• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    植物全基因組選擇技術(shù)的研究進(jìn)展及其在玉米育種上的應(yīng)用

    2016-02-25 05:59:27李文蘭陳立濤李文才于彥麗孟昭東
    西北植物學(xué)報(bào) 2016年6期
    關(guān)鍵詞:玉米

    孫 琦,李文蘭,陳立濤,趙 勐,李文才,于彥麗,孟昭東*

    (1 山東省農(nóng)業(yè)科學(xué)院玉米研究所,濟(jì)南250100;2 萊陽市種子公司,山東萊陽265200)

    ?

    植物全基因組選擇技術(shù)的研究進(jìn)展及其在玉米育種上的應(yīng)用

    孫琦1,李文蘭1,陳立濤2,趙勐1,李文才1,于彥麗1,孟昭東1*

    (1 山東省農(nóng)業(yè)科學(xué)院玉米研究所,濟(jì)南250100;2 萊陽市種子公司,山東萊陽265200)

    摘要:全基因組選擇技術(shù)通過全基因組中大量的單核苷酸多態(tài)性標(biāo)記(SNP)和參照群體的表型數(shù)據(jù)建立 BLUP 模型估計(jì)出每一標(biāo)記的育種值,稱為估計(jì)育種值(GEBV),然后僅利用同樣的分子標(biāo)記估計(jì)出后代個(gè)體育種值并進(jìn)行選擇。該文就近年來國(guó)內(nèi)外有關(guān)影響基因組選擇效率的主要因素——參考群體的類型與大小、模型的建立方法、標(biāo)記的類型及其數(shù)目、性狀遺傳力,以及對(duì)基因組選擇效率的影響等方面的研究進(jìn)展進(jìn)行綜述,并介紹了全基因組選擇技術(shù)在玉米育種上應(yīng)用概況以及對(duì)未來的展望。

    關(guān)鍵詞:全基因組選擇;玉米;估計(jì)育種值

    With rapid development of the molecular biology and genomics, marker-assisted selection(MAS) emerged as the times require. MAS technology is as a kind of crop genetic improvement method combing the phenotypic and genetic value, which can realize genetic direct selection and effective polymerization[1]. When complex traits controlled by multiple genes need to be improved, MAS has two aspects of flaws. First, selection of the progeny population is established on the quantity traits location (QTL) mapping. But the result of QTL mapping basing on the bi-parental populations has no universality and couldn’t be applied accurately in breeding[2]. Second, the important traits were controlled by lots of small effective genes,lack of appropriate statistic method and breeding technology which will apply quantity genes to complex traits improvement[3]. New MAS technology-genomic selection (GS) emerged as the times require.

    1Origination and advantage of genomic selection (GS)

    Meuwissen first put forward genomic selection (GS) breeding strategy. GS uses a “training population” of individuals that have been genotyped and phenotyped. Best linear unbiased prediction (BLUP) model is established on the basis of the genotyped result of an individual and its breeding value (Mean performance of crosses with same tester) for the training population. The breeding value of “Candidate population” is estimated by BLUP model and genotypic data.without cross to tester and phenotypes record[4]. BLUP model takes genotypic data of untested individuals and produces genomic estimated breeding values (GEBVs). These GEBVs say nothing of the function of the underlying genes as the ideal selection criterion[5]. Genomic selection basis of GEBVs is superior to traditional breeding for increasing gains per unit time even if both models show the same efficiency. In principle, phenotypes value of the candidate individuals is non-essential for the selection, hence shortening the length of the breeding cycle[6].

    Genomic selection have several merits compared to the traditional MAS. (1) QTL mapping is not necessary for GS. Genomic selection differs from previous strategies such as linkage and association mapping in that it abandons the objective to map the effect of single gene and instead of focusing on the efficient estimation of breeding values on the basis of a large number of molecular markers, ideally covering the full genome[5]. (2) Genomic selection is more precision especially for early selection. Genotyping uses high density molecular markers which can estimate all of the QTL effects and explain the genetic variance for most of the traits. But MAS only uses several markers in traits selection. So genomic selection is more accurate than MAS[7]. (3) Genomic selection can shorten generation interval, accelerate genetic progress and reduce production cost. Genetic progress of GS is more than phenotypic selection 4%-25%. Cost of GS is less than traditional breeding 26%-56%[8]. (4) Selection efficiency of low heritability traits is higher for GS than MAS. (5) The criterion of GS is breeding value, sum of all of the allele genetic effects for each individual. It is judged by the mean performance of its cross progeny, not the performance of itself. So GS is more accurate[9].

    Genomic selection originated from animal breeding during last century. It has been widely used in dairy cattle breeding in America, Australia, New Zealand and so on[10-11]. It was also applied in broiler chickens and pigs breeding[12-13]. GS’ application in plant breeding was developed in recent years, which focused on simulation studies. It is used in maize[14], wheat[15], tree[16], sugar beet[17], Barley[18], triticale[19]and so on.

    Empirical study is performed in larger companies such as Monsanto and Pioneer-Dupond. Mark Sorrells and Jean-Luc Jannink are trying to use GS to increase the speed of variety improvement 3-4 times. The work is carried out with CYMMIT and performed four aspects to improve the yield of maize and wheat[20].

    Under the above context, the objective of this study is to review the essential factors affecting the GS in plant breeding. Maize is essential for global food security. More research of genomic selection on maize lauched in recent years[21-23]. The paper will introduce the advance on the application of GS in maize breeding. We than put forward the future research which should be carried out in maize breeding in China.

    2Affecting factors of genomic selection

    Factors that affect GS prediction accuracy of include the number of markers used for estimating the GEBVs[10], trait heritability[7], calibration population size[5], statistical models[24], number and type of molecular markers[25-26], linkage disequilibrium[27], effective population size[28], relationship between calibration and test set (TS)[29-31]and population structure[32-34].

