• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    利用植物籽粒莧修復(fù)鉈污染土壤研究

    2016-02-10 01:18:38吳啟航李伙生黃雪夏羅定貴陳永亨汪珍春周伯春孫莉麗黃芷瑩源韻詩
    關(guān)鍵詞:珠江三角洲廣州大學(xué)籽粒

    吳啟航, 李伙生, 黃雪夏, 羅定貴, 張 平, 陳永亨, 汪珍春, 周伯春, 孫莉麗, 黃芷瑩, 源韻詩

    (廣州大學(xué) a.珠江三角洲水質(zhì)安全與保護(hù)協(xié)同創(chuàng)新中心; b.珠江三角洲水質(zhì)安全與保護(hù)省部共建教育部重點(diǎn)實(shí)驗(yàn)室; c.生命科學(xué)學(xué)院,廣東 廣州 510006)

    利用植物籽粒莧修復(fù)鉈污染土壤研究

    吳啟航a,b, 李伙生a,b, 黃雪夏b, 羅定貴b, 張 平b, 陳永亨a,b, 汪珍春c, 周伯春c, 孫莉麗c, 黃芷瑩c, 源韻詩c

    (廣州大學(xué) a.珠江三角洲水質(zhì)安全與保護(hù)協(xié)同創(chuàng)新中心; b.珠江三角洲水質(zhì)安全與保護(hù)省部共建教育部重點(diǎn)實(shí)驗(yàn)室; c.生命科學(xué)學(xué)院,廣東 廣州 510006)

    近年來,隨著對(duì)鉈的強(qiáng)毒性及其對(duì)人類健康的高風(fēng)險(xiǎn)認(rèn)識(shí)增加,土壤鉈污染問題越來越多地被關(guān)注.植物修復(fù)是去除土壤重金屬污染具有低成本和可持續(xù)的技術(shù),適用于鉈污染土壤的修復(fù). 本研究選擇籽粒莧作為測試植物,用于研究鉈污染土壤的修復(fù).土壤中鉈濃度設(shè)置為0, 1, 5, 10, 15 和20 mg·kg-1,經(jīng)過100 d的盆栽試驗(yàn),結(jié)果表明,隨著土壤中鉈的濃度升高,植物的生物量、高度、PSII最大量子效率(Fv/Fm)和植物含鉈總量均有差異,且植物個(gè)體組織(根、莖、葉)中鉈的濃度增加;生物富集因子(BCF)在所有實(shí)驗(yàn)設(shè)置中均隨著土壤中鉈含量增加而上升,且都大于1;轉(zhuǎn)移系數(shù)(TF)也有類似的規(guī)律.因此,籽粒莧具有良好的修復(fù)鉈污染土壤的潛力.

    鉈; 植物修復(fù); 籽粒莧; 生物富集; 轉(zhuǎn)移

    0 Introduction

    Thallium (Tl) is an extremely toxic rare element classified as one of the 13 USEPA priority metals[1-3]. It is reported to be highly bioconcentrated[4]and more toxic to living organisms than mercury and cadmium[5]. Although its abundance in earth crust is low (0.75 mg·kg-1)[6], the high release of it into regional environment because of anthropogenic inputs can pose a significant threat to the local ecosystem[7]. The anthropogenic activities, including booming production and consumption of Tl-containing high-tech products, coal combustion, cement production, mining, and smelting, have led to the deterioration of Tl pollution in many regions[8-10]. The increasing public awareness of the high risk of Tl to human health has attracted more and more focus on remediating Tl pollution in recent years.

    Recent studies on Tl pollution suggested that the Tl content of the soil in the vicinity of the mining and smelting areas can be extremely high, with a range from 2 to 124 mg·kg-1[9, 11-12], far exceeding the average background concentration. This indicates that most of the soil near the mining and smelting areas is heavily polluted by Tl, and that it is necessary to adopt appropriate measures to remediate the Tl-laden soil. The use of physical and chemical techniques for soil remediation is largely restricted due to huge cost, complex implementation and adverse effects such as destruction of soil structure and secondary pollution[13]. Phytoremediation, which uses high accumulation plants to extract the toxic metals out of soil, is a cost-effective and sustainable technique for heavy metal contamination of soil, and may be effective for Tl removal from soil. Previous investigations showed that some species such asSinapisalba[14],Brassicaoleracea[7, 15],B.napus[16],Biscutellalaevigat[17], andIberisintermedia[18]have good capability to remediate the Tl-laden soil. However, these studied plants are commonly edible vegetables that can be mistakenly consumed by animals and humans, and then causing accumulation of Tl in the food chain[10, 14]. Hence, their application could still be questionable, and more new plants for phytoremediation should be identified.

    A.hypochondriacus, is an ornamental plant commonly known as Prince-of-Wales feather or prince’s feather[19]. It is a species of annual flowering plant, originally endemic to Mexico and then spreading in warm areas worldwide[20]. It is usually found well grown in mining wastelands, tailings, barrens and other disturbed habitats[20], implying that it may be a promising bioaccumulator plant. Many recent studies have proven the great potential ofA.hypochondriacusto remediate cadmium (Cd)-polluted soil with fast growth and high biomass as well as high uptake of heavy metals[13, 20-22]. However, there are few reports on the tolerance and bioaccumulation of Tl inA.hypochondriacus. Since Tl is more toxic than Cd, hence, the potential ofA.hypochondriacusfor phytoremediation of Tl-contaminated soil remains enigmatic.

    The goal of this study was to examine the capability ofA.hypochondriacusto remediate Tl-laden soil. The response of the biomass, height and photosynthetic activity of the plant to soil loaded with different Tl concentrations was assessed under greenhouse conditions.

