• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    2017-01-11 01:49:52JitendraKumarManojKumarShashankGuptaVasimAhmedManuBhambiRajeshPandeyNarSinghChauhan
    Genomics,Proteomics & Bioinformatics 2016年6期

    Jitendra KumarManoj KumarShashank GuptaVasim Ahmed Manu BhambiRajesh PandeyNar Singh Chauhan*g

    1Department of Biochemistry,Maharshi Dayanand University,Rohtak 124001,India

    2Ayurgenomics Unit,Translational Research and Innovative Science ThRough Ayurgeomics,Council of Scientifc and Industrial Research,Institute of Genomics and Integrative Biology,New Delhi 110020,India

    METHOD

    An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Jitendra Kumar1,a,Manoj Kumar1,b,Shashank Gupta1,c,Vasim Ahmed1,d, Manu Bhambi1,e,Rajesh Pandey2,f,Nar Singh Chauhan1,*,g

    1Department of Biochemistry,Maharshi Dayanand University,Rohtak 124001,India

    2Ayurgenomics Unit,Translational Research and Innovative Science ThRough Ayurgeomics,Council of Scientifc and Industrial Research,Institute of Genomics and Integrative Biology,New Delhi 110020,India

    Metagenomic DNA

    extraction;

    Gut microbiome;

    Human feces;

    16S rRNA

    Microbes are ubiquitously distributed in nature,and recent culture-independent studies have highlighted the signifcance of gut microbiota in human health and disease.Fecal DNA is the primary source for the majority of human gut microbiome studies.However,further improvement is needed to obtain fecal metagenomic DNA with suffcient amount and good quality but low host genomic DNA contamination.In the current study,we demonstrate a quick,robust,unbiased, and cost-effective method for the isolation of high molecular weight(>23 kb)metagenomic DNA(260/280 ratio>1.8)with a good yield(55.8±3.8 ng/mg of feces).We also confrm that there is very low human genomic DNA contamination(eubacterial:human genomic DNA marker genes=227.9:1)in the human feces.The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover,16S rRNA gene analysis indicated that compared to other DNA extraction methods tested,the fecal metagenomic DNA isolated with current methodology retains species richness

    Introduction

    and does not show microbial diversity biases,which is further confrmed by qPCR with a known quantity of spike-in genomes.Overall,our data highlight a protocol with a balance between quality, amount,user-friendliness,and cost effectiveness for its suitability toward usage for cultureindependent analysis of the human gut microbiome,which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

    Isolation of metagenomic DNA from fecal samples with current method

    Humans live in close association with microbes which act as a constituent organ[1,2].The total number of microbes residing in the human body,especially in the gut,outnumbers that of human cells[3].A vast array of recent studies has identifed many microbial enterotypes in the human gut[4-10]and their potential roles in immunity[5,7,8],development[8],digestion [9],and other functions[10].

    Majority of the studies have used 16S rRNA gene sequencing to understand the community structure,composition,and functional diversity of the human gut microbiome [1-4].The successofthese culture-independentstudies depends primarily on the quality and quantity of metagenomic DNA isolated from the given samples[11-13].Therefore,isolation of metagenomic DNA with a good quality from a heterogeneous source like human feces has been a challenging task.

    Human feces are complex due to the presence of fbers, microbes,undigested particles,nucleases,and human cells [14].Removal of fbers and undigested particles from feces is diffcult,which in turn affects overall quality and quantity of metagenomic DNA being isolated[14-16].Moreover,the presence of these impurities also compromises effcient lysis of microbial cells.Many microbes elude complete lysis,resulting in an uneven contribution of metagenomic DNA and eventually compromised microbial diversity[11,17].Additionally, human genomic DNA remnants in metagenomic DNA affect the metagenomic sequence data output,thereby increasing per base sequencing cost[6].To overcome these challenges, many metagenomic DNA extraction protocols are being standardized,which include phenol/chloroform enzymatic lysis and freeze thaw[11,16-22].These kits have improved the quality of metagenomic DNA.However,great concerns remain pertaining to microbial diversity biasness and human genomic DNA contamination[12,17,20].The cost per sample,amount of sample,and associated impurities are other issues which may be improved upon.In the current study,we intend to overcome these limitations and provide a faster,robust,and economical metagenomic DNA extraction method with a good quality and quantity.

    Methods

    Fresh human fecal samples were collected from healthy individuals into a sterile container and stored at-86°C until use.Human ethical guidelines were followed strictly before engaging individuals for sample collection.The study has been conducted after ethical clearance from human ethics committee of Maharshi Dayanand University,Rohtak,Haryana, India.

    The current methodology comprises two steps:(1)purifcation of the microbial cells from fecal impurities and(2)lysis of microbial cells to obtain metagenomic DNA with high molecular weight.

    At the frst step,fresh feces(100 mg)were weighed into a sterile microcentrifuge tube for isolation of purifed microbial cells.Microbial cells were sequentially washed with normal saline solution(0.9%NaCl solution)and phosphate-buffered saline(PBS;pH 7.4).The washing steps were optimized for the recovery of a purifed bacterial pellet to obtain quality fecal metagenomic DNA for the downstream studies.In 5 sets of replicates,100 mg of feces were resuspended in 1 ml of normal saline solution by vortexing for 30 s and then centrifuged at ambient room temperature(RT)for 2 min with different speed of 1000 rpm(72×g),2000 rpm(287×g),3000 rpm(645×g), 4000 rpm(1147×g),and 5000 rpm(1792×g),respectively. The resulting supernatants were subjected to microscopic examination for the presence of fbers and insoluble impurities. Recovered supernatant was centrifuged again at 10,000 rpm (7168×g)for 1 min at ambient room temperature to collect microbial pellet for downstream processing.Microbial pellet from all replicates was subsequently washed with 1 ml of PBS(pH 7.4)for centrifugation with different speeds as described above.The resulting supernatants were subjected to centrifugation again at 10,000 rpm(7168×g)for 1 min to recover microbial pellet,which was used for metagenomic DNA isolation at the next step.

