李奕基,陳新新,符瑞佳,陳小靜,呂 剛,梁 培,3
曼氏迭宮絳蟲(chóng)鈣/鈣調(diào)素依賴(lài)蛋白激酶I (SmCaMK I)基因的生物信息學(xué)分析與表達(dá)鑒定
李奕基1,2,陳新新2,符瑞佳1,2,陳小靜2,呂 剛1,2,梁 培1,2,3
目的 開(kāi)展SmCaMK I(曼氏迭宮絳蟲(chóng)鈣/鈣調(diào)素依賴(lài)蛋白激酶I)的潛在生物學(xué)特征分析和功能研究。方法利用相關(guān)網(wǎng)站和軟件對(duì)SmCaMK I的同源性核苷酸序列比對(duì)分析、保守位點(diǎn)預(yù)測(cè)、構(gòu)建分子進(jìn)化樹(shù)、編碼氨基酸的淋巴細(xì)胞表位進(jìn)行分析預(yù)測(cè)。此外,SmCaMK I進(jìn)行擴(kuò)增,并克隆到表達(dá)載體pET-28α(+)中進(jìn)行蛋白的表達(dá)純化,制備大鼠免疫血清進(jìn)行蟲(chóng)體免疫組織定位分析。結(jié)果SmCaMK I是一個(gè)全長(zhǎng)基因,由1 068 bp組成,編碼355個(gè)氨基酸。SmCaMK I與細(xì)粒棘球絳蟲(chóng)、多房棘球絳蟲(chóng)的CaMK I保守功能域的氨基酸序列一致性分別為89%和88%,與人的CaMK I氨基酸序列一致性?xún)H僅只有44%。分子進(jìn)化樹(shù)分析中SmCaMK I與絳蟲(chóng)屬的親緣關(guān)系最近,與其他物種親緣性較遠(yuǎn)。與人類(lèi)CaMK I相比,淋巴細(xì)胞表位具有統(tǒng)計(jì)學(xué)差異。SmCaMK I能夠定位在成蟲(chóng)的睪丸和蟲(chóng)卵,在裂頭蚴中大量表達(dá)和特異定位于體表。結(jié)論SmCaMK I是參與蟲(chóng)體生長(zhǎng)發(fā)育繁殖的重要蛋白分子,還可能是一個(gè)潛在的疫苗靶標(biāo)蛋白。
曼氏迭宮絳蟲(chóng);SmCaMK I;生物信息學(xué)分析;原核表達(dá);免疫組織化學(xué)定位
曼氏迭宮絳蟲(chóng)(Spirometramansoni)屬于絳蟲(chóng)綱、假葉目、迭宮屬。曼氏迭宮絳蟲(chóng)成蟲(chóng)主要寄生于貓科動(dòng)物體內(nèi),偶有寄生于人體,但是其中期裂頭蚴可在人體寄生,導(dǎo)致曼氏裂頭蚴病,其危害遠(yuǎn)大于成蟲(chóng)[1]。1882年Manson首次在我國(guó)廈門(mén)的一具男尸中檢出曼氏裂頭蚴,之后世界各地相繼有病例報(bào)告。曼氏裂頭蚴病多見(jiàn)于東亞和東南亞各國(guó),歐洲、美洲、非洲和澳洲也有記錄[2]。目前在我國(guó)已有1 000多例病例,分別來(lái)自27個(gè)省、市、自治區(qū)[3]。感染者年齡為未滿周歲~62歲,以10~30歲感染率最高,各民族均有[4-5]。
人感染裂頭蚴的主要途徑有局部敷貼生蛙肉、吞食生的或未煮熟的蛙肉/蛇肉、誤食感染的劍水蚤[6]。曼氏裂頭蚴可寄生于人體全身部位,可在體內(nèi)移行,寄生部位多變,其中以寄生在眼部與大腦最為危險(xiǎn),嚴(yán)重可導(dǎo)致失明、殘疾甚至危及生命。此外,曼氏裂頭蚴臨床表現(xiàn)各不相同,由于缺乏特異性表現(xiàn),誤診、漏診現(xiàn)象較為普遍[7]。目前,臨床上也缺乏預(yù)防裂頭蚴感染的特異性疫苗。
