.

    [22]Yang L,Wu LM,Qiu Q.Investigation of ischemic myocardial systolic dysfunction in coronary artery disease patients with twodimensional strain imaging.Chin J Med Imaging Technol 2011;27:1392-5.

    [23]Zhou Q,Gao FJ.Advances in research on relationship between non-alcoholic fatty liver and coronary heart disease.Chin J Arterioscler 2008;16:669-72.

    [24]Gaggini M,Morelli M,Buzzigoli E,DeFronzo RA,Bugianesi E, Gastaldelli A.Non-alcoholic fatty liver disease(NAFLD)and its connection with insulin resistance,dyslipidemia,atherosclerosis and coronary heart disease.Nutrients 2013;5:1544-60.

    [25]Stampfer M.Cardiovascular disease and Alzheimer’s disease: common links.J Intern Med 2006;260:211-23.

    [26]Barabasi AL,Oltvai ZN.Network biology:understanding the cell’s functional organization.Nat Rev Genet 2004;5:101-13.

    [27]Li X.Advance in research on phosphoinositide 3-kinase structure and function.J Chengdu Univ(Nat Sci Edn)2013;32:219-23.

    [28]Macrez N,Mironneau C,Carricaburu V,Quignard JF,Babich A, Czupalla C,et al.Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca2+channels.Circ Res 2001;89:692-9.

    [29]Zhang YW,Thompson R,Zhang H,Xu H.APP processing in Alzheimer’s disease.Mol Brain 2011;4:3.

    [30]Thomas T,Thomas G,McLendon C,Sutton T,Mullan M.β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996;380:168-71.

    [31]Suo Z,Fang C,Crawford F,Mullan M.Superoxide free radical and intracellular calcium mediate A beta(1-42)induced endothelial toxicity.Brain Res 1997;762:144-52.

    [32]Rhee SG.Regulation of phosphoinositide-specifc Phospholipase C.Annu Rev Biochem 2001;70:281-312.

    [33]Rong LL,Hai XS.Progress in the structure of phospholipase C and mechanisms of its activation.Acta Acad Med CPAPF 2006;15:175-8.

    [34]Wang ZD,Ping ZL,Yuan ZZ.Expression and its signifcance of phospholipase C-γ1 in tumors.Int J Stomatol Occlusion Med 2012;39:775-7.

    [35]Zhou T,Wang F,Sun GZ,Zhang YM.Some biology progress of the adhesion molecules and sugar adhere to their cell.J Chin Microcirc 2003;7:187-90.

    [36]Liang P,Sun L,Tang JW,Wang C.Expression of intercellular adhesion molecule-1,vascular cell adhesion molecule-1,tumor necrosis factor-α in atherosclerosis immunohistochemistry examination.Chin J Arterioscler 2004;12:427-9.

    [37]Liu J,Jing L,Tu X.Weighted gene co-expression network analysis identifes specifc modules and hub genes related to coronary artery disease.BMC Cardiovasc Disord 2016;16:54.

    [38]Jin L,Zuo XY,Su WY,Zhao XL,Yuan MQ,Han LZ,et al. Pathway-based analysis tools for complex diseases:a review. Genomics Proteomics Bioinformatics 2014:210-20.

    [39]Jiao S,Hsu L,Hutter CM,Peters U.The use of imputed values in the meta-analysis of genome-wide association studies.Genet Epidemiol 2011;35:597-605.

    [40]Korte A,Farlow A.The advantages and limitations of trait analysis with GWAS:a review.Plant Methods 2013;9:227-35.

    [41]Pei YF,Li J,Zhang L,Papasian CJ,Deng HW.Analyses and comparison of accuracy of different genotype imputation methods.PLoS One 2007;3:e3551.

    [42]Burton PR,Clayton DG,Cardon LR,Craddock N,Deloukas P, Duncanson A,et al.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature 2007;447:661-78.

    [43]Kanehisa M,Goto S.KEGG:Kyoto encyclopedia of genes and genomes.Nucleic Acids Res 2000;28:27-30.

    [44]Kanehisa M,Goto S,Sato Y,Kawashima M,Furumichi M, Tanabe M.Data,information,knowledge and principle:back to metabolism in KEGG.Nucleic Acids Res 2014;42:D199-205.

