閆 慧,肖 軍,張俊麗
(1. 許昌學(xué)院 城鄉(xiāng)規(guī)劃與園林學(xué)院,許昌 461000;2. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061)
許昌市街道灰塵重金屬含量及其粒徑效應(yīng)
閆 慧1,肖 軍2,張俊麗1
(1. 許昌學(xué)院 城鄉(xiāng)規(guī)劃與園林學(xué)院,許昌 461000;2. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061)
對許昌市街道灰塵樣品進行了重金屬含量和粒度測試,研究了重金屬在各粒徑上的富集規(guī)律及其原因。結(jié)果表明:許昌市街道灰塵主要以粉砂為主(平均為57.62%),砂粒次之(平均值為25.18%),粘粒含量最少(平均值為17.21%)。街道灰塵中Cr、Cu、Zn、Pb、Mn、Ni和Co含量范圍分別為60.9—277.4 μg·g-1、15.5—116.4 μg·g-1、76.5—398.7 μg·g-1、25.1—63.7 μg·g-1、356—519 μg·g-1、9.0—25.6 μg·g-1和7.9—10.4 μg·g-1,平均值分別為96.8 ± 42.7 μg·g-1、35.4 ± 23.8 μg·g-1、145.3 ± 67.2 μg·g-1、41.9 ± 10.4 μg·g-1、408 ± 35.7 μg·g-1、18.5 ± 4.1 μg·g-1和9.0 ± 0.7 μg·g-1。Zn、Pb、Cu和Cr的平均值均高于土壤背景值,分別為背景值的2.42倍、2.14倍、1.80倍和1.52倍,污染較重。而Mn、Ni和Co值富集程度較低,污染較輕。研究發(fā)現(xiàn),Cu、Pb、Zn和Cr與50—100 μm粗粉砂相關(guān)性顯著,Mn和Ni與10—50 μm細(xì)粉砂相關(guān)性較高,但其含量并未隨著粒徑的進一步減小而增強;而Co與< 10 μm的粘粒組分相關(guān)性較強,其粒徑效應(yīng)明顯。街道灰塵中不同重金屬含量粒徑效應(yīng)的不同可能與重金屬的吸附作用和同晶替換作用的相對強弱有關(guān)。
街道灰塵;重金屬;許昌;粒徑效應(yīng)
城市街道灰塵是指城市街道的垃圾灰塵粒徑相對較粗或粗粒級占有較大比例的顆粒物(杜佩軒等,2004)。與城市土壤和大氣顆粒物相比,城市街道灰塵是一種物質(zhì)組成和來源更為復(fù)雜的環(huán)境介質(zhì)。在人類活動的強烈干擾影響下,城市街道灰塵累積了大量的重金屬,包含了特定的環(huán)境信息和污染指示作用,成為城市環(huán)境污染的重要來源(常靜等,2008;強小科等,2010;李小飛等,2013; 于瑞蓮等,2014;Ferreira-Baptista and Miguel,2005)。一方面,城市街道灰塵在一定外動力條件下?lián)P起,通過呼吸道和皮膚被人體吸收,在人體內(nèi)被消化、吸收、積累,從而對人體健康產(chǎn)生危害;另一方面,城市街道灰塵在降水的沖刷作用下進入河道,對城市水環(huán)境造成直接污染。因此,城市地表灰塵中的重金屬對城市環(huán)境質(zhì)量和人體健康有很大的危害,日益受到學(xué)術(shù)界的關(guān)注(劉玉燕等,2009;鄭小康等,2009;Karmacharya and Shakya,2012)。20世紀(jì)80年代以來國外學(xué)者對城市街道灰塵中重金屬的積累分布、粒徑效應(yīng)及其生物有效性等展開了一系列研究(Viklander,1998;Ahmed and Ishiga,2006),國內(nèi)學(xué)者主要側(cè)重于研究地表灰塵重金屬污染特征及其空間分異(李崇等,2008;史興民和王建輝,2009),而對灰塵重金屬污染粒徑效應(yīng)研究較少(田輝等,2007;常靜等,2008,2009;方鳳滿等,2009;Zheng et al,2010)。Deletic and Orr(2005)研究發(fā)現(xiàn)灰塵中重金屬含量在2—63 μm粒級中最高,其中Pb占70%以上。方鳳滿等(2009)發(fā)現(xiàn)地表灰塵中As和Hg在>200目粒徑的平均富集比例分別為55.8%和63.5%。常靜等(2008)發(fā)現(xiàn)地表灰塵的重金屬含量主要富集在150 μm和75 μm粒徑級別。大量研究(Al-Rajhi et al,1997;Viklander,1998;杜佩軒等,2002;Deletic and Orr,2005;田輝等,2007;常靜等,2009;方鳳滿等,2009;Zheng et al,2010;Karmacharya and Shakya,2012)表明重金屬的含量更加容易富集在小粒徑顆粒上,尤其是粒徑<63—75 μm的顆粒物上,但由于來源和理化性質(zhì)的不同,不同元素的富集規(guī)律也有一定差異。前人研究中,粒度分級基本都是用篩分法,最小粒徑一般只做到<63 μm或<75 μm,更細(xì)粒徑中重金屬含量并沒有分析。因此更細(xì)粒徑的重金屬含量變化也未得知。通過城市街道灰塵重金屬的研究可以了解其有害元素含量及其賦存形式、遷移演化機理以及與城市各類污染的關(guān)系,為預(yù)防和治理城市大氣污染提供科學(xué)依據(jù),而灰塵粒徑組成研究是以上研究的基礎(chǔ)(杜佩軒等,2002)。