    2.1Training population of genomic selection

    In animal breeding, we only discussed GS in the context of population-wide linkage disequilibrium, where the population might be defined as an entire breed of cattle, pig, or chicken. The need for high marker densities in GS may be reduced if the candidate population consists of progeny of the training population. In that case, an evenly spaced low-density subset of the markers typed on the training population can be used on the candidates, and scores for the full complement of markers can be inferred by cosegregation[35]. Because plants often produce very large full sibships (an F2population derived from a single F1by selfing is an example of such a sibship), however, there is also a tradition of QTL detection, MAS and GS within such sibships[5]. Bernardo compared F2, BC1, and BC2populations from an adapted×exotic maize cross as training population in the simulation experiment[14]. The result indicates that genomewide selection should start at F2rather than backcross population, even when the number of favorable alleles is substantially larger in the adapted parent than in the exotic parent. Compared to natural populations, genetic basis of F2populations is simpler because F2populations derive from only two inbred lines. So the biparental population size might be smaller than that of natural populations. Simulation studies have previously indicated that for three cycles of genomewide selection in an adapted×exotic cross, a population size ofNC0= 144 was generally sufficient[21]. Low density markers are suitable to F2populations[22]. But two disadvantages of F2populations exist. Biparental population requires separate model for training within each cross.The BLUP model is only suit for the progenies selection from the two parental lines. The progeny of F2population must be selected by the phenotypic value of F3testcrosses. Following progeny selection may be only according to BLUP model after F3.

    F2as training population often be suilt for cross-pollinated plant such as maize. Yusheng Zhao based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program[23]. In the study of Vannesaetal.[36], marker effects estimated in 255 diverse maize hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations.

    Wegenastetal. suggested that genomic selection was applied in plant breeding, however, not only within a specific bi-parental cross or within a diverse panel of elite lines but also rather within and among crosses[37]. Self-pollination plant often adopt natural population such as wheat or sugar. Würschum et al used 924 sugar beet lines as training population. The results suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection[17]. Hansetal. accessed the accuracy of GEBVs for rust resistance in 206 hexaploid wheat landraces[15].

    2.2Prediction model of genomic selection

    Genomic selection modeling takes advantage of the increasing abundance of molecular markers through modeling of many genetic loci with small effects[26,35,38]. Over the last decade, simulation and empirical cross-validation studies in plants have shown GS is more effective than traditional MAS strategies that use only a subset of markers with significant effects[5-7,39].

    Estimation methods of allelic effects include least squares regression[40], ridge regression BLUP (RR-BLUP), principle component analysis[41-42]and Bayes regression[43]. In essence for least squares, chromosome fragments or markers are selected associated to the traits by genome-wide association studies (GWAS) at the same time and then the effect of the fragments is estimated[44]. RR-BLUP method regards the fragment effects as random effects. The marker effect was estimated by linear mixed models. The sum of fragments effect is breeding value for an individual[43]. Bayes methods combines the prior distribution of marker effect variance and data collection. Frenquently used Bayes methods conclude Bayes A and Bayes B. Main difference between Bayes A and Bayes B is that Bayes A permits different variance for different markers and Bayes B permits that the variance of some markers is zero[45].

    Simulation studies show that the prediction accuracy of Bayes method is best and least squares is weakest. The accuracy rate of RR-BLUP is slightly smaller than Bayes A. Even so, RR-BLUP has four aspects superior to Bayesian method. First, Bayesian method is complex and need super computer. But computer requirement is lower and calculation speed is higher for RR-BLUP. Marker effects are estimated by RR-BLUP in SAS PROC IML[46]. Second, prediction within families was more accurate in BLUP than Bayes B. Regression coefficient b of RR-BLUP is nearer to 1 than Bayes A[47]. Habieretal. showed that RR-BLUP is more effective at capturing genetic relationships because it fits more markers into the prediction Model[27]. In contrast, Bayes B is more effective at capturing LD between markers and QTL. Third, RR-BLUP is more accurate than other method when the number of QTLs increases or the heredity is higher[18]. Fourth, BLUP led to lower inbreeding and a smaller reduction of genetic variance compared to Bayes and PLS[48]. From above, we can conclud that BLUP methods is better than Bayesian regression for plant models.

    In addition, machine-learning methods also can be used to predict the marker effect, including support vector machine (SVM) , booting and random forest (RF). Ogutuetal. compared these methods for genomic selection. The result shows that the correlation between the predicted and true breeding values is 0.547 for boosting, 0.497 for SVMs,and 0.483 for RF, indicating better performance for boosting than for SVMs and RF[49].

    2.3Other factors affecting prediction accuracy

    In genome-wide selection methods, prediction accuracy is affected by population size (N), average hereditary of traits (h2) and marker numbers(NM)[50]. Simulation studies showed that the population structure is also crucial for the prediction accuracy in genomic selection[27].

    Prediction accuracy increases with markers density. Markers number on a certain length genome also directly affects total information of genetic markers. If SSR markers density increases from 0.25Ne/morgan(Ne, effective population size) to 2Ne/morgan, prediction accuracy will be improved from 0.63 to 0.83. If SNP markers density increases from 1Ne/morganto 8Ne/morgan, prediction accuracy will be improved from 0.69 to 0.86. Even at the highest tested densities of 2NeSSR markers per Morgan or 8NeSNP markers per Morgan, accuracy had not reached a plateau[5]. Meanwhile, more markers number, more easy to get the Linkage disequilibrium(LD) markers. Emily found that in the biparental populations, there was no consistent gain in genome-wide prediction (rmp) from increasing marker density above one marker per 12.5 cM[22]. Zhaoetal. revealed that the accuracy was nearly reaching a plateau at 800 SNPs when the number of markers varied from 100 to 800[23]. The reason is that genome is sufficiently saturated with markers when the prediction accuracy arrives at a plateau[28,50]. The number of markers needed for accurate predictions of genotypic values depends on the extent of linkage disequilibrium (LD) between markers and QTL[4]and also on the germplasm under consideration[18].

    Different marker type has different polymorphism information content (PIC). Comparing SSR and SNP markers, they found that for similar accuracies, the SNP markers required a density of 2 to 3 times that of the SSR[5].

    Simulation studies showed that the population size is crucial for the prediction accuracy in genomic selection[27]. The result of Emilyetal. indicated that prediction accuracyrmpincreased as population size N increased. In the biparental maize population and with the highest markers numberNM,(1 213 markers) and hereditaryh2= 0.30, the prediction accuracy for grain yield wasrmp= 0.19 withN= 48,rmp= 0.26 withN= 96, andrmp= 0.33 withN= 192[22]. Zhao Yusheng observed a monotonic increase in the prediction accuracy for grain yield with increasing population size without any substantial decrease in the slope[23]. The study of Bernardo also indicated that lager poluation size would get higher prediction precision[14]. But F2population size ofNC0= 144 was generally sufficient[21].