    1 Materials and methods

    1.1 Preparation of pot culture using A. hypochondriacus

    The soil used for pot culture was identical with the one previously described by WU, et al[10]. The properties of the soil used in the pot are listed in Table 1. The preparation of pot culture was also the same as that reported by WU, et al[10]except the use ofA.hypochondriacusinstead ofSolanumnigrumas the phytoremediation plant. In brief, the pre-treated soil was blended with appropriate amount of thallous nitrate to create a soil with Tl concentrations of 0 (control), 1, 5, 10, 15, 20 mg·kg-1. Three replicates were performed for each concentration, resulting in 18 pots’ culture in total.A.hypochondriacusgrew from the seeds of the same species collected from Yunfu agricultural site, which is located near the pyrite tailings site own by Yunfu Pyrite Enterprises Group Corporation. The greenhouse conditions for the pot culture were day/night cycle of 16/8 h, day temperature of 22±1 ℃, night temperature of 18±1 ℃, relative humidity of 75%±3 %. The plants were harvested for examination after the greenhouse culture reached 100 d.

    Table 1 The soil properties for pot culture (mean±SD, n=3)

    ND: Not detected

    1.2 Evaluation of photosynthetic activity and growth of A. hypochondriacus

    The photosynthetic activity and growth ofA.hypochondriacuswere determined after 100 d pot culture. The maximum quantum efficiency of photosystem II (Fv/Fm) of leaves, which is indicative of the photosynthetic activity of plant, was examined according to WU, et al[10]. Following the measurements of Fv/Fm, the plants were harvested and thoroughly washed with water. Leaves, stems, and roots were separated and weighed fresh. and then dried in oven at 60 ℃ overnight for evaluation of biomass growth after 100 d culture.

    1.3 Measurement of Tl concentrations of soil and plants

    The determination of Tl content in the soil and plants were performed according to WU, et al[10]. In brief, a mixture of 15 mL nitric acid (15 M) and 5 mL hydrofluoric acid (10 M) was used to digest 0.2 g soil sample, while a mixture of 8 mL nitric acid (15 M) and 2 mL perchloric acid (12 M) was used to digest 0.5 g plant sample. Automatic digestion block (ST40, Beijing Polytech Instrument Ltd., China) was run at 140 ℃ for 3 h for all digestion[10]. Inductively coupled plasma-mass spectrometry (ELAN 6 000, PerkinElmer Instruments, USA) was used to analyze the Tl concentration of samples. The reference test was conducted according to Ref.[10] and showed reliable accuracy.

    1.4 Data treatment and statistical analyses

    Bioconcentration factor (BCF) was defined as the ratio of the Tl concentration in the whole plant to that in the cultured soil, aiming to estimate the efficiency ofA.hypochondriacusto extract Tl from the soil to the plant. Translocation factor (TF) was defined as the ratio of the Tl concentration in the aboveground part (namely stems and the leaves) of the plants to that of the roots (the belowground part of the plants), aiming to evaluate the efficiency ofA.hypochondriacusto translocate Tl from its roots to its stems and leaves. BCF and TF are given in the following formula (Eq.1~2), which are modified according to YOON, et al[23]. The total Tl mass of the plant was calculated according to Eq.(3).

    (1)

    (2)

    Mtotal=Croots*Mroots+Cstems*Mstems+Cleaves*Mleaves

    (3)

    WhereCsoil,Cplant,Croots,Cstems,CleavesandCabovegroundare the concentrations of Tl in the soil, the whole plant, roots, stems, and leaves ofA.hypochondriacus, respectively; whileMroots,Mstems,MleavesandMtotalare the mass of roots, stems, leaves and the whole plant ofA.hypochondriacus, respectively.

    The statistical analysis of Fv/Fm was conducted according to WU, et al[10]. Briefly, One-way analysis of variance (ANOVA) was applied to examine the impacts of Tl content of soil on Fv/Fm. Normality and homoscedasticity were tested by using Shapiro-Wilk and Levene’s tests, respectively. Logarithmic transformation was applied if either one of the assumptions was violated. Statistical analyses were conducted by software SPSS 22 for Windows.

    2 Results and discussion

    2.1 Accumulation of Tl in A. hypochondriacus in pot culture

    The Tl concentration in different plant organs (roots, stems and leaves) ofA.hypochondriacusgrown in soil loaded with different thallium concentrations (0, 1, 5, 10, 15, 20 mg·kg-1) is depicted in Fig.1. The accumulation of Tl in plant organs and the whole plant (average content of leaves, stems and roots)of accumulation in the plants grew in soils with different Tl concentrations.A.hypochondriacusincreased with the increasing Tl content in soil, as revealed by both the Tl concentration of different organs and the total mass of Tl in the whole plants (Fig.1). The leaves had the lowest accumulation of Tl in the most tests, while the stems had the highest accumulation (over 120 mg Tl·kg-1stems) when soil Tl content reached high up to 20 mg Tl·kg-1soil (Fig.1). It should be noted that at 20 mg Tl·kg-1soil, the Tl concentration of the roots and the leaves slightly decreased as compared with Tl concentration at 15 mg Tl·kg-1soil, while the uptake of Tl in the stems remediation of the identical soil with same Tl content showed a different bioaccumulation pattern, where most Tl was uptaken by the roots and leaves at all exposure levels[10]. UnlikeS.nigrum,A.hypochondriacustends to accumulate Tl in stems at high Tl exposure level. This may be due to the difference in physiological characters between the two plants. For many plants, leaves and stems are more vulnerable to heavy metal toxicity[24, 25], while forA.hypochondriacus, whose main biomass consisted largely of stems, its stems have high tolerance with Tl toxicity even at high exposure levels. So far, the mechanism of detoxification for Tl in plants is not fully understood. The hypothesis about antioxidative defense includes increasing the activities of superoxide dismutase and ascorbate peroxidase is usually used to explain the detoxification response of the corresponding organs of the plants[26-27]. Additional assays should be performed to verify this hypothesis.