許昌市地處中原腹地,隨著經(jīng)濟的飛速發(fā)展,環(huán)境問題日益突出。霧霾天氣的頻發(fā)是其最直接的表現(xiàn),霧霾除直接對人體造成危害外,其富集的重金屬將會加劇其對人體的危害。地表灰塵是大氣顆粒污染物的重要來源,開展其重金屬富集規(guī)律研究具有重要現(xiàn)實意義。目前關(guān)于許昌市地表灰塵重金屬含量的粒徑效應(yīng)的研究還未見報道。鑒于此,本文以許昌市城區(qū)為例,對其街道灰塵樣品進行了重金屬含量和粒度測試,討論了重金屬含量與粒徑的關(guān)系及其原因。本研究將為許昌市的城市重金屬環(huán)境污染防治和環(huán)境質(zhì)量評價提供數(shù)據(jù)支持和科學(xué)依據(jù)。
1.1 研究區(qū)概況
許昌又稱蓮城,位于河南省中部(113°03′ —114°19′E、33°16′—34°24′ N),河南經(jīng)濟強市,中原經(jīng)濟區(qū)核心城市,中國歷史文化名城。許昌市地處伏牛山余脈向豫東平原過渡地帶,東西長117 km,南北寬75 km,面積約 5002 km2。許昌西部和西北部為低山丘陵,最高海拔1150.6 m;中部和東部為黃淮沖積平原,最低海拔50.4 m,地面坡度為2.6‰,平均海拔74 m。該區(qū)屬于黃淮流域,氣候為北暖溫帶半濕潤季風(fēng)氣候,年平均氣溫14.3℃,年平均降水量706 mm,年平均相對濕度71%。全市土壤劃分為棕壤、褐土、紫色土、紅黏土、潮土和砂礓黑土等6個土類。天然河流有潁河、雙洎河、清泥河等,人工河有潁汝總干渠等(吳國璽等,2009)。
1.2 樣品采集與分析
在許昌市城區(qū)中心干道和外環(huán)路以及二者之間的市區(qū)主干道交叉處共采集22個灰塵樣品(圖1)。使用毛刷和不銹鋼鏟掃取采樣點附近的街道灰塵樣品,每個樣點取樣約30 g左右,裝入自封袋密封,編號并記錄采樣點附近交通狀況等環(huán)境特征。樣品在實驗室風(fēng)干,并去除樹葉等雜物,每個樣品充分混勻后一分為二。一半利用瑪瑙研缽把樣品研磨至200目,取約4 g左右放入聚氯乙烯環(huán)內(nèi),利用PW4400型X射線熒光光譜儀分析Cu、Pb、Zn和Cr含量。測定過程用國家一級標(biāo)樣(GSS-1、GSS-2、GSS-3……GSS-8)和重復(fù)樣品進行測量精度監(jiān)控。另一半過2 mm不銹鋼篩,取約1 g左右樣品利用Malvern公司的Mastersizer 2000激光粒度分析儀進行分析,粒度測量范圍是0.02—2000 μm,重復(fù)測量的誤差小于2%。
圖1 許昌市街道灰塵采樣點分布圖Fig.1 Sampling sites of street dust in Xuchang City
1.3 數(shù)據(jù)統(tǒng)計與分析
本文所有數(shù)據(jù)利用Excel 2003和SPSS 16.0 軟件進行統(tǒng)計和相關(guān)性分析。
2.1 許昌市街道灰塵粒徑組成
據(jù)表1可知,許昌市街道灰塵主要以粉砂為主,占30.78%—79.05%,平均為57.62%,其中細(xì)粉砂和粗粉砂分別占14.30%—57.68%和12.22%—37.43%;砂粒組占0.00—57.93%,平均值為25.18%,砂粒比重較高的樣品主要分布在城南地區(qū);粘粒組含量最少,占7.80%—30.10%,平均值為17.20%。市中心11號樣品砂粒組分最低,而粘粒組含量最高,為30.10%。
研究發(fā)現(xiàn)(Al-Rajhi et al,1997),粒徑>125 μm的灰塵顆粒物對人體危害較小,而粒徑< 125 μm的顆粒容易吸附在皮膚上,更容易被胃酸溶解而被人體吸收。而許昌市街道灰塵粒徑基本都小于125 μm,因此對人體具有潛在的危害。另據(jù)韓永明等(2003)報道,城市街道灰塵中50—500 μm的顆粒物可以以跳躍形式進入大氣,貢獻一定比例的大氣顆粒物。而近些年來許昌市大氣污染嚴(yán)重(于偉娟,2014)。因此,許昌市街道灰塵對該市大氣污染的貢獻也應(yīng)引起進一步關(guān)注。