    Training population structure is also an important factor affecting prediction accuracy of genomic selection for multi-parental populations. Training population structure set methods conclude random sampling, unidirectional sampling (selecting individuals with highest genotypic values), bidirectional sampling (selecting individuals with highest or lowest genotypic values)[50-51]. This bidirectional selection showed to be much more powerful than random sampling[52]. Yusheng Zhao observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. Bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs[53].

    For the same trait within the same population, prediction accuracy(rmp) will remain unchanged for different combinations of population size (N) and trait hereditary (h2). Decrease on h2can be compensated by a proportional increase inN(and vice versa) so thatrmpis maintained. On the other hand, traits with initially low h2can be evaluated with largerNor theh2for a subset of traits can be increased by the use of additional testing resources. Different traits, however, vary in their prediction accuracy even whenN,h2, andNM(markers number) are constant. Yield traits had lower prediction accuracy than other traits despite the constantN,h2, andNM. Simulation results indicated thatrmpis also lowest for yield traits even when itsh2is as high as other traits. Plant height and lodging are always predicted most accurately followed by flowering time[22]. Empirical evidence and experience on the predictability of different traits are necessary in designing training populations.

    3Genomic selection in maize breeding

    3.1Origination of GS in maize

    The key technology of GS is the maize hybrid prediction by BLUP model with markers effects or coefficient of parentage. It was used to predict the single-cross performance in maize hybrid breeding at first. The BLUP model is established based on the tested hybrids data and the markers information of their parents. The performance of untested hybrids is predicted by the BLUP model and the markers data of the parents[54].

    Bernardo devoted himself to hybrids prediction by BLUP model in maize[55-58]. The coefficient of relative between theory and actual observation was 0.688~0.800 by RFLP markers[54]. BLUP is suitable for hybrid performance prediction since the trait only has moderate heritability. Prediction accuracy of molecular marker effects is higher than phylogenetic relationship[58]. With the development of molecular markers, new molecular marker type emerged. Simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) were widely used. Manje Gowdaetal. found that prediction accuracy of flower time and plant height was above 0.8 with SSR markers in maize[19]. Research of Massmanetal. indicated that prediction accuracy of grain yield was 0.8, and root logging ratio was 0.87 using SSRmarkers[59]. But the prediction effect of grain yield was only 0.50~0.66, and root logging ratio was only 0.31~0.45 with coefficient of parentage[55]. Then it indicated that molecular markers was more suitable for hybrid performance prediction than coefficient of parentage.

    Then scientists found that BLUP was not only used to hybrid performance prediction, but also the breeding value of individuals among the maize population. So BLUP was used to individuals selection of F2population in selection and breeding of inbred lines. Hybrid performance prediction lay the foundation for the genome-wide selection in maize.

    3.2Application of genomic selection in maize

    Bernardo’s laboratory began to study applying GS to maize breeding in Minnesota University of America[21]. They did plenty of simulation and empirical experiments. Piepho in German and Robert in Brazil also tried to study using GS in maize breeding[60-61]. GS utility in maize breeding consist of two sides, hybrids performance prediction and improvement of inbred lines. He devoted to inbred lines improvement using GS. The BLUP model of biparental populations from two inbred lines is only suit for the progeny of the parents. Genomewide selection as proposed in maize involves two steps[21]. First, a segregating maize population is genotyped and evaluated for testcross performance of F3family. Based on the genotypic and phenotypic data, breeding values associated with a large set of markers (e.g., 256 to 512 markers) are calculated for the traits of interest. Significance tests for markers are not used, and the effects of all markers are fitted as random effects in a linear model by best linear unbiased prediction (BLUP). Second, two or three generations of selection based on all markers are conducted in a year-round nursery (e.g., Hawaii or Puerto Rico) or greenhouse. Trait values are predicted as the sum of an individual plant’s marker values across all markers, and selection is subsequently based on these genomewide prediction. According to the steps, Emily (2013b) introgressed semidwarf germplasm to U.S. Corn belt inbred and found that genomewide selection from Cycle 1 until Cycle 5 either maintained or improved on the gains from phenotypic selection achieved in Cycle 1[62].

    The results of Bernardo indicated that a useful strategy for the rapid improvement of an adapted×exotic cross involves 7 to 8 cycles of genomewide selection starting in the F2[14]. Benjaminetal. demonstrated that progressive selfing had a significant and positive impact on genomic selection gains. In particular, selfing to the F8produced a 72% increase over F2gains[63]. However, most of the gains are realized by the F5generation (95% of the F8gains). Also note that the F8and DH performed similarly, consistent with previous observations[64].

    In the research of Bernardo, the training population is the specific bi-parental populations from the two parental lines, so the BLUP model is suit for the progeny of the two inbred lines. Other experiments of GS in maize are about multi-parental populations as training population. Study of Yusheng Zhao was based on experimental data of six segregating populations from a half-diallel mating design. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs[23]. These result of the study might be as genomic prediction model for further breeding elite maize lines between the six populations. In the study of Vanessaetal., marker effects estimated in 255 diverse maize hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations[36]. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set.

    4Future research in maize breeding

    GS is just beginning to be implemented, but it will take long time to be used in maize breeding. In previous study, training population was only from several inbred lines, even if two inbred lines. It couldn’t be implemented by other breeding program. Future research should focus on two sides of work. First, we should commit to build a generalized prediction model for some kinds of inbred lines such as yield, quality and so on. But these traits were complex composed of a great deal of genes. Traditional MAS technology couldn’t realize the traits selection in maize breeding. 973 Plan “Basic study on breeding of genome-wide selection of yield and quality traits in maize” has been carried out in 2014. The plan will systematicly analyze the genetic basis of maize yield and quality, and then build genome-wide selection breeding model. It will afford new technology for maize breeding. Seond,in China, abiotic stress tolerance also reduces the yield seriously in maize especially drought tolerance. Drought is the foremost factor restricting maize production, often resulting in 20-50% maize yield reduction every year in China[65]. If we establish prediction model of drought tolerance, it will afford the theory and technology support of maize breeding. Consequently, our research team will carried out study on the genomic selection program of drought tolerance.

