蘇 倡, 張群峰, 豐 楓, 馬 磊, 盧春山, 李小年
(浙江工業(yè)大學(xué) 工業(yè)催化研究所, 綠色化學(xué)合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培養(yǎng)基地, 浙江 杭州 310014)
二苯硫醚修飾Pd/C催化合成N-(1,3-二甲基丁基)-N'-苯基對(duì)苯二胺的研究
蘇 倡, 張群峰, 豐 楓, 馬 磊, 盧春山, 李小年
(浙江工業(yè)大學(xué) 工業(yè)催化研究所, 綠色化學(xué)合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培養(yǎng)基地, 浙江 杭州 310014)
利用二苯硫醚 (Ph2S) 修飾Pd/C制備得到Pd-Ph2Sx/C催化劑,以N-苯基對(duì)苯二胺 (PADPA) 和甲基異丁基酮(MIBK) 為原料,分別考察了Pd-Ph2Sx/C催化劑在一步法和兩步法還原烷基化制備N-(1, 3-二甲基丁基)-N'-苯基對(duì)苯二胺 (DBPPD) 反應(yīng)中的性能。并采用X-射線衍射 (XRD) 和X-射線光電子能譜 (XPS) 對(duì)催化劑進(jìn)行了表征。結(jié)果表明,Pd-Ph2Sx/C催化劑在一步法和兩步法合成DBPPD反應(yīng)中均表現(xiàn)出良好的選擇性,通過(guò)改變Ph2S用量、溫度、壓力等反應(yīng)條件可使DBPPD選擇性達(dá)96.3%。一步法反應(yīng)工藝過(guò)程中PADPA與MIBK縮合生成的水制約著反應(yīng)的進(jìn)行,使PADPA在較低溫度 (413~433 K) 下無(wú)法完全轉(zhuǎn)化。兩步法合成工藝,即先以活性炭為催化劑,使PADPA與MIBK脫水縮合生成亞胺,再在Pd-Ph2Sx/C催化劑的作用下將亞胺還原生成DBPPD,有效地克服了轉(zhuǎn)化率不能達(dá)到100% 的難題。在413 K,3 MPa反應(yīng)條件下,PADPA 轉(zhuǎn)化率達(dá)100%,DBPPD選擇性達(dá)97.4%。同時(shí)對(duì)Pd-Ph2Sx/C催化劑的重復(fù)使用性能進(jìn)行考察發(fā)現(xiàn),Pd-Ph2Sx/C催化劑套用3次后沒(méi)有發(fā)現(xiàn)活性明顯下降現(xiàn)象,每次反應(yīng)PADPA轉(zhuǎn)化率都可達(dá)100%,DBPPD選擇性保持在95% 以上。
二苯硫醚修飾Pd/C催化劑;一步法;兩步法;還原烷基化反應(yīng);DBPPD
N-(1,3-二甲基丁基)-N'-苯基對(duì)苯二胺 (DBPPD) 是工業(yè)中一種重要的橡膠抗氧劑和抗臭氧劑,廣泛應(yīng)用于輪胎、電纜工業(yè)、防水工程等橡膠制品中[1]。以N-苯基對(duì)苯二胺 (PADPA) 和甲基異丁基酮 (MIBK)為原料,在催化劑作用下可加氫還原制得DBPPD。工業(yè)上該反應(yīng)使用傳統(tǒng)的Cu-Zn/Al2O3催化劑,具有價(jià)格低廉的優(yōu)點(diǎn),但存在副反應(yīng)嚴(yán)重、目標(biāo)產(chǎn)物純度低、催化劑易粉碎等缺點(diǎn),已逐步被淘汰,取而代之的是負(fù)載型鉑族金屬催化劑[2,3]。然而普通鉑族金屬催化劑應(yīng)用于該反應(yīng)時(shí),存在原料PADPA或產(chǎn)物DBPPD分子中苯環(huán)加氫、C-N鍵氫解斷裂、原料MIBK過(guò)度加氫等缺點(diǎn),導(dǎo)致目標(biāo)產(chǎn)物選擇性只有75%~80%[4,5]。研究表明,對(duì)鉑族金屬催化劑進(jìn)行硫化處理可以有效地提高鉑族金屬催化劑的選擇性[5~10]。早期研究主要以H2S等無(wú)機(jī)硫化物處理鉑族金屬催化劑,形成硫化物活性組分,具有良好的選擇性,在工業(yè)生產(chǎn)中已成功應(yīng)用[5~7]。例如Dovell等[6]使用H2S處理的Pt/C催化劑,目標(biāo)產(chǎn)物DBPPD選擇性達(dá)98%以上。經(jīng)H2S處理后的鉑族金屬,雖具有良好的選擇性,但活性明顯低于未硫化處理的鉑族金屬催化劑,因此H2S硫化處理后的鉑族金屬催化劑需要在較苛刻的反應(yīng)條件下使用,例如高溫 (453~473 K)、高壓 (3 ~5 MPa)[8],這制約了該類催化劑的應(yīng)用范圍。