鈣/鈣調(diào)素依賴(lài)蛋白激酶(Calcium/Calmodulin-dependent protein kinase, CaMK)屬于絲氨酸/蘇氨酸蛋白激酶家族中一員[8]。CaMK具有相似的-N端催化域(CaMKⅡ除外)和具有自身抑制功能的-C端調(diào)節(jié)域,在與Ca2+/CaM結(jié)合之前,激酶保持在一個(gè)抑制狀態(tài),在兩者結(jié)合后被激活[9]。鈣/鈣調(diào)素依賴(lài)蛋白激酶I (Calcium/Calmodulin-dependent protein kinase I, CaMK I)有4種亞基(α、β、γ、δ),分子量在38~42 kDa之間,幾乎在所有細(xì)胞當(dāng)中表達(dá)[10]。Skelding等人發(fā)現(xiàn),CaMK I參與細(xì)胞周期的G1期,并對(duì)細(xì)胞周期與細(xì)胞增殖的調(diào)節(jié)有著非常重要的影響[11]。CaMK I含有絲氨酸(Ser)或蘇氨酸(Thr)磷酸化位點(diǎn),能使許多細(xì)胞內(nèi)底物磷酸化,從而誘發(fā)一系列的作用,如受精[12]、成骨細(xì)胞分化[13]、維持血管張力[14]、神經(jīng)突觸增生[15]、免疫和炎癥反應(yīng)[16]、醛固酮的合成于釋放[17]、對(duì)細(xì)胞周期的調(diào)控[18]等。姚利曉等人發(fā)現(xiàn)一種日本血吸蟲(chóng)絲氨酸/蘇氨酸蛋白激酶,其免疫血清具有免疫保護(hù)作用,能有效的殺傷日本血吸蟲(chóng)童蟲(chóng),影響童蟲(chóng)發(fā)育[19]。
因此,我們推測(cè)SmCaMK I可能對(duì)于曼氏迭宮絳蟲(chóng)的生長(zhǎng)發(fā)育有著重要的作用,為此,本次實(shí)驗(yàn)通過(guò)進(jìn)行SmCaMK I的生物信息學(xué)的分析、基因克隆和獲得蛋白以及其在蟲(chóng)體中的組織定位分析,為進(jìn)一步研究SmCaMK I在曼氏迭宮絳蟲(chóng)生長(zhǎng)發(fā)育、免疫逃避和疫苗研發(fā)等奠定物質(zhì)基礎(chǔ)和提供理論依據(jù)。
1.1 材料 曼氏迭宮絳蟲(chóng)CaMK I全長(zhǎng)序列、pET-28α(+)質(zhì)粒全長(zhǎng)為5 369 bp,是兩端均帶有His標(biāo)簽的原核表達(dá)質(zhì)粒,含有卡那霉素抗性基因,均由海南醫(yī)學(xué)院熱帶醫(yī)學(xué)與檢驗(yàn)醫(yī)學(xué)院寄生蟲(chóng)教研室基因組文庫(kù)提供。大腸桿菌DH5α、BL21(DE)、PCR Mix、DL2000、DL15000、質(zhì)粒提取試劑盒、DNA膠回收試劑盒購(gòu)自天根生化技術(shù)有限公司;EcoR I限制性核酸內(nèi)切酶、XolI限制性核酸內(nèi)切酶、T4DNA連接酶,蛋白質(zhì)Marker、預(yù)染蛋白Marker購(gòu)自Thermo Fisher Scientific公司;Peroxidase-conjugated Affinipure Goat Anti-Mouse IgG(H+L)、Peroxidase-conjugated Affinipure Goat Anti-Rat IgG(H+L)購(gòu)自美國(guó)proteintech公司;His-Tag Mouse monoclonal antibody、Cy3標(biāo)記的山羊抗小鼠IgG (H+L)購(gòu)自碧云天生物科技有限公司;增強(qiáng)型DAB顯色試劑盒購(gòu)自北京索來(lái)寶科技有限公司。
1.2 方法
1.2.1SmCaMK I基因的識(shí)別 曼氏迭宮絳蟲(chóng)成蟲(chóng)cDNA文庫(kù)中EST克隆GDTC009_E09通過(guò)NCBI網(wǎng)站(http://www.ncbi.nlm.nih.gov/)BLASTx程序,將基因的編碼氨基酸序列與GenBank中其他物種的同源氨基酸序列進(jìn)行比對(duì),推測(cè)該基因的功能,判斷其是否為全長(zhǎng)基因。
1.2.2SmCaMK I氨基酸序列生物信息學(xué)分析
1.2.2.1 利用蛋白分析系統(tǒng)Expasy(http://www.expasy.org/)對(duì)蛋白的理化性質(zhì)和功能域進(jìn)行分析。