    References:

    [1]STUBER C W, POLACCO M, SENIOR M L. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential[J].CropScience, 1999,39:1 571-1 583.

    [2]MOOSE S P, MUMM R H. Molecular plant breeding as the foundation for 21st century crop improvement[J].PlantPhysiology, 2008, 147: 969-977.

    [3]BERNARDO R. Molecular markers and selection for complex traits in plants: learning from the last 20 years[J].CropScience, 2008, 48:1 649-1 664.

    [4]MEUWISSENT H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J].Genetics, 2001, 157: 1 819-1 829.

    [5]JANNINK J L, LORENZ A J, IWATA H. Genomic selection in plant breeding: from theory to practice[J].BriefingsinFunctionalGenomics, 2010, 9(2):166-177.

    [6]HEFFNER E L, JANNINK J L, IWATA H,etal. Genomic selection accuracy for grain quality traits in biparental wheat populations[J].CropScience, 2011, 51: 2 597-2 606.

    [7]HEFFNER E L, SORRELLS M E, JANNINK J L. Genomic selection for crop improvement[J].CropScience, 2009, 49: 1-12.

    [8]MAYOR P J , BERNARDO R. Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2populations[J].CropScience, 2009, 49:1 719-1 725.

    [9]MASSMAN J M, JUNG H J G, BERNARDO R. Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize[J].CropScience, 2012, 53(1): 58-66.

    [10]SCHAEFFER L R. Strategy for applying genome-wide selection in dairy cattle[J].JournalofAnimalBreedingGenetic, 2006, 123: 218-223.

    [11]GODDARD M E, HAYES B J. Genomic selection[J].JournalofanimalBreedingGenetics, 2007, 124: 323-330.

    [12]DAETWYLER H D, VILLANUEVA B, BIJMA P. Inbreeding in genome-wide selection[J].JournalofAnimalBreedingGenetic, 2007, 124: 369-376.

    [13]TU L, WOOLLIAMS J A, SIGBJORN L. The accuracy of genomic selection in norwegian red cattle assessed by cross validation[J].Genetics, 2009, 183: 1 119-1 126.

    [14]BERNARDO R. Genomewide selection for rapid introgression of exotic germplasm in maize[J].CropScience, 2009, 49: 419-425.

    [15]HANS D D, BANSAL U K, BARIANA H S,etal. Genomic prediction for rust resistance in diverse wheat landraces[J].TheoryandAppliedGenetics, 2014, 127: 1 795-1 803.

    [16]MARIE D, BOUVET J M. Genomic selection in tree breeding: testing accuracy of prediction models including dominance effect[J].BMCProceedings, 2011, 5(Supply7): 1-2.

    [17]WüRSCHUM T, REIF J C , KRAFT T,etal. Genomic selection in sugar beet breeding populations[J].BMCGenetics, 2013, 14: 85-92.

    [18]ZHONG S Q, DEKKERS J C M, FERNANDO R L,etal. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study[J].Genetics, 2009, 182(1): 355-364.

    [19]GOWDA M, ZHAO Y S , MAURER H P,etal. Best linear unbiased prediction of triticale hybrid performance[J].Euphytica, 2013, 191: 223-230.

    [20]吳永升, 邵俊明, 周瑞陽, 等. 植物數(shù)量性狀全基因組選擇研究進(jìn)展[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2012,25(4): 1 510-1 514.

    WU Y S, SHAO J M, ZHOU R Y,etal. Reviews of genome- wide selection for quantitative traits in plants[J].SouthwestChinaJournalofAgriculturalSciences, 2012, 25(4): 1 510-1 514.

    [21]BERNARDO R, YU J. Prospects for genome-wide selection for quantita-tive traits in maize[J].CropScience,2007, 47: 1 082-1 090.

    [22]EMILY C, BERNARDO R. Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers[J].PlantGenome, 2013a, 6(1): 1-7.

    [23]ZHAO Y S, GOWDA M, LIU W X,etal. Accuracy of genomic selection in European maize elite breeding populations[J].TheoreticalandApplliedGenetics, 2012a, 124: 769-776.

    [24]HESLOT N, YANG H P, SORRELLS M E,etal. Genomic selection in plant breeding: a comparison of models[J].CropScience, 2012, 52: 146-160.

    [25]CHEN X, SULLIVAN P F. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput[J].PharmacoGenetics, 2003, 3: 77-96.

    [26]POLAND J, RIFE T W. Genotyping-by-sequencing for plant breeding and genetics[J].PlantGenetics, 2012, 5: 92-102.

    [27]HABIER D, FERNANDO R L, DEKKERS J C M. The impact of genetic relationship information on genome-assisted breeding values[J].Genetics, 2007, 177: 2 389-2 397.

    [28]DAETWYLER H D, VILLANUEVA B, WOOLLIAMS J A. Accuracy of predicting the genetic risk of disease using a genome-wide approach[J].PLoSOne, 2008, 3: 3 395.

    [29]ALBRECHT T, WIMMER V, AUINGER H J,etal.Genome-based prediction of testcross values in maize[J].TheoreticalandApplliedGenetics, 2011, 123: 339-350

    [30]CLARK S, HICKEY J, WERF J. Different models of genetic variation and their effect on genomic evaluation[J].GeneticSelectionEvolution, 2011, 43: 18.

    [31]PSZCZOLA M, STRABEL T, MULDER H A,etal.Reliability of direct genomic values for animals with different relationships within and to the reference population[J].JournalofDairyScience, 2012, 95z: 389-400.

    [32]SAATCHI M, MCCLURE M C, MCKAY S D,etal. Accuracies of genomic breeding values in American Angus beef cattle using k-means clustering for cross-validation[J].GeneticSelectionEvolution, 2011, 43: 40.

    [33]WINDHAUSEN V S, ATLIN G N, CROSSA J,etal. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments[J].GenesGenomesGenetic, 2012, 2:1 427-1 436.

    [34]GUO Z, TUCKER D M, BASTEN C J,etal. The impact of population structure on genomic prediction in stratified populations[J].TheoreticalandApplliedGenetics, 2014, 127: 749-762

    [35]HABIER D, FERNANDO RL, DEKKERS J C M. Genomic selection using low-density marker panels[J].Genetics, 2009, 182: 343-353.