那么是否可以用“毒性”比H2S更小的有機(jī)硫來(lái)處理鉑族金屬催化劑呢?近年來(lái)Takahashi[10~17]等采用二苯基硫醚 (Ph2S)、二甲基亞砜 (DMSO) 等有機(jī)硫配體對(duì)鉑族金屬催化劑進(jìn)行修飾,在選擇性加氫反應(yīng)中獲得了較好應(yīng)用。Hironao Sajiki等[11,12]用Ph2S“毒化”調(diào)變Pd/C催化劑并將其應(yīng)用于羰基、鹵素等官能團(tuán)與C=C、C C共存的選擇性加氫反應(yīng),該催化劑可以在較溫和的條件下 (常溫常壓) 優(yōu)先對(duì)C=C及C C選擇加氫,而羰基、鹵素等官能團(tuán)得到有效保留,選擇性最高可達(dá)99.0%。McKenn等[13~15]采用Ph2S修飾Pd/TiO2催化劑用于乙烯反應(yīng)氣中痕量乙炔選擇加氫,成功實(shí)現(xiàn)乙烯不被還原情況下痕量乙炔的高選擇性加氫。因此,本文作者考慮利用有機(jī)硫配體修飾的鉑族金屬催化劑很可能在較溫和條件下實(shí)現(xiàn)DBPPD的高效合成,目前未見(jiàn)有這方面的研究報(bào)導(dǎo)。
本文使用Ph2S修飾Pd/C制備得到Pd-Ph2Sx/C催化劑,通過(guò)XRD、XPS對(duì)催化劑結(jié)構(gòu)進(jìn)行表征。以PADPA和MIBK為原料,考察了Pd-Ph2Sx/C催化劑對(duì)還原烷基化反應(yīng) (一步法和兩步法) 催化合成DBPPD反應(yīng)的活性、選擇性和穩(wěn)定性。同時(shí)還對(duì)比了Pd-Ph2Sx/C催化劑在一步法和兩步法兩條工藝路線中的性能差異,結(jié)果表明兩步法合成DBPPD反應(yīng)工藝能夠充分發(fā)揮催化劑性能,催化劑活性高,選擇性好,得到了較高收率的目標(biāo)產(chǎn)物。采用兩步法反應(yīng)工藝,Pd-Ph2Sx/C催化劑套用3次后反應(yīng)活性保持穩(wěn)定。
2.1 Pd/C和Pd-Ph2Sx/C催化劑的制備方法
高分散10%(wt) Pd/C催化劑制備過(guò)程如下:稱取10 g活性炭置于250 mL三口燒瓶中,加入110 mL水,于365 K溫度下攪拌形成漿液,加入濃度為2.5%(wt)的HNO3溶液,恒溫加熱攪拌8 h,過(guò)濾,洗滌至pH值6~7,383 K溫度下真空干燥5 h。將上述預(yù)處理活性炭置于250 mL三口燒瓶中,加入150 mL水,355 K溫度下攪拌形成漿液,逐滴加20 mL濃度為0.05 g·mL-1的H2PdCl4溶液,恒溫加熱攪拌6 h,加入濃度為10%(wt) NaOH溶液,調(diào)節(jié)pH值至8~10,攪拌30 min,過(guò)濾,洗滌至pH值至6~7,383 K溫度下真空干燥過(guò)夜。將干燥好的催化劑前軀體置于250 mL三口燒瓶中,加入200 mL水,313 K溫度下攪拌形成漿液,逐滴加入10 mL水合肼溶液,攪拌3 h,過(guò)濾,洗滌至pH值至6~7,383 K溫度下真空干燥8 h,降至室溫并恢復(fù)常壓后取出,樣品裝袋密封保存。
Pd-Ph2Sx/C催化劑制備方法如下:稱取2 g Pd/C置于100 mL三口燒瓶中,加入20 mL甲醇溶液中,313 K溫度下攪拌。稱取與Pd一定化學(xué)計(jì)量比的Ph2S至甲醇中配成溶液,將Ph2S的甲醇溶液逐滴加入不斷攪拌的Pd/C懸浮液中,313 K溫度下恒溫?cái)嚢? h,經(jīng)過(guò)濾,洗滌至GC分析濾液中無(wú)Ph2S為止,333 K溫度下恒溫真空干燥6 h,制得Pd-Ph2Sx/C催化劑 (其中x為催化劑制備過(guò)程中加入Ph2S與Pd化學(xué)計(jì)量比)。
2.2 Pd-Ph2Sx/C催化劑在合成DBPPD反應(yīng)中的性能評(píng)價(jià)