1.2.2.2 利用(http://www.ncbi.nlm.nih.gov)網(wǎng)站下載不同物種的同源蛋白,使用MEGA5.0軟件構(gòu)建系統(tǒng)進(jìn)化樹(shù)。
1.2.2.3 使用BepiPred和NetTepi在線軟件對(duì)蛋白的淋巴細(xì)胞表位進(jìn)行預(yù)測(cè)分析。
1.2.3SmCaMK I基因克隆 以曼氏迭宮絳蟲(chóng)成蟲(chóng)文庫(kù)質(zhì)粒作為模板,利用PCR的方法進(jìn)行擴(kuò)增,特異性引物通過(guò)Primer Premier 5.0 和 PCRDESIGN軟件進(jìn)行設(shè)計(jì),上游和下游引物分別是5′-GACGAATTCATGAGTCGCAAAACACCT-3′ (EcoR I);5′-GACCTCGAGTCACACTTCAGGATTTAC-3′(XhoI)。擴(kuò)增的反應(yīng)條件如下:94 ℃預(yù)變性5 min,94 ℃變性45 s,55 ℃退火45 s,72 ℃延伸1 min,共35循環(huán),72 ℃穩(wěn)定10 min。將PCR產(chǎn)物進(jìn)行純化,利用相同的限制性?xún)?nèi)切酶進(jìn)行酶切并與預(yù)先酶切好的原核表達(dá)載體pET-28α(+)進(jìn)行連接。將連接產(chǎn)物轉(zhuǎn)入到大腸埃希菌DH5α中,挑取陽(yáng)性克隆,進(jìn)行增菌,提取重組質(zhì)粒進(jìn)行雙酶切鑒定和測(cè)序驗(yàn)證。
1.2.4SmCaMK I蛋白表達(dá) 將重組質(zhì)粒轉(zhuǎn)化入大腸埃希菌BL21中,進(jìn)行IPTG誘導(dǎo),8 000 r/min,4 ℃離心10 min,棄去上清液。在沉淀中加入5 mmol/L咪唑,使用超聲裂解法裂解細(xì)胞,12 000 r/min, 4 ℃離心10 min,棄去上清。在沉淀中依次加入0.5 mol/L、1 mol/L、2 mol/L、4 mol/L、6 mol/L、8 mol/L尿素溶液重懸混勻,12 000 r/min,4 ℃離心10 min,分別收集上清液并做好標(biāo)記。上清液進(jìn)行12%SDS-PAGE驗(yàn)證,選取出目的蛋白含量最多的溶液進(jìn)行蛋白純化。將得到的上清液進(jìn)行梯度遞減透析尿素,然后利用0.45 μm濾膜過(guò)濾,根據(jù)His柱蛋白純化說(shuō)明書(shū)進(jìn)行蛋白純化。
1.2.5SmCaMK I免疫大鼠血清制備 將純化得到的SmCaMK I蛋白和佐劑(1∶1)混合進(jìn)行乳化,免疫SD大鼠。其中初次免疫是用不完全佐劑,之后的3次加強(qiáng)免疫是用完全佐劑。每?jī)芍苊庖咭淮?,在免疫后的?周取血,利用ELISA檢測(cè)血清滴度。
1.2.6SmCaMK I的Western Blot鑒定 將純化蛋白進(jìn)行12%SDS-PAGE跑膠,100V,冰水中電泳1 h左右,轉(zhuǎn)膜。5%脫脂奶粉常溫封閉2 h。利用PBST進(jìn)行洗膜,孵育一抗 (His-Tag小鼠血清,1∶1 000;免疫大鼠血清,1∶400),4 ℃過(guò)夜。洗滌之后,分別孵育大小鼠二抗(1∶5 000),洗滌,然后進(jìn)行DAB顯色,按照試劑盒進(jìn)行顯色,出現(xiàn)條帶后放入去離子水中以終止反應(yīng)。