    At the second step,the purifed microbial pellet was resuspended in 500 μl of lysis buffer containing 1%(w/v) cetyl trimethyl ammonium bromide(CTAB),100 mM of ethylenediaminetetraacetic acid(EDTA),1.5 M of NaCl, 100 mM of Na3PO4,and 100 mM of Tris-HCl(pH 8.0).After adding 2 μl of proteinase K(20 mg/ml),the mixture was incubated for 10 min at 37°C with gentle shaking at 100 rpm in orbital shaker incubator.Afterward,sodium dodecyl sulfate (SDS)was added with a fnal concentration of 1%and the incubation continued for another 20 min at 65°C with intermittent shaking. The lysate was centrifuged at 13,000 rpm (12,114×g) for 5 min at ambient room temperature.The resulting supernatant was collected and mixed with an equal volume of saturated phenol:chloroform: isoamylalcohol(25:24:1),which isthen subjected to centrifugation at 10,000 rpm(7168×g)for 5 min at RT.The aqueous phase was collected and metagenomic DNA was precipitated with 0.6 volume of isopropanol and pelleted by centrifugation at 13,000 rpm(12,114×g)for 5 min.After washing twice with 70%ethanol,the resulting DNA was dried and fnally dissolved into a 50 μl of 1×Tris-EDTA buffer (pH 8.0).

    The qualitative and quantitative analysis of the metagenomic DNA was performed by agarose gel electrophoresis, restriction endonucleasedigestion (Sau3A1),NanoQuant (Tecan Group,Mannedorf,Switzerland)estimation,and Qubit?dsDNA HS Assay Kit(Life Technologies,Carlsbad, CA).Metagenomic DNA recovered from all replicates was compared for qualitative and quantitative parameters to obtain optimized condition for metagenomic DNA isolation from human feces.The optimized method is outlined in Figure 1 and was then used to isolate the metagenomic DNA from 10 one-month-old frozen feces stored at-86°C and 50 random fecal samples(including both fresh and frozen samples)to evaluate its robustness.

    Isolation of metagenomic DNA from fecal samples with commercial methods/kits

    Metagenomic DNA was isolated from fresh or frozen human fecal samples using 4 commercial kits,including Power Fecal? DNA Isolation Kit(MO BIO Laboratories,Carlsbad,CA) [11](referred as method A hereafter),Extract MasterTMFecal DNA Extraction Kit(Epicentre,Madison,WI)[21](referred as method B hereafter),Favor PrepTMStool DNA isolation Kit(Favorgen Biotech,Ping-Tung,Taiwan,China)(referred as method C hereafter),and QIAamp DNA Stool Kit (QIAGE,Hilden,Germany)(referred as method D hereafter) as instructed by the respective manufacturers.The quality and quantity of fecal metagenomic DNA were assessed as mentioned above.

    qPCR amplifcation

    The qPCRs were performed on a 7500 Fast Real Time PCR system (ABI,Life Technologies,Carlsbad,CA)using 2×KAPA SYBR Fast qPCR master mix(universal)from KAPA Biosystems(Wilmington,MA).The 20 μl reaction mixture contained 1 μl of metagenomic DNA/human genomic DNA(30 ng/μl),7.5 μl of 2×SYBR Green,1 μl of primer mix(forward and reverse primer of 0.5 mM),0.4 μl of master mix(High Rox),and 5.1 μl of nuclease-free water.Primers used include human MUC5B-specifc primers and eubacterial 16S rRNA gene-specifc primers(Table S1).The experiment was performed in triplicate using human genomic DNA as control.The qPCRs were performed with holding stage at 95°C for 20 s,40 cycles of 95°C for 30 s,and 60°C and fnal melt curve stage with continuous mode at 95°C for 15 s,60°C for 60 s,95°C for 15 s,and 60°C for 15 s.Melt curve analysis of the primers confrmed the high effciency of the primers andamplifed product generated during the reaction.The relative quantifcation was carried out using the 2-ΔΔCTmethod.

    Figure 1 Workfow for fecal metagenomic DNA extraction using the current method

    Effcacy of current methodology was further validated with fecal samples spiked with Escherichia coli DH10B(Invitrogen, Carlsbad,CA),Bacillus subtilis(MTCC-2057,Chandigarh, India),and Aspergillus niger(MTCC-514,Chandigarh,India). The effcacy of current methodology was analyzed by quantitatively comparing the presence of marker genes of 16S rRNA and internal transcribed spacer(ITS)in DNA extracted using current methodology from spiked stool samples and DNA extracted from respective pure cultures.All DNA quantifcation experiments were performed with host-specifc primers including 16S rRNA gene primers (16S120_FP and 16S345_RP)for microbes and ITS gene primers(ITS 1F and ITS 4B)for fungus[23]using qPCR with aforementioned PCR settings.

    Pyrosequencing and sequence analysis of 16S rRNA gene

    The 16S rRNA gene was amplifed from metagenomic DNAs extracted with different methodologies following optimized PCR conditions[24].The resulting amplicons were analyzed using agarose gel electrophoresis and quantifed with Qubit? dsDNA HS Assay Kit.

    The amplifed 16S rRNA gene from the metagenomic DNA isolated with our methodology and with method A were also sequenced with Roche 454 GS FLX+system,following the manufacturer’srecommendations.The16S rRNA gene sequences generated and used in the current study were submitted as a NCBI Bioproject(Accession ID:PRJNA295000). Subsequently,Quantitative Insights Into Microbial Ecology (QIIME)pipeline was implemented for pyrosequencing data analysis[24],along with 16S rRNA gene sequence data obtained from the Human Microbiome Project(HMP)[25]. Variability analysis of 16S rRNA gene sequences was performed using QIIME statistical tools[24-26].