2.2 許昌市街道灰塵樣品重金屬含量及相關(guān)性分析
如表2所示,許昌市街道灰塵中Cr、Cu、Zn、Pb、Mn、Ni和Co含量范圍分別為60.9—277.4 μg·g-1、15.5—116.4 μg·g-1、76.5—398.7 μg·g-1、25.1—63.7 μg·g-1、356 —519 μg·g-1、9.0—25.6 μg·g-1和7.9—10.4 μg·g-1,平均值分別為96.8 ± 42.7 μg·g-1、35.4 ± 23.8 μg·g-1、145.3 ± 67.2 μg·g-1、41.9 ± 10.4 μg·g-1、408 ± 35.7 μg·g-1、18.5 ± 4.1 μg·g-1和9.0 ± 0.7 μg·g-1,分別為鄭州市土壤背景值(成杭新等,2014)的1.38倍、1.97倍、2.64倍、2.0倍、0.9倍、0.84倍和1.0倍。而Mn、Ni和Co值相對于土壤沒有富集。
變異系數(shù)(CV)通常為反映人為活動強度的一個指標(biāo),是指標(biāo)準(zhǔn)差與平均值的比值,依據(jù)變異系數(shù)大小分級標(biāo)準(zhǔn)為:CV <10%為弱變異;10% < CV < 30%為中等變異;CV >30%為強變異(代勇等,2015)。變異系數(shù)分析發(fā)現(xiàn)(表2),許昌市街道灰塵重金屬元素中Cr、Cu、Zn為強變異,Pb和Ni為中等變異,Mn和Co為弱變異。這表明許昌市街道灰塵重金屬的來源受外界干擾很大,尤其是Cr、Cu和Zn,空間變異很強,局部污染較重。這種強變異很大程度上是交通、工業(yè)、建筑等強烈人為活動空間分布不均造成的。
重金屬元素含量之間的相關(guān)性在一定程度上反映其污染程度的相似性或相同的來源(張菊,2005)。Pearson相關(guān)分析結(jié)果見表3,Mn與Cr、Ni之間,Ni與Co之間,Pb與Cu、Zn之間相關(guān)性較好,表明這些金屬具有共源性。街道灰塵中重金屬的人為來源主要有交通污染、工業(yè)污染和城市建設(shè)污染等(劉春華和岑況,2007;王濟等,2012)。交通污染主要表現(xiàn)為汽車尾氣排放、汽車橡膠輪胎老化磨損、車體自身磨損、路面材料老化磨損等。工業(yè)污染主要為氣排放。城市建設(shè)污染主要為建筑揚塵、建筑物金屬部分的腐蝕脫落、各種建筑材料(如油漆)的老化脫落。Cr主要來源于工業(yè)污染,通常在工業(yè)區(qū)出現(xiàn)Cr值高峰(王麗麗等,2009),而Pb、Cu和Zn主要來源于交通污染(Banerjee,2003)。尾氣排放是街道灰塵中Pb的主要來源,輪胎磨損、防腐鍍鋅汽車板的腐蝕和路面安全欄的腐蝕是Zn的主要污染源,Cu主要來自于制動器的磨損(Al-Rajhi and Seaward,1996;張晶等,1998;唐艷榮等,2010)。
表1 許昌市街道灰塵樣品粒徑組成(單位:%)Tab.1 The particle-size distribution (Unit: %) in street dust in Xuchang City
表2 許昌市街道灰塵樣品重金屬含量(單位:μg·g-1)Tab.2 The concentrations of heavy metals (Unit: μg·g-1) in street dust in Xuchang City
2.3 許昌市街道灰塵重金屬含量的粒徑效應(yīng)分析
粒度是表征顆粒物行為的主要參數(shù)。粒徑分布既決定了城市街道灰塵的可遷移性,也與其污染潛力密切相關(guān)。許昌市街道灰塵中重金屬含量與各粒徑含量的百分比相關(guān)性分析(表4)表明:Cu、Pb、Zn和Cr與50—100 μm粗粉砂相關(guān)性顯著,相關(guān)系數(shù)分別為0.62、0.58、0.46、0.29;Mn和Ni與10—50 μm細(xì)粉砂相關(guān)性相對較高,相關(guān)系數(shù)分別為0.42、0.44;而Co與<10 μm的粘粒組分相關(guān)性較強,相關(guān)系數(shù)分為0.30。
表3 許昌市街道灰塵重金屬含量相關(guān)關(guān)系分析Tab. 3 Pearson's correlation coef fi cients of heavy metals in street dust in Xuchang City
表4 街道灰塵重金屬含量與粒徑的相關(guān)性Tab.4 The relationship between heavy metals and particle size in street dust in Xuchang City