    Fig.1 The Tl concentration of different plant organs and the whole plant, and the total mass of Tl

    At low exposure levels of 1 and 5 mg Tl·kg-1soil, the BCF ofA.hypochondriacuswas similar (1.89 and 1.88, respectively); while at relatively high exposure levels, it was elevated with increasing Tl exposure level (Fig.2). The obvious accumulation of Tl, as indicated by the fact that the BCF at all studies levels was greater than 1, suggests thatA.hypochondriacusis a good extractor for Tl in soil. Although it is not a hyperaccumuting plant in contrast withBiscutellalaevigataandIberisintermediain terms of BCF[28], it has good potential of Tl accumulation and could be further enhanced if agricultural techniques were used. The TF was also significantly affected by Tl exposure level, and generally increased from 0.13 to 1.70 along with increasing Tl exposure level. At 1 mg Tl·kg-1soil, the TF was only 0.13, indicating the low translocation ability ofA.hypochondriacusat low exposure level of Tl. In this case, the harvest of the whole plant including the roots is a must in order to largely extract the Tl. The increase of TF to over 1.0 was observed at exposure levels of 10 and 20 mg Tl/kg soil, implying that the harvest of the above-ground part of the plant may be the most economical way to extract Tl from soil polluted at these levels. Compared withS.nigrum[10], the BCF ofA.hypochondriacuswas relative lower,but the TF was greater. The high efficiency ofA.hypochondriacusto translocate Tl from its roots to its aerial organs could lead to more toxicity to the plant, and thus less accumulation thanSolanum.nigrum. However, for harvesting of the plant, higher TF can be more operationally beneficial since only reaping of the aerial part of the plants is sufficient to extract Tl form soil[29].

    Fig.2 The bioconcentration factor (BCF) and translocation factor (TF) of the plants grown in soils with different Tl concentrations

    2.2 Impact of Tl on photosynthetic activity of A. hypochondriacus

    The maximum quantum efficiency of photosystem II (Fv/Fm) of leaves, an effective indicator of the photosynthetic activity and thus growth of plant, was found significantly affected by the Tl exposure level (Fig.3). The Fv/Fm value of control was at around 0.75, which is slightly lower than the optimal range (0.79~0.84, as suggested by KITAJIMA,et al[30]) for unstressed plants (Fig.3). This is likely due to the heredity of the toxic stress of Tl from the seeds of parents to the offspring seedlings[10]. With the increase in Tl content of soil, the Fv/Fm value decreased to around 0.69 at low levels of 1 and 5 mg Tl/kg soil, and then kept declining to the lowest level of 0.42 at 20 mg Tl/kg soil (Fig.3). When Tl exposure level reached 20 mg Tl/kg soil, leaf senescence and chlorosis began to occur but was not striking. The correlation between Fv/Fm and biomass of leaves was found significantly positive (Pearson correlation coefficient=0.81,P<0.01,n=18), indirectly suggesting that Tl might inhibit the growth of leaves and hence Fv/Fm ofA.hypochondriacus. Similar stress pattern was also found in our previous study on usingS.nigrumto remediate the same Tl-polluted soil[10]. This clearly suggests the high toxicity of Tl.A.hypochondriacuswas found competent for remediation of Cd-polluted soil[13, 20, 21], while for the phytoremediation of Tl, which is more toxic to Cd, its capacity could be slightly compromised when being exposured to high Tl level. It is surmised that the high affinity of Tl to biomolecules and mitochondrial membrane leads to the reduced biosynthesis of chlorophyll even damage to chloroplasts[24, 31, 32], and thus inhibition on the photosystem II reaction with lower Fv/Fm value[10].

    Fig.3 The Fv/Fm ratio of the plants grown in soils with different Tl concentrations

    2.3 Impact of Tl on growth of A. hypochondriacus

    The growth ofA.hypochondriacus, represented by the biomass of different plant organs and by the height of the plant after 100 d pot culture, is demonstrated in Fig.4 and Fig.5, respectively. The plant height gradually decreased from 38 cm for the control to 15 cm for the species growing at soil of 20 mg Tl·kg-1soil (Fig.4). This implies that Tl can inhibit the growth ofA.hypochondriacuswhen it is exposed at high level of Tl. Previous study showed thatA.hybridusL. had good tolerance to Cd at 30 and 60 mg Cd·kg-1soil, with unexpectedly higher plant height as compared with the control (without addition of Cd)[20]. Although its height was still impaired at strongly polluted levels (120, 150 and 180 mg Cd·kg-1soil), its tolerance and adaptability to Cd (below 60 mg Cd·kg-1soil) was already striking. When it comes to Tl, the plant height was shrunk with addition of Tl, suggesting the stronger toxicity of Tl than Cd toA.hypochondriacus.

    Unlike the case on plant height, interestingly, the biomass of all the plant organs at low exposure levels (1 and 5 mg Tl·kg-1soil) was higher than that of the control (Fig.5). The plant biomass began to decline when exposure level reached 10 mg Tl·kg-1soil, but became steady when exposure level is at 15 and 20 mg Tl·kg-1soil (Fig.5). In terms of the biomass, the growth ofA.hypochondriacuswas likely stimulated by exposure to low levels of Tl in soil. Similar phenomenon was also observed whenA.hypochondriacuswas used to remediate the Cd-polluted soil, where the plant biomass was greater at relatively low exposure level (30 and 60 mg Cd·kg-1soil)[20]. Our previous study showed that the growth of another plant (S.nigrum) in terms of biomass was constantly compromised by the same level of Tl[10]. This suggests thatA.hypochondriacushas unique adaptability to maintain its biomass when its height (Fig.4) and photosynthetic activity (Fig.3) of leaves were impaired by toxicity of Tl. In addition, LI, et al[13]revealed that the use of agricultural technologies such as appropriate use of fertilizers can substantially enhance the plant biomass and accumulation of Cd inA.hypochondriacus. Therefore, it is likely that the capacity of phytoremediation of Tl may be enhanced if proper fertilizers were used, but this hypothesis requires more investigation.