    Results and discussion

    Isolation of metagenomic DNA from human feces

    A number of efforts to optimize a methodology for metagenomic DNA isolation from feces have been undertaken [11,13,15,20].Although progress has been made in this regard, problems of limited applicability(e.g.,microbial diversity studies only)and acceptability due to their complex process,poor metagenomic DNA quality,host genomic DNA contamination,low yield,and high cost have still left scope for a methodology to overcome the shortcomings[11,17-21].

    The current methodology is a two-step process with handson time of 80-90 min.At the frst step,various large size insoluble impurities like undigested food particles and dietary fbers were removed to collect a clean translucent microbial pellet. Purifcation of microbial pellet would enable effcient lysis of microbial cells and a better DNA recovery.In the second step, the microbial cells were treated with lysis buffer and proteinase for microbial cell lysis to achieve a high yield of metagenomic DNA.The microscopic examination showed that feces washing and following centrifugation at3000 rpm (645×g) removed majority of insoluble impurities with a minimum microbial loss.While washing and following centrifugation at 1000 rpm(72×g)and 2000 rpm(287×g)enabled maximum microbial recovery with abundant insoluble impurities, washing and following centrifugation at 4000 rpm(1147×g) and 5000 rpm(1792×g)have removed all impurities with huge microbial loss.Among all replicates,feces washing and following centrifugation at 3000 rpm(645×g)yielded good quality of purifed microbial pellet,and subsequently metagenomic DNA with high molecular weight free from molecular inhibitors of comparable yield(Table S2).

    The DNA yield was 55.80±3.80 ng/mg of feces(Table 1). Spectrometric analysis using NanoQuant showed 260/280 ratio of 1.83±0.02.Qualitative analysis with agarose gel electrophoresis also confrmed good integrity for DNA with size>23 kb(Figure S1)and negligible RNA presence(Figure 2A).

    The robustness of the protocol was also confrmed using one-month-old frozen fecal sample stored at-86°C with a yield of 40.00±5.00 ng/mg of feces.The protocol was repeated for an independent set of 50 non-redundant fecal samples with varying texture and consistency.The quality (260/280 ratio of 1.8-1.9)and quantity(47.5±2.5 ng/mg of feces)was consistent within all replicates(Table 1).

    In summary,current methodology has been successfully used to isolate the metagenomic DNA from one-month-old frozen fecal sample stored at-86°C with a minimal effect on yield and quality,which was a challenge as per reported metagenomic DNA isolation studies[13,14,20-22].

    Table 1 Qualitative and quantitative analysis of human fecal metagenomic DNA extraction using different methods

    Figure 2 Gel electrophoresis of human fecal metagenomic DNA isolated with different methods

    Comparative analysis with commercial methods/kits

    To evaluate the relative performance of our current method,we compared it with other commercially available metagenomic DNA isolation kits for human feces[11,16,21].As instructed by kit manufacturers,various defned amount of fecal sample were used for commercial methods A,B,C,and D.Notably, low yields of DNA were obtained using these methods in comparison to that using current method(Table 1).Gel electrophoresis analysis indicated poor DNA yield with method A,B,and D,while RNA contamination was observed in DNA isolated with method C(Figure 2A).Similarly,spectrometric analysis showed a lower yield and compromised 260/280 ratios for DNA extracted using methods A-D (Table 1).Moreover,these methods did not work well for extracting metagenomic DNA from one-month-old stored fecal sample(Table 1).We failed to extract metagenomic DNA from frozen feces using methods A-C,while a low amount of DNA was recovered using method D.On the other hand,although with a reduced yield when compared to using fresh feces,more signifcant DNA with decent 260/280 ratio was recovered when using our method to extract DNA from frozen feces.In contrast,a poor quality of metagenomic DNA with negligible output was observed with one-month-old frozen feces at-86°C with all other methods tested(Figure 2B).

    The metagenomic DNA isolated from fresh human fecal samples with current method and other commercial methods was further analyzed for contamination of host genomic DNA using qPCR.The amplifcation ofeubacterial and human genomic DNA marker genes,16S and MUC5B, indicated a huge difference in the copy number of eubacterial:human genes(227.9:1)in the metagenomic DNA isolated with current method.However,the eubacterial:human ratios were compromised for the fecal metagenomic DNA isolated using commercial methods(213:1 for method A,212:1 for method B,and 20.143:1 for method C,220.8:1 for method D). Similar observation on host genomic DNA contamination in fecal metagenomic DNA was recorded during the HMP study using method A[6].

    The cycle threshold(Ct)value is used for absolute copy number quantifcation of a target gene in qPCR.In general, lower Ct value indicates higher copy number of target gene, while higher Ct value means low copy number of target gene. A low Ct value of 6.780±0.231 was observed for eubacterial 16S,and of 34.740±0.374 for human-specifc MUC5B using metagenomic DNA isolated with current method.Metagenomic DNA isolated with other methods showed varied Ct values:19.310±0.185(method A),22.010±0.089(method B),28.130±0.821(method C),and 11.780±0.295(method D)for 16S gene,respectively,while Ct values of 32.690 ±0.332(method A),34.090±0.166(method B),28.270 ±3.426(method C),and 32.630±0.647(method D)were observed forhuman-specifcMUC5B gene,respectively. Lower Ct values of other methods for human-specifc MUC5B gene compared to our method indicated few human DNA remnants in the metagenomic DNA isolated with current protocol, refecting superior representation of the eubacterial-specifc metagenomic DNA in comparison to the limited presence of human genomic DNA in metagenomic DNA extracted with current methodology.

    qPCR analysis of known genome spike-in experiments was further performed for validation of the effcacy and unbiased cellular lysis of current methodology.qPCR analysis indicated a good recovery of 79.85±12.16%for E.coli DH10B genomic DNA in fecal samples spiked with E.coli DH10B and 72.09±5.02%for B.subtilis genomic DNA in fecal samples spiked with B.subtilis.However,a slightly lower recovery (36.35±9.49%)was observed for A.niger genomic DNA in fecal samples spiked with A.niger.A good amplifcation observed with the metagenomic DNA isolated using current method indicates the fecal metagenomic DNA isolated with current methodology was free from the impurities that could interfere the reaction[17,19,21].