國內(nèi)外同類研究雖然粒徑劃分不同,但結(jié)論基本相似,認(rèn)為大多數(shù)重金屬容易富集在較細(xì)的粒徑中,尤其是粒徑<63—75 μm的顆粒物上,并發(fā)現(xiàn)街道灰塵的重金屬含量隨著粒徑的減小呈現(xiàn)出明顯增加的趨勢(Viklander,1998;常靜等,2008;方鳳滿等,2009)。本研究發(fā)現(xiàn),Cu、Zn、Pb和Cr含量與50—100 μm粗粉砂粒徑相關(guān)性最顯著,這與前人的研究基本一致(Al-Rajhi et al,1997;Viklander,1998;杜佩軒等,2002;Deletic and Orr,2005;田輝等,2007;常靜等,2008;方鳳滿等,2009;Zheng et al,2010;劉德鴻等,2012;Karmacharya and Shakya,2012)。前人在研究中,粒度分級基本都是用篩分法,粒度分析時最小粒徑一般只做到< 63 μm或< 75 μm,更細(xì)粒徑中重金屬含量并沒有分析。因此,重金屬含量隨粒徑的減小而增加的結(jié)論也是通過與更大粒徑上重金屬含量的對比而得出的,但在< 63 μm或<75 μm的顆粒中,是不是粒徑越小,重金屬含量越高卻無法得知。
本研究利用激光粒度儀進行粒度分析,測量范圍為0.02—2000 μm,可以計算更細(xì)粒組分的含量。本研究結(jié)果發(fā)現(xiàn),隨著粒徑的進一步減小,Cu、Zn、Pb和Cr含量與10—50 μm細(xì)粉砂、<10 μm 粘粒的含量相關(guān)性并沒有增加,說明街道灰塵的重金屬含量在10—50 μm細(xì)粉砂、<10 μm 粘粒上并沒有比50—100 μm粗粉砂中高。許昌市街道灰塵中Cu、Zn和Pb含量主要分布在50—100 μm粗粉砂中,Mn和Ni主要分布在細(xì)粉砂中。而Co含量卻隨著粒徑的進一步減小而增加,因此粒徑越小,Co含量越高。
Cornell and Schwertmann(1996)的研究表明,重金屬元素主要通過2種途徑富集在街道灰塵中,一是表面吸附作用,二是通過同晶替換作用進入街道灰塵中鐵磁性礦物的晶格結(jié)構(gòu)中。一般認(rèn)為顆粒物粒徑越小,其比表面積就越大,吸附力也就越強,重金屬含量就越高。但同時可能通過同晶替換作用富集在街道灰塵中重金屬含量在下降,總體導(dǎo)致重金屬含量的降低。Maher(1988)通過對粒度與磁化率相關(guān)性研究發(fā)現(xiàn),磁化率在125—16 μm(細(xì)砂、粗粉砂)與0.03—0.01 μm(細(xì)粘滯性與超順磁顆粒)各出現(xiàn)一個峰值。0.03—0.01 μm顆粒一般代表的是風(fēng)化成土作用的產(chǎn)物(盧升高,2000),而125—16 μm(細(xì)砂、粗粉砂)代表了人類活動產(chǎn)生的顆粒。磁化率在125—16 μm(細(xì)砂、粗粉砂)出現(xiàn)峰值,說明鐵磁性礦物在125—16 μm(細(xì)砂、粗粉砂)范圍含量最高。因此,在此粒度范圍內(nèi)通過同晶替代作用富集的重金屬含量也最高,而隨著粒度的減小,磁化率在降低,鐵磁性礦物含量在降低,通過同晶替代作用富集的重金屬含量也降低。由此,隨著粒徑的進一步減?。?0—50 μm、<10 μm),由于同晶替換作用的減弱程度大于表面吸附作用,最終導(dǎo)致Cu、Zn、Pb和Cr含量并未隨著粒徑的進一步減小而增加。而Co含量的粒徑效應(yīng)可能是由于同晶替換作用的減弱程度小于表面吸附作用而致。因此,重金屬在街道灰塵表面的吸附作用和同晶替換作用的相對強弱可能是不同重金屬粒徑效應(yīng)的不同原因。但這還有待進一步的研究印證。
(1)許昌市街道灰塵主要以粉砂為主,占30.78%—79.05%,平均為57.62%,其中細(xì)粉砂和粗粉砂分別占14.30%—57.68%和12.22%—37.43%;砂粒組占0.00—57.93%,平均值為25.18%,粘粒組含量最少,占7.80%—30.10%,平均值為17.21%。
(2)許昌市街道灰塵中不同重金屬的平均含量高低分布為:Mn > Zn > Cr > Pb > Cu > Ni > Co。Zn、Pb、Cu、Cr的平均值均高于土壤背景值,富集程度較高,污染較重,而Mn、Ni和Co值富集程度較低,污染較輕。
(3)Cu、Pb、Zn和Cr與50—100 μm粗粉砂相關(guān)性顯著;Mn和Ni與10—50 μm細(xì)粉砂相關(guān)性較高;而Co與<10 μm的粘粒組分相關(guān)性較強。
(4)重金屬在街道灰塵表面的吸附作用和同晶替換作用的相對強弱最終導(dǎo)致了不同重金屬粒徑效應(yīng)的不同。