    Fig.4 The height of the plants grown in soils with different Tl concentrations

    Fig.5 The biomass of the plants grown in soils with different Tl concentrations

    3 Conclusion

    During phytoremediation of Tl-laden soil by usingA.hypochondriacus, some inhibition effects such as reduction in plant height, biomass and photosynthetic activity were observed at high exposure levels (over 10 mg Tl·kg-1soil). However, taking the good tolerance and bioconcentration and translocation ability into account,A.hypochondriacushas good potential for phytoremediation of Tl-polluted soil. Further research on enhancing the remediation capacity by using agricultural techniques and other means should be conducted.

    [1] VOEGELIN A, PFENNINGER N, PETRIKIS J, et al. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock[J]. Environ Sci Tech, 2015, 49(9): 5390-5398.

    [2] KEITH L, TELLIARD W. ES&T special report: Priority pollutants: Ia perspective view[J]. Environ Sci Tech, 1979, 13(4): 416-423.

    [3] TWINING B S, TWISS M R, FISHER N S. Oxidation of thallium by freshwater plankton communities[J]. Environ Sci Tech, 2003, 37(12): 2020-2026.

    [4] LIN T S, NRIAGU J, WANG X Q. Thallium concentration in lake trout from lake Michigan[J]. Bull Environ Contam Toxic, 2001, 67(6): 921-925.

    [5] ZITKO V. Toxicity and pollution potential of thallium[J]. Sci Total Environ, 1975, 4(2): 185-192.

    [6] TAYLOR S R, MCLENNAN S M. The continental crust: Its composition and evolution[M].Oxford: Blackwell Scientific Publications, 1985: 1-328.

    [7] AL-NAJAR H, SCHULZ R, R?MHELD V. Phytoremediation of thallium contaminated soils by brassicaceae[M]. Berlin: Springer, 2005: 187-196.

    [8] NRIAGU J O. Thallium in the environment[M]. New York: John Wiley & Sons, 1998:1-14.

    [9] LIS J, PASIECZNA A, KARBOWSKA B, et al. Thallium in soils and stream sediments of a Zn-Pb mining and smelting area[J]. Environ Sci Tech, 2003, 37(20): 4569-4572.

    [10]WU Q, LEUNG J Y S, HUANG X, et al. Evaluation of the ability of black nightshadeSolanumnigrumL. for phytoremediation of thallium-contaminated soil[J]. Environ Sci Pollut Res, 2015, 22(15): 11478-11487.

    [11]XIAO T, GUHA J, BOYLE D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China[J]. Sci Total Environ, 2004, 318(1): 223-244.

    [12]YANG C X, CHEN Y H, PENG P, et al. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area[J]. Sci Total Environ, 2005, 341(1/3): 159-172.

    [13]LI N, LI Z, FU Q, et al. Agricultural technologies for enhancing the phytoremediation of Cadmium-contaminated soil byAmaranthushypochondriacusL[J]. Water, Air, Soil Pollut, 2013, 224(9): 1-8.

    [14]VANěK A, KOM REK M, CHRASTNV, et al. Thallium uptake by white mustard (SinapisalbaL.) grown on moderately contaminated soils-agro-environmental implications[J]. J Hazard Mater, 2010, 182(1): 303-308.

    [15]JIA Y, XIAO T, ZHOU G, et al. Thallium at the interface of soil and green cabbage (Brassicaoleraceavar.capitataL.): Soil-plant transfer and influencing factors[J]. Sci Total Environ, 2013, 450:140-147.

    [16]GüNTHER K, UMLAND F. Bonding states of thallium and cadmium in thallium-treated and native rape[J]. J Inorg Biochem, 1989, 36(1): 63-74.

    [18]LEBLANC M, PETIT D, DERAM A, et al. The phytomining and environmental significance of hyperaccumulation of thallium byIberisintermediafrom southern France[J]. Econ Geol, 1999, 94(1): 109-113.

    [19]JANSEN P C M, GRUBBEN G J H, DENTON O A, et al.AmaranthushypochondriacusL.[J]. Plant Resour Trop Afr, 2004, 2(2): 78-80.

    [20]ZHANG X, ZHANG S, XU X, et al. Tolerance and accumulation characteristics of cadmium inAmaranthushybridusL.[J]. J Hazard Mater, 2010, 180(1): 303-308.

    [21]YUAN M, HE H, XIAO L, et al. Enhancement of Cd phytoextraction by twoAmaranthusspecies with endophyticRahnellasp. JN27[J]. Chemosphere, 2014, 103(5):99-104.

    [22]LI N Y, FU Q L, ZHUANG P, et al. Effect of fertilizers on Cd uptake ofAmaranthushypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator[J]. Intern J Phytorem, 2012, 14(2): 162-173.

    [23]YOON J, CAO X, ZHOU Q, et al. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site[J]. Sci Total Environ, 2006, 368(2): 456-464.

    [24]K PPER H, PARAMESWARAN A, LEITENMAIER B, et al. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulatorThlaspicaerulescens[J]. New Phytol, 2007, 175(4): 655-674.

    [25]CIEDLISKI G, NEILSEN G, HOGUE E. Effect of soil cadmium application and pH on growth and cadmium accumulation in roots, leaves and fruit of strawberry plants (Fragaria×ananassaDuch.)[J]. Plant Soil, 1996, 180(2): 267-276.