    Evaluation of current method for human microbiome studies by pyrosequencing

    To further evaluate the applicability of the isolated DNA samples for sequencing analysis,the 16S rRNA gene(V1-V4 region)was amplifed from metagenomic DNA isolated using our protocol and method A after column purifcation.These amplicons were subjected to sequencing analysis using Roche 454 FLX+.As a result,we obtained 57,689 sequencing reads with an average read length of~530 bp for the 4 samples tested.These sequences were quality fltered(>Q30)to remove ambiguous and chimeric sequences.Finally,54,262 highquality reads were retained for the following downstream analysis.

    As shown in Table 2,more 16S rRNA gene sequencing reads were recovered for DNA isolated using method A than using current method.The reads were processed using QIIME de novo clustering pipeline to get the operational taxonomic units(OTUs).Similarly,we found that more OTUs were detected for DNA isolated using method A than using current method(Table 2).We then estimated the species richness by normalizing the read counts with the sequence value(-e) based on the minimum number of high quality sequencing reads for each sample,which is 6300 in the current study, and analyzed the total alpha diversity.Our results showed that despite fewer reads,more species were observed for DNA isolated using current method than using method A.An average number of 611 and 635 microbial species were observed in samples H1 and H2,respectively,which were isolated using the current method,in comparison to 515 and 496 microbial species from the same source feces with DNA isolated using method A(Table 2).In the meantime,we also noticed a higher Shannon diversity index.Taken together,these data indicate that even for the same fecal samples,sequencing outcomes can be greatly affected by the metagenomic DNA isolation methods used[12].

    Number of observed species relative to the increasing number of 16S rRNA gene sequencing reads obtained was also analyzed to obtain the identifcation rate of new OTUs (Figure 3A).The identifcation rate of microbial phylotypes was slightly higher for 16S sequencing reads generated from metagenomic DNA extracted with current method than method A.These results highlight the usefulness of the current method to capture species richness even from lower number of sequencing reads.More observed species with better identifcation rate can be obtained from metagenomic DNA isolated using current methodology(Figure 3A).

    Biasness has been reported between microbial diversity of a host sample and its metagenomic DNA extraction method [12,22].To test whether there exist such biases in current methodology,a β diversity analysis was performed between the microbial diversities obtained from DNA isolated with current method,HMP data,and method A.The β diversities show positioning of the samples based on their microbial diversities.Principal coordinate analysis(PCoA)plots were generated from 16S rRNA gene sequencing reads(Figure 3B). Compared to method A,signifcant variability of interindividual microbial diversity was observed for the current method.It indicates that the current methodology performed better with respect to unbiased lysis of microbial cells and contribution into the total metagenomic DNA pool.

    Overall,the results we presented here highlight the effciency of the current protocol to achieve better yield and quality of the gut metagenomic DNA while simultaneously retaining the sample enrichment with respect to the bacterial species present in the human gut.The current protocol has not been tested for other host species.Different host species are of specifc diet pattern and life style,which in turn affect the constituents of the feces.Therefore,the protocol presented here may warrant specifc but minor adjustments to account for species-specifc gut metagenomic DNA isolation.For most of the species,the requirement may be met by maneuvering the relative concentration of NaCl and the centrifugation conditions which are important for purifying microbial cells from the background impurities.Given the user-friendliness of the current protocol,this may be optimized at individual level without great diffculties.

    Authors’contributions

    JK,MK,and VA performed sample collection,DNA isolation,and experiment optimization.RP performed real-timePCR analysis and 16S rRNA gene sequencing.SG carried out sequence analysis.MB and NSC designed the study and drafted the manuscript.All authors read and approved the fnal manuscript.

    Table 2 Microbial diversity analysis of the 16S rRNA gene sequencing reads

    Figure 3 Diversity analyses of 16S rRNA gene sequencing reads

    Competing interests

    The authors have declared that there are no competing interests.

    Acknowledgments

    This study was supported by the Council of Scientifc and Industrial Research(CSIR)-sponsored research scheme[Grant No.60(0099)/11/EMRII]and the Major Research Project of the University Grants Commission(UGC)(Grant No.41-1256/2012 SR),India.MB and MK were supported by the fellowships,respectively,from the Department of Biotechnology (DBT)and the Department of Science and Technology(DST), India.

    Supplementary material

    Supplementary material associated with this article can be found,in the online version,at http://dx.doi.org/10.1016/j. gpb.2016.06.002.

    [1]Bik EM.Composition and function of the human-associated microbiota.Nutr Rev 2009;67:S164-71.

    [2]Eckburg PB,Bik EM,Bernstein CN,Purdom E,Dethlefsen L, Sargent M,et al.Diversity of the human intestinal microbial fora. Science 2005;308:1635-8.

    [3]Fierer N,Ferrenberg S,Flores GE,Gonzalez A,Kueneman J. From animalcules to an ecosystem:application of ecological concepts to the human microbiome.Annu Rev Ecol Evol Syst 2012;43:137-55.