    [36]VANESSA S W, ATLIN G N , HICKEY J M,etal. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments[J].GenomicSelection, 2012, 2(14):1 427-1 436.

    [37]WEGENAST T, LONGIN C F H, UTZ H F,etal. Hybrid maize breeding with doubled haploids IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance[J].TheoreticalandApplliedGenetics, 2008, 117: 251-260.

    [38]SOLBERG T R, SONESSON A K, WOOLLIAMS J A,etal. Genomic selection using different marker types and densities[J].JournalofAnimalBreedingGenetics, 2008, 86(10): 2 447-2 454.

    [39]LORENZANA R E, BERNARDO R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations[J].TheoreticalandAppliedGenetics, 2009, 120:151-161.

    [40]WOLD H, JOHNSON NL, KOTZ S. Partial least squares[C]. Encyclopedia of Statistical Science. New York: Wiley,1985:581-91.

    [41]SOLBERG T R, SONESSON A K, WOOLLIAMS J A,etal. Reducing dimensionality for prediction of genome-wide breeding values[J].GeneticSelectionEvolution, 2009, 41(1): 29.

    [42]CROSSA J, CAMPOS G, PéREZ P,etal. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers[J].Genetics, 2010, 186(2): 713-724.

    [43]MEUWISSEN T H E, SOLBERG T R, SHEPHERD R,etal. A fast algorithm for Bayes B type of prediction of genome-wide estimates of genetic value[J].GeneticSelectionEvolution, 2009, 41:2.

    [44]WANG W Y S, BARRATT B J, CLAYTON D G,etal. Genome wide association studies: theoretical and practical concerns[J].NatureReviewGenetics, 2005, 6(2): 109-118.

    [45]李恒德, 包振民, 孫效文. 基因組選擇及其應(yīng)用[J]. 遺傳, 2011, 33(12): 1 308-1 316.

    LI H D, BAO Z M, SUN X W. Genomic selection and its application[J].Hereditas, 2011, 33(12): 1 308-1 316.

    [46]SAS Institute. The SAS system for Windows. Release 9.2. SAS Inst., Cary, NC, 2009.

    [47]LUND M S, SAHANA G, KONING D J,etal. Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection[J].BMCProceedings, 2009, 3(Suppl. 1):S1.

    [48]BASTIAANSEN J W, COSTER A, CALUS M P,etal. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures[J].GeneticsSelectionEvolution, 2012, 4: 3-16.

    [49]OGUTU J O , PIEPHO H P, TORBEN S S. A comparison of random forests, boosting and support vector machines for genomic selection[J].BMCProceedings, 2011, 5(Suppl 3):S11.

    [50]DAETWYLER H D, WONG R P, VILLANUEVA B,etal. The impact of genetic architecture on genome-wide evaluation methods[J].Genetics, 2010, 185: 1 021-1 031.

    [51]JULIO I, JANNINK J L, AKDEMIR D,etal. Training set optimization under population structure in genomic selection[J].TheoreticalandApplliedGenetics, 2014,128(1):145-158.

    [52]NAVABI A, MATHER D E, BERNIER J,etal. QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses[J].TheoreticalandApplliedGenetics, 2009, 118: 347-358.

    [53]ZHAO Y S, GOWDA M, LONGIN F H,etal. Impact of selective genotyping in the training population on accuracy and bias of genomic selection[J].TheoreticalandApplliedGenetics, 2012b, 125: 707-713.

    [54]翟虎渠, 王建康. 應(yīng)用數(shù)理遺傳學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007:185-204.

    ZHAI H Q, WANG J K. Applied Quantitative Genetics[M]. Beijing: China Agricultural Science and Technology Publishing House, 2007: 185-204.

    [55]BERNARDO R. Prediction of maize single-cross performance using RFLPs and information from related hybrids[J].CropScience, 1994, 34: 20-25.

    [56]BERNARDO R. Genetic models for predicting maize single-cross performance in unbalanced yield trial data[J].CropScience, 1995, 35: 141-147.

    [57]BERNARDO R. Best linear unbiased prediction of maize single cross performance[J].CropScience, 1996, 36: 50-56.

    [58]BERNARDO R. Marker-assisted best linear unbiased prediction of single-cross performance[J].CropScience,1999, 39:1 277-1 282.

    [59]MASSMAN J M, GORDILLO A, LORENZANA R E,etal. Genomewide predictions from maize single-cross data[J].TheoreticalandApplliedGenetics, 2013, 126:13-22.

    [60]PIEPHO H P. Ridge regression and extensions for genomewide selection in maize[J].CropScience, 2009, 49:1 165-1 176.

    [61]ROBERTO F N, JULIO C D, éDER C M L,etal. Genome wide selection in for tropical maize root traits under conditions of nitrogen and phosphorus stress[J].ActaScientiarum, 2012, 34(4):389-395.

    [62]EMILY C, BERNARDO R. Genomewide selection to introgress semidwarf maize germplasm into U.S. Corn Belt inbreds[J].CropScience, 2013b, 53: 1 427-1 436.

    [63]BENJAMIN M, COMBE J L, TANKSLEY S D. Selfing for the design of genomic selection experiments in biparental plant populations[J].TheoreticalandApplliedGenetics, 2013, 126: 2 907-2 920.

    [64]BORDES J, CHARMET G, VAULX R D,etal. Doubled-haploid versus single-seed descent and S1-family variation for testcross performance in a maize population[J].Euphytica, 2007, 154: 41-51.

    [65]HU, R F, MENG E C, ZHANG S H,etal. Prioritization for maize research and development in China[J].ScientiaAgriculturaSinica, 2004, 37: 781-787.