    [45]Prasad TK,Goel R,Kandasamy K,Keerthikumar S,Kumar S, Mathivanan S,et al.Human protein reference database-2009 update.Nucleic Acids Res 2009;37:D767-72.

    [46]Torkamani A,Topol EJ,Schork NJ.Pathway analysis of seven common diseases assessed by genome-wide association.Genomics 2008;92:265-72.

    [47]Purcell S,Neale B,Todd-Brown K,Thomas L,Ferreira MA, Bender D,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses.Am J Hum Genet 2007;81:559-75.

    [48]Wu MC,Lee S,Cai T,Li Y,Boehnke M,Lin X.Rare-variant association testing for sequencing data with the sequence kernel association test.Am J Hum Genet 2011;89:82-93.

    [49]Davies RB.Algorithm AS 155:The distribution of a linear combination of χ2random variables.J R Stat Soc Ser C Appl Stat 1980;29:323-33.

    [50]Newman ME.Modularity and community structure in networks. Proc Natl Acad Sci U S A 2006;103:8577-82.

    [51]HuangDW,ShermanBT,LempickiRA.Systematicand integrative analysis of large gene lists using DAVID bioinformatics resources.Nat Protoc 2008;4:44-57.

    [52]Huang DW,Sherman BT,Lempicki RA.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res 2009;37:1-13.

    Received 21 February 2016;revised 30 March 2016;accepted 10 April 2016 Available online 11 December 2016

    Handled by Andreas Keller

    *Corresponding author.

    E-mail:raoshaoq@gdmc.edu.cn(Rao SQ).

    #Equal contribution.

    aORCID:0000-0002-5831-7188.

    bORCID:0000-0003-4396-6078.

    cORCID:0000-0002-1200-1022.

    dORCID:0000-0002-7979-3482.

    eORCID:0000-0003-0803-2843.

    fORCID:0000-0001-9968-856X.

    gORCID:0000-0001-6647-5090.

    hORCID:0000-0002-2744-3704.

    iORCID:0000-0003-4470-5582.

    jORCID:0000-0001-6290-5540.