    [26]RADI,S, CVJETKO P, GLAVAS K, et al. Oxidative stress and DNA damage in broad bean (ViciafabaL.) seedlings induced by thallium[J]. EnvironToxic Chem, 2009, 28(1): 189-196.

    [27]BABI, M, RADI, S, CVJETKO P, et al. Antioxidative response ofLemnaminorplants exposed to thallium (I)-acetate[J]. Aquat Bot, 2009, 91(3): 166-172.

    [28]ANDERSON C, BROOKS R, CHIARUCCI A, et al. Phytomining for nickel, thallium and gold[J]. J Geochem Explor, 1999, 67(1): 407-415.

    [29]ZACCHINI M, PIETRINI F, MUGNOZZA G S, et al. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics[J]. Water, Air, Soil Pollut, 2009, 197(1/4): 23-34.

    [30]KITAJIMA M, BUTLER W. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone[J]. Biochim Biophy Acta (BBA)-Bioenerg, 1975, 376(1): 105-115.

    [31]PADMAJA K, PRASAD D, PRASAD A. Inhibition of chlorophyll synthesis inPhaseolusvulgarisL. seedlings by cadmium acetate[J]. Photosynthetica, 1990, 24(3): 399-405.

    [32]VASSILEV A, YORDANOV I, TSONEV T. Effects of Cd2+on the physiological state and photosynthetic activity of young barley plants[J]. Photosynthetica, 1998, 34(2): 293-302.

    【責(zé)任編輯: 孫向榮】

    Phytoremediation of thallium-contaminated soil using Amaranthus hypochondriacus

    WU Qi-hanga,b, LI Huo-shenga,b, HUANG Xue-xiab, LUO Ding-guib, ZHANG Pingb, CHEN Yong-henga,b, WANG Zhen-chunc, ZHOU Bo-chunc, SUN Li-lic, HUANG Zhi-yingc, YUAN Yun-shic

    (a. Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta;b. Key Laboratory of Water Quality Safety and Protection in Pearl River Delta (Ministry of Education); c.School of Life Sciences, Guangzhou University, Guangzhou 510006, China)

    The issue of soil contamination by thallium (Tl) has been gaining increasing attention in recent years, due to the increasing awareness of the strong toxicity and high risk of Tl to human health. Phytoremediation is a cost-effective and sustainable means to remove heavy metals from contaminated soil, and may be promising for remediation of Tl-polluted soil. Hence,Amaranthushypochondriacus, which is a highly productive and commonly used phytoremediation plant, was selected to remediate the Tl-polluted soil. In the test of 100 d pot culture, it is shown that although the higher Tl content (0, 1, 5, 10, 15 and 20 mg·kg-1soil) in soil led to lower biomass and height as well as maximal quantum efficiency of photosystem (Fv/Fm) of the plant, the total mass (and average content) of Tl in the whole plant growing in more Tl-polluted soil increased significantly. The Tl accumulated in all different organs (roots, stems and leaves) ofA.hypochondriacusalso increased with the rise in Tl content of soil, indicating the good capability ofA.hypochondriacusto extract Tl from soil. The bioconcentration factor (BCF) at all studied levels of Tl was greater than 1, and increased with increasing Tl content in soil. Similar increasing trend for translocation factor (TF) was found at higher Tl pollution condition. Therefore,A.hypochondriacusis shown to have good potential to remediate Tl-contaminated soil.

    thallium; phytoremediation;Amaranthushypochondriacus; bioaccumulation; translocation

    ET 471 Document code: A

    Foundation items: This project is supported by the National Science Foundation of China (41573119); Collaborative Innovation Major Projects of Guangzhou Education Bureau (13xt02); Educational System Innovation Team Project of Guangzhou Education Bureau (13C02); Young Creative Talent Project for Ordinary Universities of Guangdong Province’s Educational Commission(2015KQNCX115); High Level University Construction Project of Guangdong Province (Regional Water Environment Safety and Water Ecological Protection).

    1671- 4229(2016)06-0017-08

    X 53

    Received date: 2016-09-27; Revised date: 2016-11-06

    Biography: WU Qi-hang (1977-), male, associate professor, Ph.D. E-mail: wuqihang@gzhu.edu.cn