常 靜, 劉 敏, 李先華, 等. 2008. 上海市城市地表灰塵重金屬污染粒級效應(yīng)與生物有效性 [J].環(huán)境科學(xué), 29(12): 3489 – 3495. [Chang J, Liu M, Li X H, et al. 2008. Fractionation and bioavailability of heavy metal contamination of urban surface dusts in Shanghai City [J].Environmental Science, 29(12): 3489 – 3495.]
常 靜, 劉 敏, 李先華, 等. 2009. 上海地表灰塵重金屬污染的健康風(fēng)險評價 [J].中國環(huán)境科學(xué), 29(5): 548 – 554. [Chang J, Liu M, Li X H, et al. 2009. Primary research on health risk assessment of heavy metals in road dust of Shanghai [J].China Environmental Science, 29(5): 548 – 554.]
成杭新, 李 括, 李 敏, 等. 2014. 中國城市土壤化學(xué)元素的背景值與基準(zhǔn)值 [J].地學(xué)前緣, 21(3): 265 – 306. [Cheng H S, Li K, Li M, et al. 2014. Geochemical background and baseline value of chemical elements in urban soil in China [J].Earth Science Frontiers, 21(3): 265 – 306.]
代 勇, 李章平, 李燕燕, 等. 2015. 重慶市主城區(qū)街道灰塵重金屬的污染特征分析[J].環(huán)境化學(xué),34(1): 188 – 189. [Dai Y, Li Z P, Li Y Y, et al. 2015. Pollution characteristic analysis of main street dust in Chongqing City [J].Environmental Chemistry, 34(1): 188 – 189.]
杜佩軒, 田 輝, 韓永明, 等. 2002. 城市灰塵粒徑組成及環(huán)境效應(yīng)——以西安市為例 [J].巖石礦物學(xué)雜志, 21(1): 93 – 98. [Du P X, Tian H, Han Y M, et al. 2002. Urban dust composition of grain diameters and its environmental effect [J].Acta Petrologica et Mineralogica, 21(1): 93 – 98.]
杜佩軒,田 暉,韓永明. 2004.城市灰塵概念、研究內(nèi)容與方法 [J].陜西地質(zhì), 22(1): 73 – 79. [Du P X, Tian H, Han Y M. 2004. Concept, research content, and method of urban dust [J].Geology of Shaanxi, 22(1): 73 – 79.]
方鳳滿, 張志明, 陳文娟, 等. 2009. 蕪湖市區(qū)春季地表灰塵中汞和砷的空間及粒徑分布規(guī)律 [J].環(huán)境科學(xué)學(xué)報, 29(9): 1871 – 1877. [Fang F M, Zhang Z M, Chen W J, et al. 2009. Spatial and particle size distribution of mercury and arsenic on surface dust in spring in the Wuhu urban district [J].Acta Scientiae Circumstantiae, 29(9): 1871 – 1877.]
韓永明, 杜佩軒, 李智明, 等. 2003. 西安市灰塵循環(huán)模式及搬運沉積 [J].物探與化探, 27(3): 227 – 229. [Han Y M, Du P X, Li M Z, et al. 2003. Cyclic model, transport and deposition of urban dust in Xi'an city [J].Geophysical andGeochemical Exploration, 27 (3): 227 – 229.]