以PADPA和MIBK為原料,一步法合成DBPPD的反應(yīng)在75 mL六聯(lián)高壓不銹鋼反應(yīng)釜中進(jìn)行。將3.68 g PADPA,10 mL MIBK,0.037 g Pd-Ph2Sx/ C催化劑置于不銹鋼反應(yīng)釜中,密閉高壓釜,反應(yīng)前分別采用N2和H2置換。H2壓力調(diào)至設(shè)定壓力,壓力穩(wěn)定維持30 min后,以10 K·min-1的速率升至設(shè)定反應(yīng)溫度,在1100 r·min-1攪拌的條件下反應(yīng),反應(yīng)過(guò)程中壓力每下降0.2 MPa時(shí)將壓力補(bǔ)至3 MPa,待壓力不再下降時(shí)結(jié)束反應(yīng)。反應(yīng)產(chǎn)物經(jīng)分離后采用氣相色譜儀 (島津GC-14B型,SE-30色譜柱)分析。
以PADPA和MIBK為原料,兩步法合成DBPPD的反應(yīng)分別在250 mL三口燒瓶和在500 mL高壓不銹鋼反應(yīng)釜中進(jìn)行。先將23.7 g PADPA,100 mL MIBK置于三口燒瓶中,加入1 g活性炭催化劑。在403 K溫度,500 r·min-1攪拌,常壓的反應(yīng)條件下制得亞胺。反應(yīng)產(chǎn)物經(jīng)分離后采用氣相色譜儀 (島津GC-14B型) 進(jìn)行分析。將制備的亞胺置入高壓不銹鋼反應(yīng)釜中,加入0.24 g Pd-Ph2Sx/C催化劑,密閉高壓釜,反應(yīng)前分別采用N2和H2置換。H2壓力調(diào)至3 MPa,壓力穩(wěn)定維持30 min后,以10 K·min-1的速率升413 K,在1100 r·min-1攪拌的條件下反應(yīng),反應(yīng)過(guò)程中壓力每下降0.2 MPa時(shí)將壓力補(bǔ)至3 MPa,待壓力不再下降時(shí)結(jié)束反應(yīng)。反應(yīng)產(chǎn)物經(jīng)分離后采用氣相色譜儀 (島津GC-14B型,SE-30色譜柱) 分析。
2.3催化劑表征
XPS分析采用日本島津-KRATOS公司Kratos AXIS Ultra DLD型X-射線光電子能譜儀,Al Kα射線,能量1486.6 eV,20 mA×15 kV,全譜掃描,通能為160 eV;窄譜掃描,通能為80 eV,掃描1次。C1s = 284.8 eV,測(cè)定過(guò)程中沒(méi)有檢測(cè)到電荷效應(yīng)。XRD分析采用PANalytical公司X’pert Pro型粉末型衍射儀,Cu Kα靶 (λ= 0.15406 nm),管電壓40 kV,管電流40 mA,步長(zhǎng)0.02°,速率2°·min-1。
3.1 X RD和XPS表征結(jié)果
圖1為Pd/C經(jīng)Ph2S修飾前后的催化劑XRD譜圖。 從圖1可以看出示Pd-Ph2Sx/C催化劑中Pd特征衍射峰位置和強(qiáng)度與Pd/C相比未發(fā)生明顯變化,無(wú)新衍射峰出現(xiàn)。這說(shuō)明,Ph2S以分子形式吸附在Pd/C催化劑的表面,而沒(méi)有進(jìn)入Pd金屬的體相形成鈀的硫化物晶相[18]。
圖1 Pd/C和Pd-Ph2Sx/C催化劑的XRD譜圖 Fig.1 XRD patterns of Pd/C and Pd-Ph2Sx/C catalysts
圖2 Pd/C和Pd-Ph2Sx/C催化劑的XPS譜圖Fig.2 XPS spectra of Pd/C and Pd-Ph2Sx /C catalysts
進(jìn)而作者對(duì)Pd/C經(jīng)Ph2S 修飾前后的催化劑進(jìn)行XPS分析,考察Ph2S修飾Pd/C催化劑對(duì)其電子態(tài)的影響,結(jié)果如圖2所示。從圖中可以看出,未經(jīng)Ph2S修飾的Pd/C催化劑Pd 3d5/2XPS譜峰 (圖2(A)) 經(jīng)分峰擬合后結(jié)合能分別為336.43和335.14 eV,分別對(duì)應(yīng)Pd0和Pd2+兩種Pd的價(jià)態(tài)[19,20]。Ph2S修飾后的催化劑Pd 3d5/2XPS譜峰 (圖2(B)) 明顯變寬,經(jīng)分峰擬合后結(jié)合能分別為337.21,336.20和335.08 eV。Pd-Ph2Sx/C催化劑上Pd 3d5/2XPS譜峰增加了結(jié)合能為337.21 eV 的特征峰,說(shuō)明Ph2S的吸附對(duì)Pd的電子態(tài)造成一定影響,表明Ph2S與Pd形成化學(xué)吸附,使部分Pd失去電子,而導(dǎo)致其特征峰向高結(jié)合能方向移動(dòng)[21]。但Pd-Ph2Sx/C催化劑上仍有大部分的Pd0存在,說(shuō)明Ph2S只與Pd/C催化劑部分活性位上的Pd原子形成化學(xué)吸附。綜上所述,XRD和XPS結(jié)果說(shuō)明,Ph2S修飾Pd/C催化劑過(guò)程中,Ph2S以分子形式吸附在催化劑表面,并與催化劑上部分Pd形成化學(xué)吸附。