    (編輯:宋亞珍)

    文章編號(hào):1000-4025(2016)06-1269-09

    doi:10.7606/j.issn.1000-4025.2016.06.1269

    收稿日期:2015-10-12;修改稿收到日期:2016-04-28

    基金項(xiàng)目:國(guó)家自然科學(xué)基金(31401457);山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(SDAIT-02-04);泰山學(xué)者種業(yè)計(jì)劃課題

    作者簡(jiǎn)介:孫琦(1978-),女,博士,副研究員,主要從事玉米遺傳育種研究。E-mail:15069169013@sina.cn

    *通信作者:孟昭東,研究員,主要從事玉米遺傳育種研究。E-mial:mengzd@saas.ac.cn

    中圖分類號(hào):Q789

    文獻(xiàn)標(biāo)志碼:A

    Research Progress on Plant Genomic Selection(GS) and Its Application in Maize Breeding

    SUN Qi1, LI Wenlan1, CHEN Litao2, ZHAO Meng1, LI Wencai1,YU Yanli1, MENG Zhaodong1*

    (1 Maize Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China; 2 Laiyang City Seed Corporation, Laiyang, Shandong 265200, China)

    Abstract:Marker-assisted selection (MAS) technology could realize direct genetic selection, but it must base on QTL mapping. Genomic selection (GS), as the newest MAS method, has much advantage compared to traditional MAS technology,especially QTL mapping not necessary. In this paper, the factors affecting prediction accuracy of GS were reviewed, including training population type, prediction model, marker number, population size, population structure, hereditary of traits and so on. The application of GS in maize breeding was also introduced as well as hybrids performance prediction. We then predicated the future research and application of GS in maize breeding.