    kORCID:0000-0002-7955-0480.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.04.008 1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    猜你喜歡
    素質(zhì)教育育人英語
    文化育人的多維審視
    中國德育(2022年12期)2022-08-22 06:16:28
    育人鑄魂守初心 賡續(xù)前行譜新篇
    教育家(2022年18期)2022-05-13 15:42:15
    論美育中的音樂教育與素質(zhì)教育中的音樂教育
    如何有效滲透素質(zhì)教育理念
    讀英語
    素質(zhì)教育在初中英語教學(xué)中的實施
    散文百家(2014年11期)2014-08-21 07:17:04
    酷酷英語林
    關(guān)注基礎(chǔ)教育階段中的素質(zhì)教育
    “珠”育人
    他們用“五招”育人
    中國火炬(2012年2期)2012-07-24 14:17:50
    免费观看性生交大片5| 国产精品久久久久久久久免| 精品久久国产蜜桃| 亚洲精品日韩在线中文字幕| 网址你懂的国产日韩在线| 黄色配什么色好看| 久久精品国产亚洲网站| 亚洲国产欧美在线一区| 精品一区二区三区人妻视频| 一级毛片aaaaaa免费看小| 欧美日韩亚洲高清精品| av在线播放精品| 日韩av免费高清视频| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩东京热| 久热久热在线精品观看| 六月丁香七月| 高清av免费在线| 亚洲av国产av综合av卡| 大香蕉久久网| 国产色爽女视频免费观看| 亚洲精品国产av成人精品| 床上黄色一级片| 日日啪夜夜撸| 成人高潮视频无遮挡免费网站| 国产在线一区二区三区精| 久久久久精品性色| 精品一区在线观看国产| 国产不卡一卡二| 精品熟女少妇av免费看| 看黄色毛片网站| 亚洲精品成人av观看孕妇| 综合色丁香网| 国产精品av视频在线免费观看| 一级毛片黄色毛片免费观看视频| 波多野结衣巨乳人妻| 久久久久久久大尺度免费视频| 大香蕉97超碰在线| 青春草亚洲视频在线观看| 亚洲av成人精品一二三区| 日本免费在线观看一区| 日韩在线高清观看一区二区三区| 欧美极品一区二区三区四区| 日本欧美国产在线视频| 成人漫画全彩无遮挡| 草草在线视频免费看| 成人毛片60女人毛片免费| 特级一级黄色大片| 国产高清三级在线| 99热这里只有是精品在线观看| www.色视频.com| 亚洲av中文字字幕乱码综合| 久久99热这里只频精品6学生| 九草在线视频观看| 国产精品久久视频播放| 国产免费一级a男人的天堂| 亚洲最大成人手机在线| 天天躁夜夜躁狠狠久久av| 超碰97精品在线观看| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 成人无遮挡网站| 91aial.com中文字幕在线观看| 国产乱人视频| 亚洲精华国产精华液的使用体验| 日韩电影二区| 一级爰片在线观看| 久久精品国产鲁丝片午夜精品| 亚洲精品一区蜜桃| 久久精品国产鲁丝片午夜精品| 直男gayav资源| 天堂俺去俺来也www色官网 | 午夜日本视频在线| 国产成人精品久久久久久| 亚洲成色77777| 国产精品一区二区三区四区免费观看| 人妻一区二区av| 青春草视频在线免费观看| 色尼玛亚洲综合影院| 欧美日韩亚洲高清精品| 国产91av在线免费观看| 又爽又黄无遮挡网站| 婷婷色av中文字幕| 免费黄色在线免费观看| 男插女下体视频免费在线播放| 日韩强制内射视频| 亚洲国产欧美人成| 亚洲av成人av| 最近最新中文字幕免费大全7| 亚洲国产精品专区欧美| 精品久久久久久久久亚洲| 婷婷色麻豆天堂久久| 1000部很黄的大片| 国产成人精品久久久久久| 欧美最新免费一区二区三区| 三级经典国产精品| 女人久久www免费人成看片| 亚洲av二区三区四区| 日本熟妇午夜| kizo精华| 秋霞伦理黄片| av专区在线播放| 亚洲丝袜综合中文字幕| 美女被艹到高潮喷水动态| 久久久欧美国产精品| 尾随美女入室| 国产成人freesex在线| 国产精品.久久久| 精品少妇黑人巨大在线播放| 久久久久国产网址| 最近中文字幕2019免费版| 欧美xxⅹ黑人| 国产永久视频网站| 成人毛片60女人毛片免费| 纵有疾风起免费观看全集完整版 | 一区二区三区高清视频在线| 国产高潮美女av| 亚洲av二区三区四区| 三级男女做爰猛烈吃奶摸视频| 国产精品伦人一区二区| 国精品久久久久久国模美| 日本爱情动作片www.在线观看| 久久精品久久精品一区二区三区| 日本爱情动作片www.