3.2 Pd-Ph2Sx/C催化劑催化PADPA與MIBK一步法還原烷基化制備DBPPD
不同Ph2S用量修飾Pd/C催化劑 (Pd-Ph2Sx/C) 在以PADPA和MIBK為原料一步法還原烷基化制備DBPPD反應(yīng)中催化性能的影響見(jiàn)表1。從表中可以看出,在393 K溫度反應(yīng)溫度下,當(dāng)Ph2S用量為S/Pd = 0.125時(shí),PADPA轉(zhuǎn)化率為84.6%,產(chǎn)物中已有大量C-N鍵氫解副產(chǎn)物生成,表明少量的Ph2S無(wú)法將導(dǎo)致C-N鍵氫解副反應(yīng)發(fā)生的活性位完全抑制。而進(jìn)一步增加Ph2S用量,PADPA轉(zhuǎn)化率逐步降低,且有大量PADPA與MIBK縮合生成的亞胺 (imine) 未完全轉(zhuǎn)化為DBPPD。實(shí)驗(yàn)確定Ph2S用量定為S/Pd = 0.25來(lái)考察溫度、壓力以及催化劑用量等反應(yīng)條件對(duì)Pd-Ph2S0.25/C催化劑催化PADPA與MIBK一步法還原烷基化制備DBPPD的影響。
不同溫度和壓力條件下,Pd-Ph2S0.25/C在PADPA和MIBK一步法還原烷基化制備DBPPD反應(yīng)中表現(xiàn)出良好的催化選擇性,最高可使DBPPD選擇性達(dá)96.3%。如表2,H2壓力為2 MPa,反應(yīng)溫度從393 K升高至433 K時(shí),PADPA的轉(zhuǎn)化率提高了12.3%,而使DBPPD的選擇性維持不變。進(jìn)一步升高反應(yīng)溫度至473 K,雖然使PADPA轉(zhuǎn)化率達(dá)100%,但DBPPD選擇性下降至82.1%,生成了大量C-N鍵氫解副產(chǎn)物。在433 K反應(yīng)溫度下,增加H2壓力至3 MPa,可以使PADPA的轉(zhuǎn)化率達(dá)96.4%,DBPPD選擇性達(dá)96.3%,有少量亞胺未能完全轉(zhuǎn)化。進(jìn)一步增加H2壓力至4 MPa,PADPA的轉(zhuǎn)化率達(dá)98.9%,同時(shí)DBPPD選擇性下降至93.9%。原因是在Pd-Ph2Sx/C催化劑中,Ph2S以分子形式吸附在Pd/C催化劑上,雖然Ph2S與部分Pd形成了化學(xué)鍵,但在較高溫度 (473 K) 或較高壓力 (4 MPa) 下,形成的Pd-Ph2S鍵會(huì)發(fā)生斷裂,使Ph2S從催化劑表面脫附,造成催化劑選擇性下降。因此,Pd-Ph2Sx/C催化劑不適用于高溫高壓反應(yīng),其催化PADPA與MIBK一步法還原烷基化制備DBPPD存在催化活性與選擇性不能兼顧的問(wèn)題。
進(jìn)一步增加Pd-Ph2S0.25/C催化劑在PADPA與MIBK與一步法還原烷基化制備DBPPD反應(yīng)中的用量,實(shí)驗(yàn)結(jié)果見(jiàn)表3,可以看到,將Pd-Ph2S0.25/C催化劑用量增加一倍,可將PADPA的轉(zhuǎn)化率提高至94.0%,但仍然有部分亞胺未能轉(zhuǎn)化。繼續(xù)增加催化劑用量,雖然可以進(jìn)一步提高PADPA的轉(zhuǎn)化率,但效果有限,仍有亞胺未能轉(zhuǎn)化,而且DBPPD選擇性出現(xiàn)下降趨勢(shì)。因此,推測(cè)在不同反應(yīng)條件下,PADPA無(wú)法轉(zhuǎn)化的原因與PADPA與MIBK還原烷基化制備DBPPD的反應(yīng)歷程有關(guān)。
表1 Ph2S用量對(duì)Pd-Ph2Sx/ C催化劑催化PADPA與MIBK一步法還原烷基化制備DBPPD反應(yīng)結(jié)果的影響Table 1 Effects of Ph2S dosage on PADPA and MIBK one-step reductive alkylation with the Pd-Ph2Sx/C catalyst