    猜你喜歡
    珠江三角洲廣州大學(xué)籽粒
    明清珠江三角洲基塘區(qū)的田場與經(jīng)營者
    廣州文博(2023年0期)2023-12-21 07:24:30
    廣州大學(xué)作品選登
    改革開放后珠江三角洲外來人口政策迭代研究
    籽粒莧的飼用價(jià)值和高產(chǎn)栽培技術(shù)
    籽粒莧的特性和種植技術(shù)
    A Tale of Two Cities:Creating city images through “Shanghai Police Real Stories” and“Guard the Liberation West”
    玉米機(jī)械脫粒籽粒含水量與破碎率的相關(guān)研究
    珠江三角洲口袋公園設(shè)計(jì)探究
    商麥1619 籽粒灌漿的特性
    《珠江三角洲》一課教學(xué)的粗淺嘗試
    国产精品久久久久久久久免| 丰满人妻一区二区三区视频av| av专区在线播放| 日本在线视频免费播放| 久久亚洲真实| 神马国产精品三级电影在线观看| 日韩国内少妇激情av| 啦啦啦韩国在线观看视频| 十八禁国产超污无遮挡网站| 日本黄色片子视频| 色播亚洲综合网| 99久久中文字幕三级久久日本| 黄色女人牲交| 亚洲综合色惰| 亚洲美女黄片视频| 精品福利观看| 91麻豆av在线| 亚洲国产色片| 成人性生交大片免费视频hd| 国产亚洲av嫩草精品影院| 亚洲五月天丁香| 99riav亚洲国产免费| 亚洲最大成人av| 久久99热这里只有精品18| 久久精品影院6| 国内揄拍国产精品人妻在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲性久久影院| 欧美精品啪啪一区二区三区| 窝窝影院91人妻| 欧美潮喷喷水| 午夜免费男女啪啪视频观看 | 国产精品久久视频播放| or卡值多少钱| 亚洲综合色惰| 天堂√8在线中文| 久久国产乱子免费精品| 国内少妇人妻偷人精品xxx网站| 成人特级黄色片久久久久久久| 悠悠久久av| 午夜福利在线在线| 精品久久久久久久久亚洲 | 乱人视频在线观看| 悠悠久久av| 日本黄色视频三级网站网址| 一区二区三区高清视频在线| 日日啪夜夜撸| 欧美日韩精品成人综合77777| 免费av不卡在线播放| 看片在线看免费视频| 亚洲男人的天堂狠狠| 国产成人av教育| 日韩高清综合在线| 亚洲七黄色美女视频| 男女边吃奶边做爰视频| 久久精品国产亚洲av香蕉五月| 午夜福利欧美成人| 色噜噜av男人的天堂激情| 91麻豆精品激情在线观看国产| av在线观看视频网站免费| 亚洲专区中文字幕在线| 欧美绝顶高潮抽搐喷水| 日本在线视频免费播放| 亚洲成a人片在线一区二区| 俺也久久电影网| 一个人免费在线观看电影| 91麻豆精品激情在线观看国产| 亚洲成人精品中文字幕电影| 免费观看在线日韩| 国产免费男女视频| 亚洲三级黄色毛片| 精品99又大又爽又粗少妇毛片 | 亚洲av五月六月丁香网| 天堂av国产一区二区熟女人妻| 日本-黄色视频高清免费观看| 中文字幕高清在线视频| 日韩欧美国产在线观看| 欧美中文日本在线观看视频| 一进一出抽搐动态| 亚洲黑人精品在线| 搡老妇女老女人老熟妇| 少妇猛男粗大的猛烈进出视频 | 两人在一起打扑克的视频| 亚洲精品影视一区二区三区av| 国产一区二区在线av高清观看| 精品午夜福利在线看| 国产精品女同一区二区软件 | 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 欧美+亚洲+日韩+国产| 黄色一级大片看看| 婷婷精品国产亚洲av| 我的老师免费观看完整版| 色在线成人网| 色吧在线观看| 最近视频中文字幕2019在线8| 日本精品一区二区三区蜜桃| 自拍偷自拍亚洲精品老妇| 亚洲人成网站在线播放欧美日韩| 波野结衣二区三区在线| av在线蜜桃| 久久欧美精品欧美久久欧美| 久久精品国产自在天天线| 香蕉av资源在线| 国产私拍福利视频在线观看| 激情 狠狠 欧美| 亚洲欧美清纯卡通| 99热这里只有是精品在线观看| 秋霞在线观看毛片| av女优亚洲男人天堂| 在现免费观看毛片| 中文乱码字字幕精品一区二区三区| 黄色视频在线播放观看不卡| a级毛色黄片| 国产一区有黄有色的免费视频| 尾随美女入室| 亚洲精品aⅴ在线观看| 少妇被粗大猛烈的视频| 久久久国产一区二区| 国产精品免费大片| 成人影院久久| 日本一二三区视频观看| 国产片特级美女逼逼视频| 五月天丁香电影| 丝瓜视频免费看黄片| 在线观看免费视频网站a站| 国产探花极品一区二区| 永久网站在线| 国产一区二区在线观看日韩| 中国三级夫妇交换| 国产欧美另类精品又又久久亚洲欧美| 日韩中文字幕视频在线看片 | 香蕉精品网在线| 久久精品熟女亚洲av麻豆精品| 麻豆成人av视频| 日本黄大片高清| 国内少妇人妻偷人精品xxx网站| 国产女主播在线喷水免费视频网站| 日本黄大片高清| 精品熟女少妇av免费看| 欧美三级亚洲精品| 国产免费福利视频在线观看| 欧美精品一区二区大全| 男女边摸边吃奶| 在线观看免费日韩欧美大片 | 99热这里只有精品一区| h视频一区二区三区| 精品少妇黑人巨大在线播放| 国产又色又爽无遮挡免| 另类亚洲欧美激情| 精品一品国产午夜福利视频| 国产色婷婷99| 联通29元200g的流量卡| 91精品一卡2卡3卡4卡| 日韩欧美一区视频在线观看 | 联通29元200g的流量卡| 亚洲美女搞黄在线观看| 国产乱来视频区| 纯流量卡能插随身wifi吗| 性色avwww在线观看| 午夜福利视频精品| av卡一久久| 婷婷色综合www| 国产精品久久久久久精品古装| 国产伦精品一区二区三区四那| 免费观看av网站的网址| 欧美bdsm另类| 免费av中文字幕在线| 久久综合国产亚洲精品| 男男h啪啪无遮挡| av不卡在线播放| 国产精品久久久久成人av| 天堂8中文在线网| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 久久99蜜桃精品久久| 久久精品久久精品一区二区三区| 国产精品伦人一区二区| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 国产精品国产三级国产专区5o| 久久99热6这里只有精品| 国产伦在线观看视频一区| 国产黄色免费在线视频| 国国产精品蜜臀av免费| 麻豆乱淫一区二区| 免费少妇av软件| 国产一区二区三区综合在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 免费观看无遮挡的男女| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 国产色婷婷99| 免费av不卡在线播放| 免费观看a级毛片全部| 久久久成人免费电影| av国产久精品久网站免费入址| 一级av片app| kizo精华| 国产精品福利在线免费观看| 精品一区在线观看国产| 在线 av 中文字幕| 少妇精品久久久久久久| 欧美日韩综合久久久久久| 七月丁香在线播放| 老司机影院成人| 亚洲av成人精品一区久久| 久久久久久九九精品二区国产| 2018国产大陆天天弄谢| 久久久色成人| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 美女国产视频在线观看| 国产免费视频播放在线视频| 亚洲成人一二三区av| 亚洲欧美成人精品一区二区| 人妻夜夜爽99麻豆av| 国产精品国产三级国产av玫瑰| 在现免费观看毛片| videos熟女内射| 一级毛片黄色毛片免费观看视频| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 国产深夜福利视频在线观看| .