    [4]Gill SR,Pop M,Deboy RT,Eckburg PB,Turnbaugh PJ. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-9.

    [5]Human Microbiome Project Consortium.Structure,function and diversity of the healthy human microbiome. Nature 2012;486:207-14.

    [6]Human Microbiome Project Consortium.A framework for human microbiome research.Nature 2012;486:215-21.

    [7]Robinson CJ,Bohannan BJ,Young VB.From structure to function:the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 2010;74:453-76.

    [8]Spor A,Koren O,Ley R.Unravelling the effects of the environment and host genotype on the gut microbiome.Nat Rev Microbiol 2011;9:279-90.

    [9]Zoetendal EG,Vaughan EE,de Vos WM.A microbial world within us.Mol Microbiol 2006;59:1639-50.

    [10]Mandal RS,Saha S,Das S.Metagenomic surveys of gut microbiota.Genomics Proteomics Bioinformatics 2015;13:148-58.

    [11]Andersen AW,Bahl MI,Carvalho V,Kristiansen K,Ponten TS, Gupta R,et al.Choice of bacterial DNA extraction method from fecal material infuences community structure as evaluated by metagenomic analysis.Microbiome 2014;2:2-19.

    [12]Goodrich JK,Di Rienzi SC,Poole AC,Koren O,Walters WA, Caporaso JG,et al.Conducting a microbiome study.Cell 2014;158:250-62.

    [13]Yuan S,Cohen DB,Ravel J,Abdo Z,Forney LJ.Evaluation of methods for the extraction and purifcation of DNA from the human microbiome.PLoS One 2012;7:e33865.

    [14]McOrist AL,Jackson M,Bird AR.A comparison of fve methods for extraction of bacterial DNA from human faecal samples.J Microbiol Methods 2002;50:131-9.

    [15]Monteiro L,Bonnemaison D,Vekris A,Petry KG,Bonnet J, Vidal R,et al.Complex polysaccharides as PCR inhibitors in feces:Helicobacter pylori model.J Clin Microbiol 1997;35:995-8.

    [16]Yu Z,Morrison M.Improved extraction of PCR-quality community DNA from digesta and fecal samples.Biotechniques 2004;36:808-12.

    [17]Henderson G,Cox F,Kittelmann S,Miri VH,Zethof M,Noel SJ, et al.Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.PLoS One 2013;8:e74787.

    [18]Clement BG,Kitts CL.Isolating PCR-quality DNA from human feces with a soil DNA kit.Biotechniques 2000;28:640-6.

    [19]Li M,Gong J,Cottrill M,Yu H,de Lange C,Burton J,et al. Evaluation of QIAGEN?DNA Stool Mini Kit for ecological studies of gut microbiota.J Microbiol Methods 2003;54:13-20.

    [20]Nechvatal JM,Ram JL,Basson MD,Namprachan P,Niec SR, Badsha KZ,et al.Fecal collection,ambient preservation,and DNA extraction for PCR amplifcation of bacterial and human markers from human feces.J Microbiol Methods 2008;72:124-32.

    [21]Thornton CG,Passen S.Inhibition of PCR amplifcation by phytic acid,and treatment of bovine fecal specimens with phytase to reduce inhibition.J Microbiol Methods 2004;59:43-52.

    [22]Kuczynski J,Lauber CL,Walters WA,Parfrey LW,Clemente JC, Gevers D,et al.Experimental and analytical tools for studying the human microbiome.Nat Rev Genet 2012;13:47-58.

    [23]Gardes M,Bruns TD.ITS primers with enhanced specifcity for basidiomycetes-application to the identifcation of mycorrhizae and rusts.Mol Ecol 1993;2:113-8.

    [24]Morowitz MJ,Denef VJ,Costello EK,Thomas BC,Poroyko V, Relman DA,et al.Strain-resolved community genomic analysis of gut microbial colonization in a premature infant.Proc Natl Acad Sci U S A 2011;108:1128-33.

    [25]Caporaso JG,Kuczynski J,Stombaugh J,Bittinger K,Bushman FD,Costello EK,et al.QIIME allows analysis of high-throughput community sequencing data.Nat Methods 2010;7:335-6.

    [26]Edgar RC,Haas BJ,Clemente JC,Quince C,Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194-200.

    Received 4 January 2016;revised 7 June 2016;accepted 15 June 2016 Available online 23 November 2016

    Handled by Kang Ning

    *Corresponding author.

    E-mail:nschauhan@mdurohtak.ac.in(Chauhan NS).

    aORCID:0000-0003-4222-446X.

    bORCID:0000-0002-6872-4975.

    cORCID:0000-0001-8839-7003.

    dORCID:0000-0002-1360-6023.

    eORCID:0000-0002-5276-6548.

    fORCID:0000-0002-4404-8327.

    gORCID:0000-0003-4546-9358.

    Peer review under responsibility of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    http://dx.doi.org/10.1016/j.gpb.2016.06.002 1672-0229?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Beijing Institute of Genomics,Chinese Academy of Sciences and Genetics Society of China.