在线观看| 最近手机中文字幕大全| 在线免费十八禁| 国产精品美女特级片免费视频播放器| 精品一区二区三区视频在线| 久久久久精品性色| 亚洲国产精品成人久久小说| 久久久久网色| 一本一本综合久久| 久久国内精品自在自线图片| 美女cb高潮喷水在线观看| 久久久久九九精品影院| 日韩欧美精品免费久久| av卡一久久| 18禁在线无遮挡免费观看视频| 国精品久久久久久国模美| 一区二区三区四区激情视频| 一个人免费在线观看电影| 国产黄色小视频在线观看| 视频中文字幕在线观看| 免费观看性生交大片5| 免费观看性生交大片5| 日本一二三区视频观看| 插阴视频在线观看视频| 国产亚洲午夜精品一区二区久久 | a级一级毛片免费在线观看| 国产伦在线观看视频一区| 国内精品一区二区在线观看| 岛国毛片在线播放| 免费av不卡在线播放| 日本黄大片高清| 寂寞人妻少妇视频99o| 91午夜精品亚洲一区二区三区| 亚洲精品视频女| 美女大奶头视频| 欧美日韩精品成人综合77777| 深夜a级毛片| 最新中文字幕久久久久| 91午夜精品亚洲一区二区三区| 午夜福利在线在线| 国产精品人妻久久久影院| 精品久久久久久久久av| 日韩三级伦理在线观看| 九色成人免费人妻av| 欧美性猛交╳xxx乱大交人| 一个人免费在线观看电影| 卡戴珊不雅视频在线播放| 在线观看免费高清a一片| 精品久久久久久久末码| 插阴视频在线观看视频| 亚洲国产色片| a级毛色黄片| 如何舔出高潮| av黄色大香蕉| 青春草视频在线免费观看| 久久久欧美国产精品| 久久久久免费精品人妻一区二区| 国产白丝娇喘喷水9色精品| 国产伦精品一区二区三区四那| 欧美变态另类bdsm刘玥| 国产探花极品一区二区| 三级经典国产精品| 天堂中文最新版在线下载 | 亚洲精品国产av蜜桃| 中文字幕久久专区| 在线播放无遮挡| av在线亚洲专区| 亚洲经典国产精华液单| 亚洲精品aⅴ在线观看| 久久国产乱子免费精品| 久久精品夜夜夜夜夜久久蜜豆| 国产成人91sexporn| 一夜夜www| 建设人人有责人人尽责人人享有的 | 我的老师免费观看完整版| 男女啪啪激烈高潮av片| 黄片无遮挡物在线观看| 成人国产麻豆网| 爱豆传媒免费全集在线观看| 久久久久久久午夜电影| 免费观看性生交大片5| 插阴视频在线观看视频| 日韩 亚洲 欧美在线| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| 成人一区二区视频在线观看| 高清视频免费观看一区二区 | 深爱激情五月婷婷| 欧美激情在线99| 在现免费观看毛片| 国产亚洲一区二区精品| 亚洲不卡免费看| 老师上课跳d突然被开到最大视频| 免费少妇av软件| 网址你懂的国产日韩在线| 日韩欧美 国产精品| 国产一区二区三区av在线| 亚洲自偷自拍三级| 我要看日韩黄色一级片| 亚洲综合精品二区| 国产精品国产三级国产专区5o| 蜜桃久久精品国产亚洲av| 国产精品麻豆人妻色哟哟久久 | 国产 亚洲一区二区三区 | 麻豆国产97在线/欧美| 日日干狠狠操夜夜爽| 久久久色成人| 又爽又黄无遮挡网站| 国产亚洲av片在线观看秒播厂 | 国产一级毛片七仙女欲春2| 久久99精品国语久久久| 高清日韩中文字幕在线| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久精品电影小说 | 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 国产成人精品久久久久久| 黄片wwwwww| 欧美另类一区| 午夜福利在线观看吧| 久久精品夜色国产| 亚洲av电影不卡..在线观看| 黄色欧美视频在线观看| 看免费成人av毛片| 国产精品综合久久久久久久免费| 3wmmmm亚洲av在线观看| 亚洲av成人av| 欧美激情在线99| 在线免费十八禁| 熟妇人妻不卡中文字幕| 极品教师在线视频| 成年av动漫网址| 联通29元200g的流量卡| 人人妻人人看人人澡| 夜夜爽夜夜爽视频| 久久久精品免费免费高清| 成年女人在线观看亚洲视频 | 国产成人精品福利久久| 亚洲乱码一区二区免费版| 日韩三级伦理在线观看| 六月丁香七月| 三级国产精品片| 中文字幕久久专区| 亚洲最大成人中文| 国产精品综合久久久久久久免费| 日韩伦理黄色片| 国产精品精品国产色婷婷| 中文乱码字字幕精品一区二区三区 | 国产乱人偷精品视频| 人妻一区二区av| 久久久久久九九精品二区国产| 日韩不卡一区二区三区视频在线| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影小说 | 亚洲成人av在线免费| 日韩中字成人| 国产综合精华液| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 亚洲最大成人中文| 午夜福利高清视频| 久久99热这里只有精品18| 国产精品女同一区二区软件| 成人性生交大片免费视频hd| 国产久久久一区二区三区| 亚洲色图av天堂| 久久国产乱子免费精品| 一个人免费在线观看电影| 干丝袜人妻中文字幕| 国产日韩欧美在线精品| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 亚洲精品久久午夜乱码| 极品教师在线视频| 国产探花在线观看一区二区| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 一级毛片久久久久久久久女| 女人被狂操c到高潮| 亚洲欧美日韩东京热| 午夜福利在线在线| 有码 亚洲区| 