表2 溫度和壓力對(duì)Pd-Ph2S0.25/C催化劑催化PADPA與MIBK一步法還原烷基化制備DBPPD反應(yīng)結(jié)果的影響Table 2 Effects of temperature and pressure on PADPA and MIBK one-step reductive alkylation with the Pd-Ph2S0.25/C catalyst
表3 催化劑用量對(duì)Pd-Ph2S0.25/ C催化劑催化PADPA與MIBK一步法還原烷基化制備DBPPD反應(yīng)結(jié)果的影響Table 3 Effects of catalyst dosage on PADPA and MIBK one-step reductive alkylation with the Pd-Ph2S0.25/ C catalyst
3.3 P ADPA與MIBK兩步法Pd-Ph2Sx/C催化劑催化還原亞胺制備DBPPD
對(duì)PADPA與MIBK還原烷基化制備DBPPD的反應(yīng)過(guò)程進(jìn)行分析,該還原烷基化反應(yīng)在實(shí)際反應(yīng)過(guò)程中分為兩步進(jìn)行,第一步,PADPA上胺基的N原子進(jìn)攻MIBK上羰基的C原子,形成半胺,半胺脫水縮合生成亞胺;第二步,亞胺發(fā)生還原反應(yīng),生成目標(biāo)產(chǎn)物DBPPD,反應(yīng)需要加氫催化劑作用,而且對(duì)催化劑的選擇性具有較高要求[22]。由于第一步是平衡反應(yīng),反應(yīng)產(chǎn)生的水一直存在于反應(yīng)體系中,這制約了反應(yīng)進(jìn)行。當(dāng)反應(yīng)快接近終點(diǎn)時(shí),在較低溫度下平衡很難向正方向進(jìn)行。而根據(jù)前面研究可知,Pd-Ph2Sx/C催化劑并不適用于高溫高壓反應(yīng)。因此,采用兩步法合成工藝,即先使PADPA與MIBK脫水縮合生成亞胺,再將亞胺在Pd-Ph2Sx/C催化劑的作用下還原生成DBPPD。在Pd-Ph2Sx/C催化劑催化PADPA與MIBK一步法還原烷基化制備DBPPD實(shí)驗(yàn)結(jié)果的基礎(chǔ)上,采用兩步法反應(yīng)工藝合成DBPPD的反應(yīng)結(jié)果如表4所示。
表4 Pd-Ph2Sx/C催化劑兩步法催化PADPA與MIBK加氫合成DBPPD反應(yīng)結(jié)果Table 4 Two-step synthesis of DBPPD with PADPA and MIBK under Pd-Ph2Sx/C catalyzation
以PADPA與MIBK為原料,采用兩步法反應(yīng)工藝合成DBPPD時(shí),以活性炭為催化劑催化PADPA與MIBK脫水縮合制備亞胺。從表4可以看出,兩步法反應(yīng)工藝,由于大部分縮合生成H2O的移除,有效抑制了反應(yīng)向逆方向進(jìn)行,而且在較低溫度 (433 K) 下能夠充分發(fā)揮Pd-Ph2Sx/C催化劑性能,實(shí)現(xiàn)了在較溫和的反應(yīng)條件下高轉(zhuǎn)化率、高選擇性還原烷基化制備DBPPD。在413 K溫度、3 MPa壓力反應(yīng)條件下,PADPA的計(jì)算轉(zhuǎn)化率可高達(dá)99.6%,DBPPD為98.2%。
3.4 Pd-Ph2Sx/C催化劑的重復(fù)使用性能
對(duì)Pd-Ph2Sx/C催化劑在PADPA與MIBK兩步法工藝合成DBPPD反應(yīng)中的重復(fù)使用性能進(jìn)行考察,實(shí)驗(yàn)結(jié)果如表5所示。結(jié)果表明,采用兩步法反應(yīng)工藝,在較低溫度 (433 K) 下反應(yīng),Pd-Ph2Sx/C催化劑套用3次后沒(méi)有發(fā)現(xiàn)活性下降現(xiàn)象,每次反應(yīng)PADPA轉(zhuǎn)化率達(dá)100%,反應(yīng)3次后DBPPD選擇性為95.4%。因此,以PADPA和MIBK為原料,Pd-Ph2Sx/C催化劑兩步法合成DBPPD反應(yīng)工藝,路線可行,為Pd/C催化劑催化合成DBPPD工業(yè)化應(yīng)用奠定了良好基礎(chǔ)。