    This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    欧美av亚洲av综合av国产av| 欧美av亚洲av综合av国产av| 女人高潮潮喷娇喘18禁视频| 在线天堂中文资源库| 亚洲七黄色美女视频| 一区在线观看完整版| 婷婷丁香在线五月| 在线观看舔阴道视频| 精品福利观看| 一a级毛片在线观看| 亚洲av电影在线进入| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频| 精品少妇一区二区三区视频日本电影| 欧美激情久久久久久爽电影 | 人人妻人人澡人人看| 极品人妻少妇av视频| 精品久久蜜臀av无| 桃色一区二区三区在线观看| 欧美成人免费av一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲情色 制服丝袜| 99国产精品99久久久久| 欧美精品啪啪一区二区三区| 国产一区二区三区视频了| 自线自在国产av| 久久国产乱子伦精品免费另类| 国产精品久久久av美女十八| 亚洲国产精品sss在线观看| 亚洲国产看品久久| 国产精品久久久久久亚洲av鲁大| 久9热在线精品视频| 免费女性裸体啪啪无遮挡网站| 在线观看免费视频日本深夜| 又黄又粗又硬又大视频| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点 | 亚洲激情在线av| 国产精品免费一区二区三区在线| 国产免费av片在线观看野外av| 美女大奶头视频| 在线免费观看的www视频| 亚洲精品国产精品久久久不卡| 久久久久久国产a免费观看| 日韩欧美三级三区| 天天躁夜夜躁狠狠躁躁| 天天一区二区日本电影三级 | 国产精品免费一区二区三区在线| 久久中文看片网| 美女高潮喷水抽搐中文字幕| 亚洲七黄色美女视频| 十分钟在线观看高清视频www| 亚洲国产欧美网| 精品电影一区二区在线| 成人免费观看视频高清| 日本撒尿小便嘘嘘汇集6| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 黄色视频不卡| 国产av又大| 91麻豆av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久中文字幕人妻熟女| 国产高清激情床上av| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲欧美98| 午夜精品久久久久久毛片777| 母亲3免费完整高清在线观看| 亚洲av第一区精品v没综合| 一a级毛片在线观看| 日韩精品青青久久久久久| 欧美老熟妇乱子伦牲交| 久9热在线精品视频| 久久午夜综合久久蜜桃| 国产精品亚洲一级av第二区| 88av欧美| 亚洲成av人片免费观看| 国产人伦9x9x在线观看| 欧美日韩黄片免| 精品乱码久久久久久99久播| 午夜福利在线观看吧| 国产精品 欧美亚洲| 亚洲av五月六月丁香网| 岛国视频午夜一区免费看| 日韩大码丰满熟妇| 久久热在线av| www.自偷自拍.com| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区| svipshipincom国产片| 亚洲欧美精品综合一区二区三区| 亚洲视频免费观看视频| 成年人黄色毛片网站| 日本三级黄在线观看| 咕卡用的链子| 神马国产精品三级电影在线观看 | av中文乱码字幕在线| 女性生殖器流出的白浆| 禁无遮挡网站| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 国产精品久久久久久人妻精品电影| 精品欧美一区二区三区在线| 欧美精品亚洲一区二区| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 精品国产国语对白av| 黑人巨大精品欧美一区二区蜜桃| 99国产精品免费福利视频| 禁无遮挡网站| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播| 国产精品av久久久久免费| 日韩一卡2卡3卡4卡2021年| 一区二区三区国产精品乱码| 日韩精品青青久久久久久| 成人免费观看视频高清| 成人国语在线视频| 香蕉久久夜色| 男女做爰动态图高潮gif福利片 | 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 满18在线观看网站| 亚洲第一电影网av| 欧美一区二区精品小视频在线| 成人免费观看视频高清| 在线av久久热| 国产伦一二天堂av在线观看| 国产一区二区三区视频了| 国产一区二区三区综合在线观看| 国产区一区二久久| 欧美 亚洲 国产 日韩一| 一级a爱视频在线免费观看| 免费av毛片视频| 久久久久国内视频| 亚洲av片天天在线观看| 国产不卡一卡二| 久久亚洲真实| 一级毛片高清免费大全| 国产高清激情床上av| 桃红色精品国产亚洲av| 精品第一国产精品| 国产精品一区二区精品视频观看| 国产精品久久久久久精品电影 | 欧美成人免费av一区二区三区| 在线十欧美十亚洲十日本专区| 国产又爽黄色视频| 满18在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情av网站| 丰满的人妻完整版| 久久久久久久精品吃奶| 久久精品国产99精品国产亚洲性色 | 超碰成人久久| 亚洲男人的天堂狠狠| 波多野结衣巨乳人妻| 激情视频va一区二区三区| 欧美日本亚洲视频在线播放| 大陆偷拍与自拍| 视频在线观看一区二区三区| 精品无人区乱码1区二区| 国产成人欧美在线观看| 欧美日韩亚洲国产一区二区在线观看| 热re99久久国产66热| 精品一区二区三区视频在线观看免费| 亚洲第一av免费看| 午夜免费观看网址| 亚洲黑人精品在线| 狂野欧美激情性xxxx| 黑人操中国人逼视频| 日本免费一区二区三区高清不卡 | 美女高潮喷水抽搐中文字幕| 亚洲人成77777在线视频| 一本久久中文字幕| 久久久久九九精品影院| 两性夫妻黄色片| 日本vs欧美在线观看视频| 日韩欧美在线二视频| 看黄色毛片网站| 欧美不卡视频在线免费观看 | 天天一区二区日本电影三级 | 性欧美人与动物交配| 91九色精品人成在线观看| 欧美色视频一区免费| 欧美成人免费av一区二区三区| 真人做人爱边吃奶动态| 少妇熟女aⅴ在线视频| 757午夜福利合集在线观看| 大型黄色视频在线免费观看| 久热这里只有精品99| 免费在线观看完整版高清| a级毛片在线看网站| 桃红色精品国产亚洲av| 成熟少妇高潮喷水视频| 真人做人爱边吃奶动态| 亚洲色图av天堂| 