1.2.7SmCaMK I蟲(chóng)體免疫組織化學(xué)定位 將收集曼氏迭宮絳蟲(chóng)成蟲(chóng)和裂頭蚴分別用4%多聚甲醛固定后,進(jìn)行石蠟包埋。將包埋的裂頭蚴和成蟲(chóng)切片,厚度約4~5 μm(海南醫(yī)學(xué)院附屬醫(yī)院病理科完成),切片50 ℃烘干后存于-20 ℃?zhèn)溆?。將切片室溫平?0 min后,60 ℃烤箱烤片40 min。于二甲苯中進(jìn)行脫蠟,用梯度酒精逐級(jí)水化,洗滌。放入枸櫞酸鹽緩沖液(pH 6.0),水浴自然升溫至95 ℃,保溫20 min后自然冷卻至室溫進(jìn)行抗原修復(fù)。洗滌后進(jìn)行正常山羊血清室溫封閉2 h,PBST沖洗。在切片上滴加200 μL稀釋的重組蛋白免疫小鼠血清(1∶200稀釋?zhuān)♂屢簽?%BSA-PBS),用免疫前的正常小鼠血清作陰性對(duì)照,置于濕盒內(nèi)4 ℃孵育過(guò)夜。次日,洗滌。每張切片加200 μL的紅色熒光Cy3標(biāo)記的山羊抗小鼠IgG (H+L)(1∶400稀釋),室溫下濕盒內(nèi)孵育2 h,洗滌。切片加200 μL組織自發(fā)熒光淬滅劑,室溫避光靜置15 min,洗滌之后,熒光顯微鏡下觀察并拍照。
2.1 蛋白編碼氨基酸序列中功能位點(diǎn)分析 通過(guò)同源氨基酸的比對(duì)分析,該基因具有完整的編碼閱讀框,并且屬于絲氨酸/蘇氨酸蛋白激酶家族蛋白。采用NCBI的BLAST對(duì)SmCaMK I的結(jié)構(gòu)功能域進(jìn)行分析,發(fā)現(xiàn)SmCaMK I有4個(gè)活性位點(diǎn)分別為活性位點(diǎn)、ATP 結(jié)合位點(diǎn)、多肽底物結(jié)合位點(diǎn)、激活環(huán)。分別將細(xì)粒棘球絳蟲(chóng)(Echinococcusgranulosus,EUB632702.1)、多房棘球絳蟲(chóng)(Echinococcusmultilocularis,CDS40668.1)、人(Homosapiens,NP_003647.1)功能域的氨基酸與SmCaMK I功能域的氨基酸序列進(jìn)行比對(duì)發(fā)現(xiàn)序列一致性為89%、88%、44%。
2.2 系統(tǒng)進(jìn)化樹(shù) 采用MEGA5.0基于NJ法構(gòu)建系統(tǒng)進(jìn)化樹(shù),將曼氏迭宮絳蟲(chóng)、細(xì)粒棘球絳蟲(chóng)、多房棘球絳蟲(chóng)、麝貓后睪吸蟲(chóng)(Opisthorchisviverrini,XP_009163606.1)、華支睪吸蟲(chóng)(Clonorchissinensis,GAA29101.1)、微小膜殼絳蟲(chóng)(Hymenolepismicrostoma,CDS32035.1)、家兔(Oryctolaguscuniculus,XP_008248543.1)、大鼠(Rattusnorvegicus,NP_878262.1)、小鼠(Musmusculus,NP_659066.1)、非洲爪蟾(Xenopuslaevis,XP_008248543.1)、人(Homosapiens,NP_003647.1)、煙曲霉(Aspergillusfumigatus,EAL93663.1)的CaMK I氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù)。結(jié)果如圖1所示,同屬于絳蟲(chóng)類(lèi)SmCaMK I與細(xì)粒棘球絳蟲(chóng)和多房棘球絳蟲(chóng)的CaMK I同源序列屬于同一進(jìn)化分支,證明其親緣關(guān)系最接近;而與人類(lèi)、鼠類(lèi)、原核生物分布于不同的分支,在進(jìn)化上說(shuō)明親緣關(guān)系較遠(yuǎn)。
圖1 SmCaMK I同源氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù)Fig.1 The evolution tree of SmCaMK I