表5 Pd-Ph2Sx/ C催化劑的重復(fù)使用性能Table 5 Reusability of the Pd-Ph2Sx/ C catalyst
對(duì)套用后的Pd-Ph2Sx/C催化劑進(jìn)行XRD分析,結(jié)果如圖3所示。從圖中可以看出,套用后的Pd-Ph2Sx/C催化劑表面幾乎沒(méi)有游離的S進(jìn)入Pd晶格形成PdxSy晶相,說(shuō)明沒(méi)有明顯的PdxSy物種生成。這也是Pd-Ph2Sx/C催化劑在重復(fù)使用過(guò)程中可以保持高活性的主要原因。XRD譜圖上其它衍射峰可能由于反應(yīng)過(guò)程中催化劑表面吸附了部分原料和產(chǎn)物等有機(jī)物分子。McKenna等[13]認(rèn)為Ph2S修飾Pd/SiO2催化劑用于乙烯反應(yīng)氣中痕量乙炔選擇加氫反應(yīng)中,在393 K溫度下Ph2S在Pd/SiO2催化劑表面分解釋放出苯基團(tuán),而Ph2S中的S仍吸附在催化劑表面起到提高選擇性的作用。Pd-Ph2Sx/C催化劑在液相選擇性加氫過(guò)程中,雖然可能會(huì)有少量S從催化劑表面流失,但S的流失是整個(gè)Ph2S分子在催化劑表面脫附,而并不是Ph2S上的苯基團(tuán)的脫附,因此,Ph2S的脫附對(duì)Pd/C催化劑晶相沒(méi)有明顯影響。
圖3 Pd-Ph2Sx/ C催化劑套用后的XRD譜圖Fig.3 XRD pattern of the Pd-Ph2Sx/ C catalyst after reusage
Ph2S 修飾Pd/C制備得到Pd-Ph2Sx/C催化劑,在PADPA與MIBK還原烷基化反應(yīng)中表現(xiàn)出良好的催化劑性能。采用一步法反應(yīng)工藝,通過(guò)調(diào)節(jié)溫度、壓力和原料配比等反應(yīng)條件可使DBPPD最高選擇性達(dá)96.3%。但一步法反應(yīng)工藝過(guò)程中縮合生成的水制約著反應(yīng)進(jìn)行,使PADPA在較低溫度下無(wú)法完全轉(zhuǎn)化。以PADPA與MIBK為原料,采用兩步法反應(yīng)工藝可以充分發(fā)揮Pd-Ph2Sx/C 催化劑的催化性能。在413 K,3 MPa反應(yīng)條件下,可使N-苯基對(duì)苯二胺的轉(zhuǎn)化率達(dá)100%,DBPPD的收率達(dá)97.4%。Pd-Ph2Sx/C催化劑的重復(fù)使用性能良好,套用3次后沒(méi)有發(fā)現(xiàn)活性下降現(xiàn)象,每次反應(yīng)PADPA轉(zhuǎn)化率達(dá)100%。作者針對(duì)Pd-Ph2Sx/C催化劑的特點(diǎn),以PADPA和MIBK為原料,提出兩步法合成DBPPD反應(yīng)工藝,降低了該還原烷基化反應(yīng)的反應(yīng)條件,路線可行,為Pd/C催化劑催化合成DBPPD工業(yè)化應(yīng)用奠定了良好基礎(chǔ)。
[1] Nam S H, Park S S. A study of 6PPD (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine) used as an antidegradant in rubber with GC [J]. American Laboratory, 1998, 30(18): 25-26.
[2] CHU Zheng (儲(chǔ)政), ZHOU Lian-feng (周蓮鳳). Preparation of reductive alkylation catalyst and its application (縮合還原烷基化催化劑及其制備方法和用途): China, CN101204658 [P]. 2008-06-25.
[3] LI Ling (李玲), LI Jie (李杰), JIANG Da-hao (江大好), et al. Selective hydrogenation of alkenone to the corresponding saturated ketone over carbon supported palladium catalysts (Pd/C催化劑上烯酮的選擇性加氫反應(yīng)) [J]. Journal of Chemical Engineering of Chinese Universities (高?;瘜W(xué)工程學(xué)報(bào)), 2013, 27(1): 71-75.