久久国产精品影院| 97碰自拍视频| 少妇被粗大的猛进出69影院| 日韩欧美免费精品| 欧美国产日韩亚洲一区| 欧美日韩精品网址| 亚洲成av片中文字幕在线观看| 99久久国产精品久久久| 国产精品国产高清国产av| 在线免费观看的www视频| 非洲黑人性xxxx精品又粗又长| www日本在线高清视频| 91麻豆精品激情在线观看国产| 久99久视频精品免费| 在线观看舔阴道视频| 国产成人系列免费观看| 大型av网站在线播放| 国产人伦9x9x在线观看| 97碰自拍视频| 色播亚洲综合网| 精品国内亚洲2022精品成人| 国产精品久久久av美女十八| 日韩高清综合在线| 一区二区三区国产精品乱码| 亚洲国产看品久久| 久久九九热精品免费| 国产成人精品久久二区二区免费| 精品国产一区二区三区四区第35| 久久精品成人免费网站| 真人做人爱边吃奶动态| 午夜a级毛片| 后天国语完整版免费观看| 欧美 亚洲 国产 日韩一| 亚洲男人天堂网一区| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 日本 av在线| 国产极品粉嫩免费观看在线| 色婷婷久久久亚洲欧美| 日韩欧美三级三区| 亚洲一区高清亚洲精品| 亚洲中文字幕日韩| 亚洲无线在线观看| 欧美另类亚洲清纯唯美| 午夜福利高清视频| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清 | 99久久国产精品久久久| 国语自产精品视频在线第100页| 亚洲中文av在线| 熟女少妇亚洲综合色aaa.| 久久久久久人人人人人| 色播亚洲综合网| 麻豆一二三区av精品| 久久婷婷人人爽人人干人人爱 | 日本欧美视频一区| 国产av又大| 欧美精品啪啪一区二区三区| 久久久水蜜桃国产精品网| 一卡2卡三卡四卡精品乱码亚洲| 身体一侧抽搐| 18禁美女被吸乳视频| 亚洲 欧美一区二区三区| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 亚洲中文av在线| 高清在线国产一区| 人人妻,人人澡人人爽秒播| 一本久久中文字幕| 欧美 亚洲 国产 日韩一| www.999成人在线观看| 成人三级做爰电影| 亚洲国产高清在线一区二区三 | 日韩欧美一区视频在线观看| 在线视频色国产色| 亚洲一区二区三区不卡视频| 免费人成视频x8x8入口观看| 国产av精品麻豆| 最新在线观看一区二区三区| 国产亚洲精品一区二区www| av在线播放免费不卡| 午夜福利视频1000在线观看 | 欧美不卡视频在线免费观看 | 成年女人毛片免费观看观看9| 久久久久久久久中文| 一进一出抽搐gif免费好疼| 婷婷六月久久综合丁香| av在线天堂中文字幕| 久久草成人影院| 国产伦一二天堂av在线观看| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 久久久久久久久久久久大奶| 成人国语在线视频| 国产亚洲精品av在线| 成人三级黄色视频| 波多野结衣一区麻豆| 亚洲午夜精品一区,二区,三区| 午夜福利免费观看在线| 亚洲第一电影网av| 久久人人精品亚洲av| 69精品国产乱码久久久| 国产精品免费视频内射| 国产精品av久久久久免费| 一级毛片女人18水好多| 在线观看免费视频网站a站| 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 国产高清有码在线观看视频 | 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| 国产精品一区二区三区四区久久 | 黑人欧美特级aaaaaa片| 国产不卡一卡二| 免费不卡黄色视频| 身体一侧抽搐| 免费看十八禁软件| 久久久久国产精品人妻aⅴ院| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久久人妻蜜臀av | 国产亚洲欧美精品永久| 国产野战对白在线观看| 亚洲色图 男人天堂 中文字幕| 国语自产精品视频在线第100页| 男女之事视频高清在线观看| 一级毛片高清免费大全| 深夜精品福利| 丰满人妻熟妇乱又伦精品不卡| 成人三级黄色视频| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 97人妻天天添夜夜摸| 大陆偷拍与自拍| 成人欧美大片| 亚洲av美国av| www.熟女人妻精品国产| 美女午夜性视频免费| e午夜精品久久久久久久| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 亚洲色图av天堂| av视频在线观看入口| 黑人操中国人逼视频| 在线天堂中文资源库| 久久热在线av| 日韩欧美一区二区三区在线观看| www国产在线视频色| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 美国免费a级毛片| 久久精品人人爽人人爽视色| 久久青草综合色| 午夜福利,免费看| 天堂影院成人在线观看| 国产又色又爽无遮挡免费看| 夜夜夜夜夜久久久久| 91字幕亚洲| 国产av又大| 夜夜看夜夜爽夜夜摸| 亚洲五月天丁香| 亚洲最大成人中文| 91av网站免费观看| 丝袜美足系列| 黄色视频不卡| 中文字幕久久专区| 亚洲av美国av| 久久影院123| 18禁国产床啪视频网站| www.熟女人妻精品国产| 国产主播在线观看一区二区| 精品久久蜜臀av无| 涩涩av久久男人的天堂| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 亚洲人成电影免费在线| 日本免费一区二区三区高清不卡 | 日韩精品青青久久久久久| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 免费在线观看黄色视频的| 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 后天国语完整版免费观看| 老司机在亚洲福利影院| 免费人成视频x8x8入口观看| 欧美大码av| 91麻豆精品激情在线观看国产| 日本撒尿小便嘘嘘汇集6| 97碰自拍视频| 嫁个100分男人电影在线观看| 热re99久久国产66热| 女性生殖器流出的白浆| 天堂影院成人在线观看| 一进一出好大好爽视频| 性欧美人与动物交配| 老司机靠b影院| 成年人黄色毛片网站| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 成人欧美大片| 国产高清激情床上av| 国产欧美日韩综合在线一区二区| 