2.3 淋巴細(xì)胞表位分析 利用BepiPred、NetTepi軟件分析對(duì)該蛋白質(zhì)編碼的氨基酸序列的表位進(jìn)行分析,發(fā)現(xiàn)SmCaMK I可能有10個(gè)潛在的B淋巴細(xì)胞抗原表位(aa1-aa17、aa57-aa72、aa129-aa135、aa153-aa161、aa166-aa171、aa195-aa199、aa209-aa219、aa236-aa246、aa262-aa268、aa350-aa355)和5個(gè)T淋巴細(xì)胞表位(77aa-85aa、93a-101aa、173aa-181aa、188aa-196aa、327aa-335aa)。將SmCaMK I與人類(lèi)CaMK I抗原表位進(jìn)行對(duì)比發(fā)現(xiàn),B細(xì)胞表位重合率較高,但是對(duì)應(yīng)的編碼氨基酸差異較大,并且T淋巴細(xì)胞表位存在統(tǒng)計(jì)學(xué)差異,如圖2和圖3所示。
圖2 B淋巴細(xì)胞表位比對(duì)Fig.2 The alignment of B lymphocyte epitopes
圖3 T淋巴細(xì)胞表位比對(duì)Fig.3 The alignment of T lymphocyte epitopes
2.4SmCaMK I基因的擴(kuò)增和克隆 利用特異性引物,從曼氏迭宮絳蟲(chóng)成蟲(chóng)cDNA文庫(kù)中擴(kuò)增出SmCaMK I基因,經(jīng)瓊脂糖凝膠電泳檢測(cè)在1 000 bp附近有特異性條帶。根據(jù)生物信息學(xué)分析ORF Finder分析此基因編碼區(qū)為1 068 bp,說(shuō)明擴(kuò)增產(chǎn)物與理論值大小基本符合。將提取的重組質(zhì)粒使用限制性?xún)?nèi)切酶EcoR I和XhoI進(jìn)行雙酶切,分別獲得的基因片段在1 000 bp和5 000 bp附近,如圖4。測(cè)序結(jié)果表明插入序列與SmCaMK I基因序列一致,上述結(jié)果說(shuō)明重組原核表達(dá)質(zhì)粒構(gòu)建成功。
M1:DL2 000 DNA Marker;1:SmCaMK I基因;2:pET-28α空質(zhì)粒;3:pET-28α(+)-SmCaMK I重組質(zhì)粒;4:pET-28α(+)-SmCaMK I重組質(zhì)粒雙酶切;M2:DL15 000 DNA MarkerM1: DL2 000 DNA Marker; 1: SmCaMK I gene; 2: pET-28a(+) plasmid; 3: pET-28a(+) SmCaMK I recombinant plasmid; 4: pET-28a(+) SmCaMK I recombinant plasmid was digested by double enzyme; M2: DL15 000 DNA Marker圖4 重組質(zhì)粒pET-28α(+)-SmCaMK I的PCR及酶切鑒定圖Fig.4 The identification of the pET-28α(+)-SmCaMK I by PCR amplification and digestion with restriction enzymes
M:蛋白Marker;1:大腸桿菌空載未誘導(dǎo);2:大腸桿菌空載誘導(dǎo);3:大腸桿菌重組質(zhì)粒未誘導(dǎo);4:大腸桿菌重組質(zhì)粒誘導(dǎo);5:誘導(dǎo)后菌液上清;6:誘導(dǎo)后菌液沉淀;7:純化蛋白。M:Protein molecular weight markers, lysate of E.coli with pET-28a(+) vector before induction (lane 1) and after induction (lane 2), lysate of E.coli with pET-28a(+)-SmCaMK I before induction (lane 3) and after induction (lane 4), supernatant (lane 5) and precipitant (lane 6) of lysate of E.coli with pET28a(+)-SmCaMK I after induction, and the purified recombinant SmCaMK I protein (lane 7).