    Key words:genomic selection (GS); maize; GEBV

    猜你喜歡
    玉米
    掰玉米
    收玉米啦!
    玉米苗發(fā)黃怎么辦
    玉米接連暴跌 真的要崩盤?
    當(dāng)前玉米追肥要注意啥
    玉米適當(dāng)晚收好處多
    童年的烤玉米
    我們都是“玉米人”
    幽默大師(2020年5期)2020-06-22 08:19:18
    我的玉米送給你
    玉米
    大灰狼(2018年6期)2018-07-23 16:52:44
    日日干狠狠操夜夜爽| 黄频高清免费视频| 91av网站免费观看| 亚洲av成人av| 少妇被粗大的猛进出69影院| 午夜影院日韩av| 波多野结衣高清无吗| 黄色 视频免费看| 国产亚洲精品久久久久久毛片| 又紧又爽又黄一区二区| 国产精品亚洲一级av第二区| 手机成人av网站| 亚洲三区欧美一区| 女人被躁到高潮嗷嗷叫费观| 国产三级在线视频| 男女做爰动态图高潮gif福利片 | 亚洲精品在线观看二区| 国产av在哪里看| 人人妻人人澡欧美一区二区 | 日本vs欧美在线观看视频| 天堂影院成人在线观看| 亚洲在线自拍视频| 午夜免费鲁丝| 中文字幕高清在线视频| 午夜日韩欧美国产| 又黄又粗又硬又大视频| 成年版毛片免费区| 精品国产超薄肉色丝袜足j| 18禁观看日本| 亚洲自拍偷在线| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av香蕉五月| 精品乱码久久久久久99久播| 国产精品av久久久久免费| 国产国语露脸激情在线看| 一级毛片女人18水好多| 女人被躁到高潮嗷嗷叫费观| 国产一区二区三区在线臀色熟女| 精品久久蜜臀av无| 又黄又粗又硬又大视频| 久久精品aⅴ一区二区三区四区| cao死你这个sao货| av天堂久久9| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 在线观看午夜福利视频| 99精品在免费线老司机午夜| 精品人妻1区二区| or卡值多少钱| 亚洲欧美精品综合久久99| 熟妇人妻久久中文字幕3abv| 欧美黑人欧美精品刺激| 操出白浆在线播放| av电影中文网址| 女人高潮潮喷娇喘18禁视频| videosex国产| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 好看av亚洲va欧美ⅴa在| 丝袜在线中文字幕| 欧美黄色片欧美黄色片| 国产成人影院久久av| 欧美一级毛片孕妇| 国产亚洲精品综合一区在线观看 | 母亲3免费完整高清在线观看| www.www免费av| 香蕉国产在线看| 久99久视频精品免费| 97超级碰碰碰精品色视频在线观看| 成人18禁在线播放| 免费观看精品视频网站| 99国产精品一区二区三区| 一边摸一边做爽爽视频免费| 伊人久久大香线蕉亚洲五| 在线观看免费视频网站a站| 免费高清视频大片| 亚洲九九香蕉| 成年人黄色毛片网站| 免费在线观看亚洲国产| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 午夜久久久在线观看| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利一区二区在线看| 国产精品久久视频播放| 一级毛片精品| 国产亚洲精品第一综合不卡| 国产精品久久久久久人妻精品电影| 一卡2卡三卡四卡精品乱码亚洲| 美女国产高潮福利片在线看| 美女高潮喷水抽搐中文字幕| 免费在线观看亚洲国产| 9热在线视频观看99| 久久婷婷人人爽人人干人人爱 | 国产成人欧美| 亚洲无线在线观看| 国产97色在线日韩免费| 亚洲欧美日韩另类电影网站| 琪琪午夜伦伦电影理论片6080| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 亚洲一区高清亚洲精品| 亚洲精华国产精华精| 99riav亚洲国产免费| 欧美黄色淫秽网站| 男男h啪啪无遮挡| 搞女人的毛片| 国产三级在线视频| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 国产激情久久老熟女| 精品久久久精品久久久| 每晚都被弄得嗷嗷叫到高潮| 午夜a级毛片| 国产一区二区激情短视频| 久久精品91无色码中文字幕| 最新在线观看一区二区三区| 中文字幕最新亚洲高清| 久久久久久久久免费视频了| 熟妇人妻久久中文字幕3abv| 国产99白浆流出| 好男人电影高清在线观看| 久久中文看片网| 18禁美女被吸乳视频| 欧美日韩一级在线毛片| 色av中文字幕| 国产精品野战在线观看| 精品国产亚洲在线| 男女做爰动态图高潮gif福利片 | 美女扒开内裤让男人捅视频| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 1024香蕉在线观看| e午夜精品久久久久久久| 不卡av一区二区三区| 久久欧美精品欧美久久欧美| 女同久久另类99精品国产91| 国产日韩一区二区三区精品不卡| 91在线观看av| 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 国产亚洲精品久久久久5区| 老鸭窝网址在线观看| 免费在线观看黄色视频的| 精品久久蜜臀av无| 黄片播放在线免费| 岛国在线观看网站| 日本五十路高清| 91精品三级在线观看| 久久人妻熟女aⅴ| 99久久国产精品久久久| 法律面前人人平等表现在哪些方面| 国产熟女xx| 亚洲一区二区三区色噜噜| 在线观看免费视频网站a站| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 成人三级黄色视频| 久久香蕉激情| 亚洲色图av天堂| 99精品欧美一区二区三区四区| 国产成人一区二区三区免费视频网站| 又紧又爽又黄一区二区| 欧美激情高清一区二区三区| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 国产精品永久免费网站| 久久精品91蜜桃| 亚洲av电影在线进入| 美女扒开内裤让男人捅视频| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 超碰成人久久| 亚洲久久久国产精品| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 制服丝袜大香蕉在线| svipshipincom国产片| 女人被躁到高潮嗷嗷叫费观| 夜夜爽天天搞| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 一级作爱视频免费观看| 麻豆成人av在线观看| 国产精品二区激情视频| 亚洲avbb在线观看| 韩国精品一区二区三区| a在线观看视频网站| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 女警被强在线播放| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久午夜电影| 亚洲精品国产一区二区精华液| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站 | 亚洲精品国产色婷婷电影| 18禁观看日本| 亚洲五月天丁香| 国产成人精品久久二区二区免费| 亚洲男人天堂网一区| 性欧美人与动物交配| 亚洲三区欧美一区| 色播亚洲综合网| 精品国内亚洲2022精品成人| 亚洲视频免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看影片大全网站| 免费看十八禁软件| 欧美国产精品va在线观看不卡| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 悠悠久久av| 亚洲av日韩精品久久久久久密| avwww免费| 亚洲激情在线av| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 亚洲午夜精品一区,二区,三区| 精品国产美女av久久久久小说| 亚洲人成电影观看| 免费在线观看日本一区| 亚洲精品国产区一区二| 丁香欧美五月| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3 | e午夜精品久久久久久久| 久久 成人 亚洲| 色在线成人网| 欧美日韩亚洲综合一区二区三区_| 国内久久婷婷六月综合欲色啪| 久久青草综合色| 婷婷精品国产亚洲av在线| 美女高潮喷水抽搐中文字幕| 亚洲欧美激情综合另类| 国产伦一二天堂av在线观看| 午夜福利18| av超薄肉色丝袜交足视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩精品网址| 国产一区二区激情短视频| 精品无人区乱码1区二区| 9191精品国产免费久久| 18禁观看日本| 一个人免费在线观看的高清视频| 久久久久久亚洲精品国产蜜桃av| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| 国产高清激情床上av| 丝袜人妻中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 国产麻豆成人av免费视频| 国产精品亚洲美女久久久| 国产精品久久久av美女十八| 满18在线观看网站| 精品午夜福利视频在线观看一区| 97人妻天天添夜夜摸| 宅男免费午夜| 精品熟女少妇八av免费久了| 热re99久久国产66热| 久久人人精品亚洲av| 国产高清有码在线观看视频 | 欧美亚洲日本最大视频资源| 国产一区二区激情短视频| 国产成人一区二区三区免费视频网站| 丝袜美足系列| 999精品在线视频| 久久人妻熟女aⅴ| 亚洲男人的天堂狠狠| 国产精品99久久99久久久不卡| 少妇被粗大的猛进出69影院| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 久久伊人香网站| 欧美绝顶高潮抽搐喷水| 深夜精品福利| 久久午夜亚洲精品久久| 国产成人欧美在线观看| 亚洲色图av天堂| 亚洲av美国av| 老司机午夜十八禁免费视频| 亚洲五月色婷婷综合| 88av欧美| 国产麻豆69| 美国免费a级毛片| АⅤ资源中文在线天堂| 免费在线观看亚洲国产| 亚洲精品一卡2卡三卡4卡5卡| 