日韩免费av在线播放| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 一个人免费在线观看的高清视频| 精品第一国产精品| 深夜精品福利| 亚洲国产中文字幕在线视频| 亚洲五月色婷婷综合| 国产成人影院久久av| 欧美性长视频在线观看| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 亚洲精品在线观看二区| 97超级碰碰碰精品色视频在线观看| 国产午夜福利久久久久久| 久久人妻熟女aⅴ| 国产精品乱码一区二三区的特点 | 国产亚洲欧美精品永久| 波多野结衣高清无吗| 性少妇av在线| 悠悠久久av| 久久久国产成人免费| 一级黄色大片毛片| 久久人妻福利社区极品人妻图片| 免费无遮挡裸体视频| 久久精品影院6| 成人亚洲精品av一区二区| 亚洲国产精品sss在线观看| 午夜精品久久久久久毛片777| 国内精品久久久久久久电影| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 一边摸一边抽搐一进一出视频| 黄色视频,在线免费观看| 国产成人av激情在线播放| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| 日韩 欧美 亚洲 中文字幕| 中出人妻视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 好男人在线观看高清免费视频 | 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 可以在线观看毛片的网站| 亚洲视频免费观看视频| 久久草成人影院| avwww免费| e午夜精品久久久久久久| 亚洲熟女毛片儿| av网站免费在线观看视频| 色播在线永久视频| 久久中文字幕人妻熟女| 99国产精品99久久久久| 叶爱在线成人免费视频播放| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av | 黄片大片在线免费观看| 亚洲一区二区三区色噜噜| 亚洲少妇的诱惑av| 成年人黄色毛片网站| 免费在线观看影片大全网站| 香蕉国产在线看| 在线观看66精品国产| 午夜免费激情av| 国产精品1区2区在线观看.| 免费高清视频大片| 亚洲午夜理论影院| 国产三级黄色录像| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区在线臀色熟女| 日本三级黄在线观看| 欧美在线黄色| 亚洲天堂国产精品一区在线| 国产一区在线观看成人免费| 国产片内射在线| 99re在线观看精品视频| 亚洲欧洲精品一区二区精品久久久| av中文乱码字幕在线| 精品日产1卡2卡| 波多野结衣av一区二区av| 精品熟女少妇八av免费久了| 91成人精品电影| 十分钟在线观看高清视频www| av欧美777| av片东京热男人的天堂| 曰老女人黄片| 精品免费久久久久久久清纯| √禁漫天堂资源中文www| 午夜精品国产一区二区电影| 天堂动漫精品| 久久人妻福利社区极品人妻图片| 自拍欧美九色日韩亚洲蝌蚪91| 黄色成人免费大全| 国产精品 国内视频| 啦啦啦观看免费观看视频高清 | 大陆偷拍与自拍| 国产激情久久老熟女| 悠悠久久av| 国产高清有码在线观看视频 | 真人做人爱边吃奶动态| 国产蜜桃级精品一区二区三区| 十八禁人妻一区二区| 色综合婷婷激情| 啦啦啦 在线观看视频| 亚洲欧美精品综合久久99| 涩涩av久久男人的天堂| 国产精华一区二区三区| 精品少妇一区二区三区视频日本电影| 久热这里只有精品99| 久久午夜亚洲精品久久| 少妇熟女aⅴ在线视频| 午夜福利欧美成人| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 欧美一区二区精品小视频在线| 老汉色av国产亚洲站长工具| 国产单亲对白刺激| 老司机深夜福利视频在线观看| 无遮挡黄片免费观看| 香蕉国产在线看| 国产亚洲精品一区二区www| 日本五十路高清| 人成视频在线观看免费观看| 精品午夜福利视频在线观看一区| 97碰自拍视频| 日本a在线网址| 国产成人免费无遮挡视频| 日韩精品青青久久久久久| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩综合在线一区二区| 美国免费a级毛片| 亚洲精品粉嫩美女一区| 久久草成人影院| 中文字幕久久专区| 丁香欧美五月| 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 午夜福利影视在线免费观看| 午夜免费观看网址| 成年女人毛片免费观看观看9| 久久香蕉精品热| 国产精品久久久人人做人人爽| 真人一进一出gif抽搐免费| 久久国产亚洲av麻豆专区| 久久香蕉精品热| 午夜福利在线观看吧| 黄色a级毛片大全视频| 人人妻人人爽人人添夜夜欢视频| 午夜精品在线福利| 手机成人av网站| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 757午夜福利合集在线观看| 欧美激情极品国产一区二区三区| 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女 | 在线天堂中文资源库| 人成视频在线观看免费观看| 波多野结衣巨乳人妻| 精品国产一区二区三区四区第35| 久久性视频一级片| 热re99久久国产66热| 国产一区二区三区在线臀色熟女| 国内精品久久久久精免费| 757午夜福利合集在线观看| 日韩av在线大香蕉| 一级黄色大片毛片| 热99re8久久精品国产| 精品电影一区二区在线| 婷婷丁香在线五月| 午夜a级毛片| 日日夜夜操网爽| 国产精品日韩av在线免费观看 | 女人被躁到高潮嗷嗷叫费观| 两个人视频免费观看高清| 欧美国产精品va在线观看不卡| 99在线视频只有这里精品首页| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美精品综合久久99| avwww免费| 丁香六月欧美| 色综合站精品国产| 国产精品99久久99久久久不卡| tocl精华| 变态另类成人亚洲欧美熟女 | 夜夜躁狠狠躁天天躁| 性色av乱码一区二区三区2| 香蕉久久夜色| 日韩视频一区二区在线观看| 亚洲国产高清在线一区二区三 | 51午夜福利影视在线观看| 欧美性长视频在线观看| 99精品久久久久人妻精品| 亚洲av成人不卡在线观看播放网| 久久伊人香网站| 两个人免费观看高清视频| 在线观看舔阴道视频| 大型av网站在线播放| 自线自在国产av| 欧美丝袜亚洲另类 | 精品高清国产在线一区| www.www免费av|