李 崇, 李法云, 張 營, 等. 2008. 沈陽市街道灰塵中重金屬的空間分布特征研究 [J].生態(tài)環(huán)境, 17(2): 560 – 564. [Li C, Li F Y, Zhang Y, et al. 2008. Spatial distribution characteristics of heavy metals in street dust in Shenyang City [J].Ecology and Environment, 17(2): 560 – 564.]
李小飛, 陳志彪, 張永賀, 等. 2013. 福州市公交樞紐站地表灰塵重金屬含量、來源及其健康風(fēng)險評價[J].環(huán)境科學(xué)研究, 26(8): 906 – 912. [Li X F, Chen Z B, Zhang Y H, et al. 2013. Concentrations, sources and health risk assessments of heavy metals in ground surface dust from urban bus terminals of Fuzhou City [J].Research of Environmental Sciences, 26(8): 906 – 912.]
劉春華, 岑 況. 2007. 北京市街道灰塵粒度特征及其來源探析 [J].環(huán)境科學(xué)學(xué)報, 27(6): 1006 – 1012. [Liu C H, Cen K. 2007. Particle size characteristics and possible sources of street dust in Beijing [J].Acta Scientiae Circumstantiae, 27(6): 1006 – 1012.]
劉德鴻, 王發(fā)園, 寇太記. 2012. 洛陽市不同功能區(qū)地表灰塵重金屬的粒徑分布特征 [J].生態(tài)環(huán)境學(xué)報, 21(4): 700 – 705. [Liu D H, Wang F Y, Kou T J. 2012. Particle size distribution of heavy metals in surface dusts from different functional zones of Luoyang city [J].Ecology and Environmental Sciences, 21(4): 700 – 705.]
劉玉燕, 劉浩峰, 劉 敏. 2009. 烏魯木齊地表灰塵重金屬含量及其健康風(fēng)險[J].干旱區(qū)研究, 26(5): 750 – 754. [Liu Y Y, Liu H F, Liu M. 2009. Concentrations and health risk assessment of urban surface dust in Urumqi [J].Arid Zone Research, 26(5): 750 – 754.]
盧升高. 2000. 土壤頻率磁化率與礦物粒度的關(guān)系及其環(huán)境意義 [J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報, 8(1): 9 – 15. [Lu G S. 2000. Relationship between frequency magnetic susceptibility and ferrimagnetic mineral grain size in soils and its environmental implications [J].Journal of Basic Science and Engineering, 8(1): 9 – 15.]
強小科, 李 鵬, 徐新文, 等. 2010. 城市道路灰塵磁學(xué)參數(shù)的環(huán)境污染指示意義 [J].地球環(huán)境學(xué)報, 1(2): 139 – 149. [Qiang X K, Li P, Xu X W, et al. 2010. The environmental implications of street dust magnetic properties [J].Journal of Earth Environment, 1(2): 139 – 149.]
史興民,王建輝. 2009. 咸陽市區(qū)街道灰塵重金屬污染及評價[J].地理科學(xué)進展, 28(3): 435 – 440. [Shi X M, Wang J H. 2009. Street surface dust heavy metal pollution state and assessment in Xianyang City [J].Process in Geography, 28(3): 435 – 440.]
唐艷榮, 吳 楓, 曹軍驥, 等. 2010. 西安道路塵中元素分布特征及其來源分析 [J].環(huán)境污染與防治, 32(12): 22 – 30. [Tang Y R, Wu F, Cao J J, et al. 2010. Distribution characteristics and source analysis of road dust in Xi'an [J].Environmental Pollution and Control, 32(12): 22 – 30.]
田 輝, 周小峰, 姚超英. 2007. 杭州城市灰塵中Pb、Cd的粒徑分布特征 [J].廣東微量元素科學(xué), 14(6):19 – 22. [Tian H, Zhou X F, Yao C Y. 2007. Size distributing characteristic of Pb, Cd in urban dust of Hangzhou [J].Guangdong Weiliang Yuansu Kexue, 14(6): 19 – 22.]
王 濟, 張一修, 高 翔. 2012. 城市地表灰塵重金屬研究進展及展望 [J].地理研究, 31(5): 821 – 830. [Zhang J, Zhang Y X, Gao X. 2012. The advances in research on heavy metals of the surface dust in urban areas [J].Geographical Research, (5): 821 – 830.]
王麗麗, 劉 敏, 歐冬妮, 等. 2009. 上海城市地表灰塵重金屬粒級效應(yīng)與賦存形態(tài)研究[J].華東師范大學(xué)學(xué)報:自然科學(xué)版, 11(6): 64 – 70. [Wang L L, Liu M, Ou D N, et al. 2009. Particle size distribution of heavy metals in urban surface dusts in Shanghai [J].Journal of East China Normal University (Natural Science), 11(6): 64 – 70.]