圖5 SmCaMK I蛋白的表達(dá)和純化的12%SDS-PAGE電泳分析Fig.5 Analysis 12%SDS-PAGE of protein expression and purification of SmCaMK I
2.5 蛋白表達(dá)及純化 將重組質(zhì)粒轉(zhuǎn)化到大腸桿菌BL21中進(jìn)行表達(dá),12%SDS-PAGE電泳分析結(jié)果如圖5所示,在45 kDa附近有表達(dá)條帶,與目的蛋白分子量44.13 kDa基本相符合。蛋白進(jìn)行純化,得到的純化蛋白條帶位置與預(yù)測(cè)分子量相符。2.6SmCaMK I的western blot鑒定 圖6顯示,純化蛋白能被His單克隆抗體識(shí)別,且能與大鼠免疫血清特異性反應(yīng),識(shí)別條帶均在40~55 kDa之間,與預(yù)測(cè)分子量相符合。
A為His單克隆抗體識(shí)別;B為SmCaMK I蛋白免疫大鼠的免疫血清識(shí)別。A:rSmCaMK I protein was probed by anti-His-tag mouse serum (A) and anti-rSmCaMK I rat serum (B).圖6 SmCaMK I蛋白的His識(shí)別和抗原性鑒定Fig.6 His Tag and anti-SmCaMK I rat serum identification of SmCaMK I
2.7SmCaMK I在蟲(chóng)體中組織定位SmCaMK I能夠定位在成蟲(chóng)的睪丸和蟲(chóng)卵,如圖7;在裂頭蚴階段,整個(gè)蟲(chóng)體發(fā)出熒光和特異定位于體表,如圖8。
CaMK I廣泛存在于各組織的細(xì)胞中,作為一個(gè)細(xì)胞內(nèi)級(jí)聯(lián)反應(yīng)的信號(hào)分子[20],其對(duì)于下游靶酶的磷酸化和對(duì)細(xì)胞周期的調(diào)控起著重要的作用,主要在細(xì)胞中參與信號(hào)轉(zhuǎn)導(dǎo)和調(diào)控細(xì)胞增殖。有研究表明使用CaMK抑制劑能抑制分裂間期DNA的復(fù)制[21]。CaMK證實(shí)是細(xì)胞周期過(guò)程的介導(dǎo)因子,其中CaMK I是G1期重要的調(diào)節(jié)因子[22]。鈣離子是普遍存在的第二信使,在許多生物體和參與眾多的生理過(guò)程[23]。在細(xì)胞內(nèi)游離的鈣離子的變化是一種常見(jiàn)的信號(hào)轉(zhuǎn)導(dǎo),CaMK I是參與介導(dǎo)鈣離子來(lái)發(fā)揮作用的[24]。在克氏錐蟲(chóng)研究中發(fā)現(xiàn),CaMK參與調(diào)節(jié)寄生蟲(chóng)繁殖所需的血紅蛋白誘導(dǎo)的細(xì)胞信號(hào)通路[25]。
通過(guò)完整編碼閱讀框的預(yù)測(cè),得知SmCaMK I是一個(gè)全長(zhǎng)基因,根據(jù)保守功能域得知其編碼氨基酸序列中存在4個(gè)活性位點(diǎn),屬于絲氨酸/蘇氨酸蛋白家族。將編碼的氨基酸序列進(jìn)行蛋白理化性質(zhì)預(yù)測(cè)得知,蛋白質(zhì)理論等電點(diǎn)9.35,理論分子量44.13 kDa。氨基酸溶劑可及性和親疏水性發(fā)現(xiàn),編碼SmCaMK I的氨基酸有44.79%包埋在蛋白內(nèi)部,55.21%暴露在溶液界面,不穩(wěn)定系數(shù)39.47,脂肪系數(shù)90.11,親水指數(shù)-0.416,說(shuō)明SmCaMK I是一個(gè)穩(wěn)定的疏水蛋白。在后續(xù)的蛋白表達(dá)過(guò)程中發(fā)現(xiàn),經(jīng)過(guò)IPTG誘導(dǎo)表達(dá),目的蛋白主要在細(xì)胞沉淀物中存在,上清中蛋白含量極低,該結(jié)果與預(yù)測(cè)結(jié)果相符,純化蛋白的12%SDS-PAGE條帶顯示分子量大小與預(yù)測(cè)值相吻合。