[4] Yasumasa T, Takahiro K, Hiroyuki Y, et al. Selective synthesis of N-aryl hydroxylamines by the hydrogenation of nitroaromatics using supported platinum catalysts [J]. Green Chemistry, 2009, 11(9): 1385-1390.
[5] Carl D K, Summit, Daniel L B, et al. Method of preparing a sulfided platinum on carbon catalyst: US, 3275567 [P]. 1966-09-27.
[6] Frederick S D, Naugatuck, Harold G, et al. Hydrogenation with platinum metal sulfide catalyst: US, 3336386 [P]. 1967-08-15.
[7] Dovell F S, Greenfield H. Platinum metal sulfides as heterogeneous hydrogenation catalyst [J]. Journal of the American Chemical Society, 1965, 87(12): 2767-2768.
[8] XU Wei (徐偉), ZHANG Qun-feng (張群峰), LI Xiao-nian (李小年). Aqueous phase synthesis of activated carbon supported palladium sulfides and their catalytic performance (炭載硫化鈀催化劑的水相合成及其催化性能研究) [J]. Journal of Chemical Engineering of Chinese Universities (高?;瘜W(xué)工程學(xué)報(bào)), 2014, 28(6): 1269-1274.
[9] Zhang Q F, Jiang D H, Cen J, et al. Catalytic hydrogenation of sulfur-containing nitrobenzene over Pd/C catalyst: In situ sulfidation of Pd/C for the preparation of PdxSycatalysts [J]. Applied Catalysis A: General, 2015, 497: 17-21.
[10] Takahashi Y, Hara T, Kaneda K. Highly efficient Pd/SiO2-dimethyl sulfoxide catalyst system for selective semihydrogenation of alkynes [J]. Chemistry Letters, 2011, 40(4): 405-407.
[11] Akinori M, Yumi M, Hironao S, et al. Pd/C-Catalyzed chemoselective hydrogenation in the presence of diphenylsulfide [J]. Organic Letters, 2006, 8(15): 3279-3281.
[12] Akinori M, Tomoteru M, Hironao S, et al. Novel palladium-on-carbon/diphenyl sulfide complex for chemoselective hydrogenation: preparation, characterization, and application [J]. Advanced Synthesis and Catalysis, 2008, 350(3): 406-410.