男人和女人高潮做爰伦理| 18禁动态无遮挡网站| 国产精品不卡视频一区二区| 成人毛片60女人毛片免费| 日日撸夜夜添| 在线观看免费高清a一片| 干丝袜人妻中文字幕| 国产精品人妻久久久久久| 两个人的视频大全免费| 免费av毛片视频| 久久6这里有精品| 欧美3d第一页| kizo精华| 男女啪啪激烈高潮av片| 久久久久久久久久黄片| 少妇裸体淫交视频免费看高清| 能在线免费观看的黄片| 午夜久久久久精精品| 久久鲁丝午夜福利片| 黄片无遮挡物在线观看| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 欧美变态另类bdsm刘玥| 你懂的网址亚洲精品在线观看| 最近最新中文字幕大全电影3| 色5月婷婷丁香| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 最近手机中文字幕大全| 国产久久久一区二区三区| 看免费成人av毛片| 美女大奶头视频| 我要看日韩黄色一级片| 最近的中文字幕免费完整| 国产激情偷乱视频一区二区| 国产免费一级a男人的天堂| 日韩大片免费观看网站| 欧美成人一区二区免费高清观看| 如何舔出高潮| 国产探花极品一区二区| eeuss影院久久| 国模一区二区三区四区视频| 一级av片app| 十八禁网站网址无遮挡 | 少妇高潮的动态图| 婷婷色综合大香蕉| 视频中文字幕在线观看| 国产麻豆成人av免费视频| av专区在线播放| 成人毛片a级毛片在线播放| 国产亚洲91精品色在线| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 国产男女超爽视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日日干狠狠操夜夜爽| 国产精品久久久久久久久免| 免费看光身美女| 精品久久久久久久久亚洲| 日本爱情动作片www.在线观看| 人妻系列 视频| 国产精品99久久久久久久久| 五月伊人婷婷丁香| 69av精品久久久久久| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 男女那种视频在线观看| 国内精品美女久久久久久| 中文精品一卡2卡3卡4更新| 国产人妻一区二区三区在| 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| 欧美另类一区| 麻豆av噜噜一区二区三区| 不卡视频在线观看欧美| 黄片wwwwww| 六月丁香七月| 国产色爽女视频免费观看| 亚洲欧美一区二区三区黑人 | 男女那种视频在线观看| av.在线天堂| xxx大片免费视频| 人妻少妇偷人精品九色| 欧美日本视频| 国产一区二区三区av在线| 女人十人毛片免费观看3o分钟| 免费黄网站久久成人精品| 国产高清不卡午夜福利| 搡女人真爽免费视频火全软件| 大片免费播放器 马上看| 十八禁国产超污无遮挡网站| 中文天堂在线官网| 青春草亚洲视频在线观看| 一级av片app| 国产精品.久久久| 美女黄网站色视频| 中文乱码字字幕精品一区二区三区 | 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 成人午夜高清在线视频| 亚洲人成网站在线播| 欧美区成人在线视频| 久久这里只有精品中国| 午夜老司机福利剧场| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 久久久久九九精品影院| 国产午夜精品论理片| 亚州av有码| 水蜜桃什么品种好| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件| 高清欧美精品videossex| 波多野结衣巨乳人妻| 深夜a级毛片| 久久国内精品自在自线图片| 中文字幕av在线有码专区| 91av网一区二区| 能在线免费看毛片的网站| 国产欧美日韩精品一区二区| 日本与韩国留学比较| 午夜福利视频精品| 欧美一级a爱片免费观看看| 日产精品乱码卡一卡2卡三| 亚洲精品影视一区二区三区av| 大又大粗又爽又黄少妇毛片口| av播播在线观看一区| 一区二区三区免费毛片| 中文字幕久久专区| 少妇人妻一区二区三区视频| 成年人午夜在线观看视频 | 亚洲欧美一区二区三区黑人 | 日本熟妇午夜| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 插逼视频在线观看| 一个人免费在线观看电影| 真实男女啪啪啪动态图| 国产极品天堂在线| 一夜夜www| 国产大屁股一区二区在线视频| 国产爱豆传媒在线观看| 欧美激情在线99| 一级爰片在线观看| 日日啪夜夜撸| 午夜爱爱视频在线播放| 亚洲经典国产精华液单| 搡老乐熟女国产| 亚洲激情五月婷婷啪啪| videossex国产| 中文字幕av在线有码专区| 国产av码专区亚洲av| 国产黄片美女视频| 午夜激情久久久久久久| 欧美丝袜亚洲另类| 欧美+日韩+精品| 亚洲18禁久久av| 国产精品蜜桃在线观看| 国产午夜福利久久久久久| 一夜夜www| 国产欧美日韩精品一区二区| av免费观看日本| 