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 欧美激情久久久久久爽电影 | 国产单亲对白刺激| 一级a爱视频在线免费观看| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 久久久久久久久免费视频了| 日本免费一区二区三区高清不卡 | 麻豆一二三区av精品| 免费不卡黄色视频| 国产免费男女视频| 18禁国产床啪视频网站| 亚洲精品久久国产高清桃花| 桃色一区二区三区在线观看| 在线观看www视频免费| 国产成人系列免费观看| 国产精华一区二区三区| 麻豆一二三区av精品| 午夜福利18| 亚洲五月天丁香| 午夜免费鲁丝| 老熟妇仑乱视频hdxx| 一夜夜www| 久久影院123| 一进一出抽搐gif免费好疼| or卡值多少钱| 成人亚洲精品av一区二区| 久久香蕉精品热| 18禁国产床啪视频网站| av福利片在线| 久久精品亚洲精品国产色婷小说| 国产高清激情床上av| 久久午夜亚洲精品久久| 男男h啪啪无遮挡| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频 | 中文字幕av电影在线播放| 99国产精品免费福利视频| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 黄色丝袜av网址大全| 日本 av在线| 精品久久久久久成人av| 一区二区日韩欧美中文字幕| 国产片内射在线| 久久亚洲精品不卡| 国产高清videossex| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 巨乳人妻的诱惑在线观看| 久久精品国产99精品国产亚洲性色 | 免费高清视频大片| 丁香六月欧美| 90打野战视频偷拍视频| 好看av亚洲va欧美ⅴa在| 久久久精品欧美日韩精品| 在线国产一区二区在线| 欧美日韩亚洲综合一区二区三区_| 韩国av一区二区三区四区| 日韩视频一区二区在线观看| av电影中文网址| 99国产综合亚洲精品| 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 咕卡用的链子| 亚洲七黄色美女视频| 99国产精品一区二区三区| 性色av乱码一区二区三区2| 又黄又粗又硬又大视频| cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 在线观看66精品国产| 亚洲精品久久国产高清桃花| 欧美日韩黄片免| 后天国语完整版免费观看| 欧美成人午夜精品| 好男人在线观看高清免费视频 | 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看| 亚洲精品粉嫩美女一区| 色播在线永久视频| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影 | 欧美一区二区精品小视频在线| av福利片在线| 日本五十路高清| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 在线播放国产精品三级| 亚洲久久久国产精品| 国产99久久九九免费精品| 亚洲熟妇熟女久久| 成人精品一区二区免费| 制服丝袜大香蕉在线| 色婷婷久久久亚洲欧美| 日本 欧美在线| 国产视频一区二区在线看| 禁无遮挡网站| 好男人电影高清在线观看| aaaaa片日本免费| 亚洲自拍偷在线| 欧美一级毛片孕妇| 他把我摸到了高潮在线观看| 怎么达到女性高潮| 一个人免费在线观看的高清视频| 欧美性长视频在线观看| 母亲3免费完整高清在线观看| 久久国产精品影院| 69精品国产乱码久久久| 亚洲精品一区av在线观看| 欧美中文日本在线观看视频| 日本 av在线| av天堂久久9| 十八禁网站免费在线| 脱女人内裤的视频| 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | 午夜视频精品福利| 亚洲免费av在线视频| 一级a爱片免费观看的视频| 校园春色视频在线观看| 在线免费观看的www视频| 看免费av毛片| 亚洲性夜色夜夜综合| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品无人区| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 免费在线观看影片大全网站| av片东京热男人的天堂| 国产主播在线观看一区二区| 我的亚洲天堂| 亚洲性夜色夜夜综合| 757午夜福利合集在线观看| 亚洲精华国产精华精| 精品国产亚洲在线| 精品一区二区三区四区五区乱码| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 日本精品一区二区三区蜜桃| 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 色尼玛亚洲综合影院| 国产成年人精品一区二区| 男男h啪啪无遮挡| 男女之事视频高清在线观看| 一边摸一边做爽爽视频免费| 99久久国产精品久久久| 亚洲国产看品久久| 久久久久久久久免费视频了| 国产真人三级小视频在线观看| 国内精品久久久久久久电影| av在线播放免费不卡| 久久影院123| 久久久久久国产a免费观看| 国产熟女xx| 啪啪无遮挡十八禁网站| 丝袜在线中文字幕| 女人被狂操c到高潮| 国产av一区二区精品久久| 国产精品一区二区免费欧美| 亚洲狠狠婷婷综合久久图片| 午夜激情av网站| 欧美乱妇无乱码| av天堂在线播放| 成人亚洲精品av一区二区| 99热只有精品国产| 人妻丰满熟妇av一区二区三区| 亚洲成人国产一区在线观看| 国产成人av激情在线播放| 久久久国产精品麻豆| 午夜日韩欧美国产| 日韩视频一区二区在线观看| 香蕉久久夜色| 99riav亚洲国产免费| 好男人电影高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费一区二区三区在线| 国产亚洲精品综合一区在线观看 | 黑丝袜美女国产一区| 欧美激情久久久久久爽电影 | 午夜福利18| 免费看a级黄色片| 多毛熟女@视频| 久久久水蜜桃国产精品网| 女人爽到高潮嗷嗷叫在线视频| 国产伦人伦偷精品视频| 亚洲专区字幕在线| 久久人妻福利社区极品人妻图片| 又黄又粗又硬又大视频| 老司机在亚洲福利影院| 久久婷婷成人综合色麻豆| 99香蕉大伊视频| 成人国产综合亚洲| 亚洲精品久久国产高清桃花| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 精品少妇一区二区三区视频日本电影| 桃红色精品国产亚洲av| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久人妻精品电影| 亚洲av成人一区二区三| 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| 精品福利观看| 色播亚洲综合网| 在线观看66精品国产| 亚洲五月天丁香| 一级a爱视频在线免费观看| 久久精品成人免费网站| 一二三四在线观看免费中文在| 色播亚洲综合网| 国语自产精品视频在线第100页| av网站免费在线观看视频| 欧美激情久久久久久爽电影 | 午夜免费鲁丝| 国产一区二区三区综合在线观看| 99精品在免费线老司机午夜| 啦啦啦 在线观看视频| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 亚洲国产日韩欧美精品在线观看 | 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| 国产成年人精品一区二区| 免费观看精品视频网站| 国产三级黄色录像| 国产成人免费无遮挡视频| 国产成人精品久久二区二区91| 12—13女人毛片做爰片一| 在线av久久热| 天堂动漫精品| 国产成+人综合+亚洲专区| 久久性视频一级片| 97人妻精品一区二区三区麻豆 | 日韩国内少妇激情av| 午夜精品在线福利| 亚洲国产精品999在线| 级片在线观看| 免费看美女性在线毛片视频| 精品国产亚洲在线| 91麻豆av在线| 亚洲中文av在线| 一级a爱视频在线免费观看| 国内精品久久久久久久电影| 亚洲成人国产一区在线观看| 无限看片的www在线观看| 如日韩欧美国产精品一区二区三区| 亚洲自拍偷在线| 午夜免费鲁丝| 亚洲国产精品成人综合色| 自线自在国产av| 中文字幕最新亚洲高清| 国产亚洲精品久久久久5区| 国产成人欧美| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 国产亚洲av高清不卡| 国产精品亚洲av一区麻豆| 国产欧美日韩精品亚洲av| 激情在线观看视频在线高清| 国产麻豆成人av免费视频| 精品国产美女av久久久久小说| 国产熟女xx| 久久午夜亚洲精品久久| 男人舔女人下体高潮全视频| 波多野结衣巨乳人妻| 麻豆av在线久日| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 搡老妇女老女人老熟妇| 18禁观看日本| 欧美大码av| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 午夜免费激情av| 国产三级在线视频| 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 女同久久另类99精品国产91| 欧美日韩福利视频一区二区| avwww免费| 91在线观看av| 欧美色视频一区免费| 久热这里只有精品99| 香蕉久久夜色| 别揉我奶头~嗯~啊~动态视频| 少妇被粗大的猛进出69影院| 亚洲专区字幕在线| 久99久视频精品免费| 免费av毛片视频| 超碰成人久久| 国产成人一区二区三区免费视频网站| 欧美激情 高清一区二区三区| www日本在线高清视频| 久久久精品国产亚洲av高清涩受| 亚洲av美国av| 精品福利观看| 欧美黄色淫秽网站| 亚洲精品国产精品久久久不卡| 女同久久另类99精品国产91| 久久久久国产一级毛片高清牌| 久久久国产精品麻豆| 国产99白浆流出| 成人国语在线视频| 久久天堂一区二区三区四区| 日日爽夜夜爽网站| 欧美成人性av电影在线观看| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看|