[13] McKenna F M, Anderson A J. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2catalysts [J]. Journal of Catalysis, 2011, 281(2): 231-240.
[14] McKenna F M, Richard P K Wells, James A A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2catalysts [J]. Chemical Communications, 2011, 47(8): 2351-2353.
[15] McKenna F M, Mantarosie L, Hardacre C. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2[J]. Catalysis Science & Technology, 2012, 2(3): 632-638.
[16] Su C, Li X N, Ma L, et al. Behavior of adsorbed diphenyl-sulfide on the Pd/C catalyst for o-chloronitrobenzene hydrogenation [J]. Chinese Chemical Letters, 2013, 24(1): 59-62.
[17] Zhang Q F, Feng F, Su C, et al. Preparation of supported core-shell structured Pd@PdxSy/C catalysts for use in selective reductive alkylation reaction [J]. RSC Advances, 2015, 5(81): 66278-66285.
[18] Xu W, Ni J, Xiang Y Z, et al. Tailoring supported palladium sulfide catalysts through H2-assisted sulfidation with H2S [J]. Journal of Materials Chemistry A, 2013, 1(41): 12811-12817.
[19] Bird R J, Swift P. Energy calibration in electron spectroscopy and the re-determination of some reference electron binding energies [J]. Journal of Electron Spectroscopy and Related Phenomena, 1980, 21(3): 227-240.
[20] Kim K S, Gossmann A F, Winograd N. X-Ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode [J]. Analytical Chemistry, 1974, 46 (2): 197-200.
[21] Best S A, Brant P, Feltham R D, et al. X-Ray photoelectron spectra of inorganic molecules. 18.1 observations on sulfur 2p binding energies in transition metal complexes of sulfur-containing ligands [J]. Inorganic Chemistry, 1977, 16(8): 1976-1979.
[22] Gomez S, Peters J. A, Maschmeyer T. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistin aspects and selectivity control [J]. Advanced Synthesis and Catalysis, 2002, 344(10): 1307-1057.
Synthesis of N-(1,3-dimethylbutyl)-N'-Phenyl-p-Phenylenediamine with Diphenyl-Sulfide Modified Pd/C Catalysts
SU Chang, ZHANG Qun-feng, FENG Feng, MA Lei, LU Chun-shan, LI Xiao-nian
(State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China)
Diphenyl-sulfide (Ph2S) modified Pd/C catalysts (Pd-Ph2Sx/C) were prepared and studied for“one-step” and “two-step” reductive alkylation of N-phenyl-p-phenylenediamine (PADPA) and methyl isobutyl ketone (MIBK) to obtain N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (DBPPD). The structure of the Pd-Ph2Sx/C catalysts was characterized by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the Pd-Ph2Sx/C catalysts have remarkable selectivity for DBPPD synthesis in both “one-step” and “two-step” methods. DBPPD selectivity can reach up to 96.3% in one-pot process by changing Ph2S content, temperature and pressure. However, PADPA is difficult to be completely transformed due to the formation of H2O from PADPA and MIBK condensation in the “one-step” route at low temperature (413~433 K), where the “two-step” reaction process can overcome this problem. PADPA and MIBK were first dehydrated to form imines on activated carbon catalysts, and then the imines were reduced to prepare DBPPD with the Pd-Ph2Sx/C catalysts. The results show that PADPA conversion of 100% can be obtained at 413 K and H2pressure of 3 MPa using the “two-step” method. Meanwhile, DBPPD selectivity over 97.4% can also be obtained. Additionally, the reusability of the Pd-Ph2Sx/C catalyst was studied. It is found that the Pd-Ph2Sx/C catalyst can be reused for 3 times without distinctly loss of activity, which shows a wide application potential in industry.
diphenyl-sulfide modified Pd/C catalyst; one-step; two-step; reductive alkylation; DBPPD
TQ426.81
:ADOI:10.3969/j.issn.1003-9015.2016.06.011
1003-9015(2016)06-1313-07
2015-04-15;
:2016-04-19。
浙江省自然科學(xué)基金(LY12b03005);浙江省科技廳項(xiàng)目(2011R09020-01)。
蘇倡(1986-),女,吉林四平人,浙江工業(yè)大學(xué)博士生。
:李小年,E-mail:xnli@zjut.edu.cn