国产精品久久| 国产精品国产三级国产av玫瑰| 日本一二三区视频观看| 伊人久久国产一区二区| .国产精品久久| 亚洲国产av新网站| 毛片一级片免费看久久久久| 天堂俺去俺来也www色官网| 亚洲精品一二三| 少妇人妻一区二区三区视频| 国产精品欧美亚洲77777| 妹子高潮喷水视频| av天堂中文字幕网| 多毛熟女@视频| 国产精品久久久久久精品古装| 人妻 亚洲 视频| 日韩av不卡免费在线播放| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 国产日韩欧美在线精品| 国产精品一区二区性色av| 黑人高潮一二区| 免费观看的影片在线观看| 亚洲美女搞黄在线观看| 日韩国内少妇激情av| 天天躁夜夜躁狠狠久久av| 国产亚洲91精品色在线| 久久午夜福利片| 亚洲不卡免费看| 91狼人影院| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 天天躁日日操中文字幕| 国产91av在线免费观看| 国产白丝娇喘喷水9色精品| 男女下面进入的视频免费午夜| 在线观看免费高清a一片| 女的被弄到高潮叫床怎么办| 高清视频免费观看一区二区| 汤姆久久久久久久影院中文字幕| 97在线视频观看| 亚洲欧美一区二区三区国产| 国产精品国产av在线观看| 男人舔奶头视频| 中国国产av一级| 三级国产精品片| 欧美激情国产日韩精品一区| 日韩伦理黄色片| 国语对白做爰xxxⅹ性视频网站| 一级av片app| 国产在线男女| 亚洲真实伦在线观看| 在线观看美女被高潮喷水网站| 国产精品蜜桃在线观看| 久久久久久久久久久免费av| 国产精品秋霞免费鲁丝片| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 亚洲av中文av极速乱| 久久ye,这里只有精品| 久久久久久久大尺度免费视频| 全区人妻精品视频| 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 久久久欧美国产精品| 亚洲欧美精品专区久久| 国产精品久久久久久av不卡| 女的被弄到高潮叫床怎么办| 欧美+日韩+精品| 欧美老熟妇乱子伦牲交| av天堂中文字幕网| 久久久久视频综合| 国产片特级美女逼逼视频| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人爽人人夜夜| 婷婷色综合大香蕉| 深爱激情五月婷婷| 97精品久久久久久久久久精品| 男女无遮挡免费网站观看| 国产免费一级a男人的天堂| 97超视频在线观看视频| 午夜老司机福利剧场| 涩涩av久久男人的天堂| 亚洲av欧美aⅴ国产| 国产高清国产精品国产三级 | 亚洲人成网站高清观看| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 免费久久久久久久精品成人欧美视频 | 男人和女人高潮做爰伦理| 亚洲精品国产av蜜桃| 国产亚洲av片在线观看秒播厂| 少妇精品久久久久久久| 女性生殖器流出的白浆| 中文欧美无线码| 一级毛片电影观看| 热99国产精品久久久久久7| 免费黄网站久久成人精品| 日日摸夜夜添夜夜添av毛片| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 免费黄色在线免费观看| 看十八女毛片水多多多| 一级毛片 在线播放| 精品一区二区三区视频在线| 国产精品人妻久久久久久| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| 亚洲图色成人| 精品酒店卫生间| 五月伊人婷婷丁香| 少妇裸体淫交视频免费看高清| 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| 一本—道久久a久久精品蜜桃钙片| 国产 精品1| 精品少妇黑人巨大在线播放| 欧美日韩精品成人综合77777| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 久久女婷五月综合色啪小说| 国产亚洲欧美精品永久| 美女高潮的动态| 免费av不卡在线播放| 亚洲av福利一区| 国产乱来视频区| 欧美最新免费一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产一区有黄有色的免费视频| 国产高清不卡午夜福利| 亚州av有码| 人妻少妇偷人精品九色| 国产探花极品一区二区| 国产成人91sexporn| 水蜜桃什么品种好| 十八禁网站网址无遮挡 | 国产永久视频网站| 夫妻午夜视频| 麻豆乱淫一区二区| 国产成人一区二区在线| 99久久中文字幕三级久久日本| 日韩亚洲欧美综合| av专区在线播放| 久久久久久九九精品二区国产| 日本av手机在线免费观看| 内地一区二区视频在线| 纵有疾风起免费观看全集完整版| 久久综合国产亚洲精品| 丝袜喷水一区| 国内少妇人妻偷人精品xxx网站| 免费av中文字幕在线| 晚上一个人看的免费电影| 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜 | 国产伦理片在线播放av一区| 精华霜和精华液先用哪个| 日本一二三区视频观看| 麻豆成人av视频| 久久人人爽人人爽人人片va| 美女高潮的动态| 全区人妻精品视频| 国产精品一区二区在线不卡| 亚洲精品一区蜜桃| 成人毛片60女人毛片免费| 国产亚洲最大av| 成人二区视频| 99国产精品免费福利视频| 一级毛片 在线播放| 亚洲国产精品成人久久小说| 十八禁网站网址无遮挡 | 中国三级夫妇交换| 人妻系列 视频| 日韩国内少妇激情av| 久久久久久伊人网av| 一本一本综合久久| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 99久国产av精品国产电影| 亚洲丝袜综合中文字幕| 午夜福利在线在线| 人人妻人人添人人爽欧美一区卜 | 欧美日本视频| 亚洲天堂av无毛| 亚洲婷婷狠狠爱综合网| 日本欧美视频一区| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| 