少妇人妻精品综合一区二区| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级 | 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片| 80岁老熟妇乱子伦牲交| 搡女人真爽免费视频火全软件| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 亚洲18禁久久av| 国产中年淑女户外野战色| 永久网站在线| 美女xxoo啪啪120秒动态图| 欧美97在线视频| 色综合亚洲欧美另类图片| 亚洲精品成人av观看孕妇| 精品不卡国产一区二区三区| 观看美女的网站| 成人一区二区视频在线观看| 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 91精品伊人久久大香线蕉| 欧美日本视频| 丰满人妻一区二区三区视频av| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 啦啦啦中文免费视频观看日本| 欧美一级a爱片免费观看看| 精华霜和精华液先用哪个| 亚洲精品成人av观看孕妇| 永久免费av网站大全| 欧美性猛交╳xxx乱大交人| 欧美xxxx性猛交bbbb| 免费无遮挡裸体视频| 久久精品综合一区二区三区| 久久久a久久爽久久v久久| 中文天堂在线官网| 综合色av麻豆| 国产综合懂色| 91aial.com中文字幕在线观看| 日韩强制内射视频| 精品亚洲乱码少妇综合久久| 国产亚洲5aaaaa淫片| 亚洲欧美清纯卡通| 看免费成人av毛片| 国产高清国产精品国产三级 | 日本-黄色视频高清免费观看| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 欧美bdsm另类| 午夜爱爱视频在线播放| 插逼视频在线观看| 一夜夜www| 久久久精品免费免费高清| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| 婷婷色麻豆天堂久久| 国产精品熟女久久久久浪| 一级毛片黄色毛片免费观看视频| 国精品久久久久久国模美| 中文字幕av在线有码专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久精品电影| 麻豆av噜噜一区二区三区| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 少妇的逼水好多| 国产男人的电影天堂91| 午夜久久久久精精品| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| 街头女战士在线观看网站| 麻豆av噜噜一区二区三区| 亚洲精品自拍成人| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 成人无遮挡网站| 国产精品一区二区在线观看99 | 97精品久久久久久久久久精品| 人妻夜夜爽99麻豆av| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版 | 高清在线视频一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久v下载方式| 深夜a级毛片| 久久99热6这里只有精品| 亚洲精品视频女| 99热全是精品| 深夜a级毛片| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久精品电影| 伊人久久国产一区二区| 精品久久久久久电影网| 亚洲精品一区蜜桃| 色综合亚洲欧美另类图片| 又爽又黄a免费视频| 久久久成人免费电影| 国产乱人偷精品视频| 日韩不卡一区二区三区视频在线| 嘟嘟电影网在线观看| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 国产成人aa在线观看| 成人毛片a级毛片在线播放| 国产精品嫩草影院av在线观看| 欧美三级亚洲精品| 亚洲va在线va天堂va国产| .国产精品久久| 亚洲婷婷狠狠爱综合网| 女人久久www免费人成看片| 欧美激情在线99| 国产精品一区二区三区四区免费观看| 国产综合精华液| 欧美人与善性xxx| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 一级毛片久久久久久久久女| 尾随美女入室| 少妇裸体淫交视频免费看高清| 亚洲精品一二三| 舔av片在线| 久久久欧美国产精品| 日韩强制内射视频| 国产精品久久视频播放| 麻豆成人av视频| 成人漫画全彩无遮挡| 91狼人影院| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡 | a级毛片免费高清观看在线播放| 日韩电影二区| 久久久久久国产a免费观看| 国产在线男女| 中国国产av一级| 免费av观看视频| 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 欧美性猛交╳xxx乱大交人| 亚洲精华国产精华液的使用体验| 欧美另类一区| 在线播放无遮挡| 综合色丁香网| 成人高潮视频无遮挡免费网站|