吳國璽, 殷學(xué)永, 申懷飛. 2009. 基于GIS 的許昌市土地利用/土地覆被變化研究 [J].水土保持研究, 16(3): 131 – 134. [Wu G X, Yin X Y, Shen H F. 2009. Study on land use / land cover changes in Xuchang City based on GIS [J].Research of Soil and Water Conservation, 16(3): 131 – 134.]
于偉娟. 2014.許昌地區(qū)霧霆天氣成因及應(yīng)對措施 [J].
科技傳播,8: 141 – 158. [Yu W J. 2014. The reasons and solutions of fog and haze in Xuchang City [J].Kejichuanbo, 8: 141 – 158.]
于瑞蓮, 胡恭任, 劉海婷, 等. 2014. 泉州市街道灰塵中重金屬來源分析 [J].地球與環(huán)境, 42(3): 328 – 332. [Yu R L, Hu G R, Liu H T, et al. 2014. Source analysis of heavy metals in the street dust of Quanzhou City [J].Earth and Environment, 42(3): 328 – 332.]
張 晶, 陳宗良, 王 瑋. 1998. 北京市大氣小顆粒物的污染源解析 [J].環(huán)境科學(xué)學(xué)報, 18(1): 62 – 67. [Zhang J, Chen Z L, Wang W. 1998. Source apportionment on fi neparticulates in atmosphere in Beijing [J].Acta Scientiae Circumstantiae, 18(1): 62 – 67.]
張 菊. 2005. 上海市街道灰塵重金屬污染研究 [D]. 上海:華東師范大學(xué). [Zhang J. 2005. Pollution of heavy metals in road dust of Shanghai City [D]. Shanghai: East China Normal University.]
鄭小康, 李春輝, 黃國和, 等. 2009. 保定城區(qū)地表灰塵污染物分布特征及健康風(fēng)險評價 [J].環(huán)境科學(xué)學(xué)報, 29(10): 2195 – 2202. [Zheng X K, Li C H, Huang G H, et al. 2009. Pollutant distribution in urban dusts of Baoding and health risk assessment [J].Acta Scientiae Circumstantiae,29(10): 2195 – 2202.]
Ahmed F, Ishiga H. 2006. Trace metal concentrations in street dust of Dhaka city, Bangladesh [J].Atmospheric Environment, 40: 3835 – 3844.
Al-Rajhi M A, Al-Shayeb S M, Seaward M R D, et al. 1997. Particle size effect for metal pollution analysis of atmospherically deposited dust [J].Atmospheric Environment, 30(1): 145 – 153.
Al-Rajhi M A, Seaward M R D. 1996. Metal levels in indoor and outdoor dust in Riyadh, Saudi Arabia [J].Environment International, 22(3): 315 – 324.
Banerjee A D K. 2003. Heavy metals levels and solid phase speciation in street dusts of Delhi, India [J].EnvironmentalPollution, 123: 95 – 105.
Cornell R M, Schwertmann U. 1996. The iron oxides: structure, properties, reactions, occurrence and uses [M]. Wiley-VCH, New York.
Deletic A B, Orr D W. 2005. Pollution buildup on road surfaces [J].Journal of Environment Engineering, 131(1): 49 – 59.
Ferreira-Baptista L, Miguel E De. 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment [J].Atmospheric Environment, 39: 4501 – 4512.
Karmacharya N, Shakya P R. 2012. Heavy metals in bulk and particle size fractions from street dusts of Kathmandu city as the possible basis for risk assessment [J].Scienti fi c World, 10(10): 84 – 88.
Maher B A. 1988.Magnetic properties of some synthetic submicron magnetites [J].Geophysical Journal International, 94: 83 – 96.
Viklander M. 1998. Particle size distribution and metal content in street sediments [J].Journal of Environmetal Engineering, 124(8): 761 – 766.
Zheng N, Liu J S, Wang Q C, et al. 2010. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China [J].Science of the Total Environment, 408: 726 – 733.