一个人免费看片子| 日日啪夜夜撸| 日韩免费高清中文字幕av| 99国产精品免费福利视频| 色哟哟·www| 国产久久久一区二区三区| 91精品一卡2卡3卡4卡| 新久久久久国产一级毛片| 五月伊人婷婷丁香| 建设人人有责人人尽责人人享有的 | 99视频精品全部免费 在线| 国精品久久久久久国模美| 熟女av电影| 日本猛色少妇xxxxx猛交久久| 观看免费一级毛片| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 国产精品成人在线| 久久久久性生活片| 国产乱人视频| 日韩亚洲欧美综合| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 精品视频人人做人人爽| av在线观看视频网站免费| 久久国产亚洲av麻豆专区| av在线老鸭窝| 久久精品人妻少妇| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 国产永久视频网站| 亚洲精品久久午夜乱码| 99久久人妻综合| 永久免费av网站大全| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 成年美女黄网站色视频大全免费 | 精品一品国产午夜福利视频| 深夜a级毛片| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 婷婷色综合大香蕉| 中国三级夫妇交换| 亚洲欧美日韩另类电影网站 | 亚洲欧美精品专区久久| 国产精品久久久久久精品电影小说 | 国产乱人视频| 春色校园在线视频观看| 亚洲色图av天堂| 日本爱情动作片www.在线观看| 国产又色又爽无遮挡免| 免费不卡的大黄色大毛片视频在线观看| 乱系列少妇在线播放| 欧美激情极品国产一区二区三区 | 一级a做视频免费观看| 久久久久久人妻| 男女边摸边吃奶| 日本欧美国产在线视频| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂 | av又黄又爽大尺度在线免费看| 少妇 在线观看| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 久久久a久久爽久久v久久| 精品国产乱码久久久久久小说| 一级黄片播放器| 我的老师免费观看完整版| 丰满少妇做爰视频| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 九九爱精品视频在线观看| 91久久精品电影网| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 午夜日本视频在线| 人妻少妇偷人精品九色| 精品熟女少妇av免费看| 毛片女人毛片| 欧美xxⅹ黑人| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 五月天丁香电影| 国产男女超爽视频在线观看| 亚洲欧美日韩卡通动漫| 99re6热这里在线精品视频| 伦理电影免费视频| 亚洲丝袜综合中文字幕| 777米奇影视久久| 涩涩av久久男人的天堂| 亚洲av成人精品一二三区| 香蕉精品网在线| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 成人高潮视频无遮挡免费网站| 多毛熟女@视频| 亚洲人成网站高清观看| 亚洲怡红院男人天堂| 超碰97精品在线观看| av在线观看视频网站免费| 久久久色成人| av天堂中文字幕网| 国产精品久久久久久av不卡| 伦精品一区二区三区| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 一级二级三级毛片免费看| 国产又色又爽无遮挡免| a级毛片免费高清观看在线播放| 欧美97在线视频| 我的女老师完整版在线观看| 成年av动漫网址| 亚洲熟女精品中文字幕| 午夜激情福利司机影院| 成人毛片a级毛片在线播放| 在线 av 中文字幕| 成人毛片60女人毛片免费| 日韩欧美精品免费久久| 看免费成人av毛片| 中国国产av一级| 日韩欧美一区视频在线观看 | 我的女老师完整版在线观看| 日日啪夜夜爽| 亚洲综合色惰| 一个人免费看片子| 一本色道久久久久久精品综合| 观看免费一级毛片| 日韩大片免费观看网站| av在线app专区| 色吧在线观看| 观看免费一级毛片| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品一级二级三级 | 国产高清有码在线观看视频| av视频免费观看在线观看| 大片电影免费在线观看免费| tube8黄色片| 亚州av有码| 国产成人a区在线观看| 一级毛片 在线播放| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| 直男gayav资源| 日韩精品有码人妻一区| 久久久久久久大尺度免费视频| 日本av免费视频播放| 韩国高清视频一区二区三区| 在线观看av片永久免费下载| 久久久色成人| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 99视频精品全部免费 在线| 亚洲国产最新在线播放| av福利片在线观看| 毛片一级片免费看久久久久| 日韩大片免费观看网站| 高清在线视频一区二区三区| 在线观看一区二区三区| 干丝袜人妻中文字幕| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 久久99蜜桃精品久久| 男人狂女人下面高潮的视频| av国产免费在线观看| 蜜桃亚洲精品一区二区三区| 久久99蜜桃精品久久| 少妇 在线观看| 男的添女的下面高潮视频| 成年人午夜在线观看视频| 国产免费福利视频在线观看| 我要看黄色一级片免费的| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 午夜老司机福利剧场| 色网站视频免费| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 一区二区三区免费毛片| 国产成人精品福利久久| 色视频在线一区二区三区| 欧美人与善性xxx| 嫩草影院新地址| 免费大片黄手机在线观看| 亚洲欧美日韩卡通动漫| 三级经典国产精品| 性色avwww在线观看| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影小说 | 街头女战士在线观看网站| 亚洲欧美中文字幕日韩二区| 久久精品人妻少妇| 久久人人爽人人片av| 久久国产乱子免费精品| 国产爽快片一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一区久久| 有码 亚洲区| 色5月婷婷丁香| 女人十人毛片免费观看3o分钟| 成人亚洲欧美一区二区av| 亚洲四区av| 久久热精品热|