Concentrations and particle size effect of heavy metals in the street dust of Xuchang City
YAN Hui1, XIAO Jun2, ZHANG Junli1
(1. College of Urban-rural Planning and Landscape Architecture, Xuchang University, Xuchang 461000, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China)
Background aim and scopeStreet dust is an important pathway for pollution material in the urban environment. Street dust often becomes a sink for both industrial and residential pollutants, including waste incineration residues, vehicle exhaust emissions, and products of tire wear, metallic fragments, fossil fuel combustion emissions and garden soil. Among the pollutants in street dust, heavy metals are often more severe than others. Heavy metal elements are often not decomposed by microorganisms and may become enriched through the food chain, affecting human health, especially that of children and elderly people. Moreover, heavy metals have more affinity to establish metallic bonds with ferrous material, which leads to enhancement of the magnetic susceptibility of street dust.Many studies have reported excellent relationships between magnetic susceptibility and the levels of some heavy metals in street dust or industrial/urban soils, this relationship forms the basis for the use of magnetic methods in pollution studies. Therefore, magnetic susceptibility characteristics of street dust can be used to re fl ect a city's heavy metal pollution. Furthermore, heavy metal enrichment regularity in street dust research has important signi fi cance. Along with the remarkably fast development of the economy and urbanization of China, environmental pollution is becoming a more serious problem in many cities. Xuchang City is one core city of the Central Megalopolis of China; industrial pollution and vehicle exhaust emissions have aggravated the city's pollution in recent years, especially the particulate matter pollution. At present particle size effect of heavy metal of Xuchang City street dust has not been reported. This present research studied the Xuchang City street dust particle size and heavy metals concentration. Our main aims are to analyze the particle size and heavy metal concentration and to identify the relationships between them. The results may provide useful information for the establishment of control policies and environmental risk assessment of street dust in China.Materials and methodsParticle size and heavy metals in street dust samples of Xuchang City were analyzed. The enrichment regularity of heavy metals in different partical size and the reason of it were discussed. Twenty two street dust samples were collected around Xuchang. Street dust samples were collected by ground sweeping with a polyethylene scoop and a brush, and then the sample was put into a pocketsized sealable plastic bag. All samples were air-dried in the laboratory for more than 24 hours, and then passed through a 1-mm sieve to remove leaves, refuse and small stones before measurement in the laboratory. All sieved samples were fi nely ground, passed through a 200 mesh sieve and pressed into a tablet. Particle sizes of samples were determined usingMastersizer 2000 Laser Particle Sizer. Heavy metal concentrations of samples were determined using a PANalytical PW2403/00 X-ray fl uorescence (XRF) analyzer. Blank samples and the China national reference materials GSD-9 were used for accuracy control; the analytical accuracy was better than 10%.ResultsThe results showed that street dust was dominated by silt (average = 57.62%), followed by sand (average = 25.18%), and clay (average = 17.20%). Cr, Cu, Zn, Pb, Mn, Ni, and Co content in street dust ranged 60.9—277.4 μg·g-1, 15.5—116.4 μg·g-1, 76.5—398.7 μg·g-1, 25.1—63.7 μg·g-1, 356—519 μg·g-1, 9.0—25.6 μg·g-1, and 7.9—10.4 μg·g-1, with an average value of 96.8 ± 42.7 μg·g-1, 35.4 ± 23.8 μg·g-1, 145.3 ± 67.2 μg·g-1, 41.9 ± 10.4 μg·g-1, 408 ± 35.7 μg·g-1, 18.5 ± 4.1 μg·g-1, and 9.0 ± 0.7 μg·g-1, respectively. The average values of Zn, Pb, Cu, and Cr were 2.42, 2.14, 1.80, and 1.52 times higher than that of soil background values, indicating heavy pollution of these metals.DiscussionThe enrichment degree of Mn, Ni, and Co was relatively low. The results showed that the concentrations of Cu, Pb, Zn, and Cr were relatively strong positive with coarse silt, while Mn and Ni were relatively strong positive with fine silt. But these heavy metals content did not further increase with decreasing particle size. The concentrations of Co were relatively strong positive with clay, and the particle size effect of it was obvious. The differences in particle size effect of different heavy metals may be related with the relative strength of adsorption and isomorphous replacement.ConclusionsXuchang City street dust was dominated by silt, followed by sand and clay. The average values of Zn, Pb, Cu, and Cr were 2.42, 2.14, 1.80, and 1.52 times higher than soil background values, indicating heavy pollution of these metals. Cu, Pb, Zn, and Cr were relatively strong positive with coarse silt, while Mn and Ni were relatively strong positive with fine silt. Co was relatively strong positive with clay.Recommendations and perspectivesInitial data and useful information for establishing relevant pollution-control guidelines are provided.
street dust; heavy metal; Xuchang; particle size effect
YAN Hui, E-mail: yanhuichj08@163.com
10.7515/JEE201602008
2015-11-17;錄用日期:2016-02-04
Received Date:2015-11-17;Accepted Date:2016-02-04
河南省高等學(xué)校青年骨干教師資助計劃(2013GGJS-167); 河南省科技廳項目(152102310364)
Foundation Item:Foundation of Excellent Young Teachers of Henan Province (2013GGJS-167); Project of Science and Technology Department of Henan Province (15210231036)
閆 慧,E-mail: yanhuichj08@163.com