SmCaMK I編碼的功能位點(diǎn)氨基酸序列比對(duì)中發(fā)現(xiàn)曼氏迭宮絳蟲(chóng)與細(xì)粒棘球絳蟲(chóng)、多房棘球絳蟲(chóng)的CaMK I的編碼氨基酸序列一致性均達(dá)到88%以上,可能是因?yàn)橥瑢儆诒庑蝿?dòng)物門(mén)的絳蟲(chóng)綱[1]。然而與人類(lèi)的CaMK I一致性?xún)H僅只有44%。此外,在構(gòu)建的系統(tǒng)進(jìn)化樹(shù)中,我們發(fā)現(xiàn)寄生蟲(chóng)和哺乳動(dòng)物、微生物屬于不同的分支,曼氏迭宮絳蟲(chóng)與其他絳蟲(chóng)如細(xì)粒棘球絳蟲(chóng)、多房棘球絳蟲(chóng)同屬一個(gè)分支,親緣關(guān)系最近,而與人類(lèi)的親緣性相對(duì)較遠(yuǎn),這一結(jié)果與氨基酸比對(duì)分析結(jié)果一致。通過(guò)淋巴細(xì)胞表位預(yù)測(cè)發(fā)現(xiàn)SmCaMK I與人類(lèi)的CaMK I序列中B淋巴細(xì)胞表位重合率較高,但是重合部分氨基酸序列差異較大,并且T淋巴細(xì)胞表位對(duì)比中發(fā)現(xiàn)兩者表位分布具有顯著性差異且發(fā)現(xiàn)表位153aa-161aa空間位置與SmCaMK I功能位點(diǎn)重合。將純化蛋白進(jìn)行免疫大鼠制備免疫血清,通過(guò)血清滴度測(cè)定顯示出較高的滴度,說(shuō)明SmCaMK I具有良好的免疫原性。此外,Western Blotting結(jié)果顯示該蛋白具有良好的免疫反應(yīng)性。這些結(jié)果充分說(shuō)明了SmCaMK I是一個(gè)非常有研究?jī)r(jià)值的疫苗候選分子。
A&B成蟲(chóng)在白光下拍照;C&D分別是免疫大鼠血清識(shí)別和正常大鼠血清識(shí)別的熒光下拍照,放大倍數(shù)為20x,T:睪丸;E:蟲(chóng)卵。A&B were corresponding to bright fields at adult worms stage; C&D were respectively treated with anti-rSmCaMK I rat serum and na?ve rat serum in the fluorescent light. The images were magnified at 20x. T: testicle; E: eggs圖7 SmCaMK I在成蟲(chóng)組織中的定位Fig.7 Immunohistochemical localization of SmCaMK I in adult worm
A&B成蟲(chóng)白光;C&D分別是免疫大鼠血清識(shí)別的熒光和正常大鼠血清識(shí)別的熒光下拍照,放大倍數(shù)為20x,t:體表。A&B were corresponding to bright fields at sparganum stage; C&D were respectively treated with anti-rSmCaMK I rat serum and na?ve rat serum in the fluorescent light. The images were magnified at 20x. t: tegument圖8 SmCaMK I在裂頭蚴組織中的定位Fig.8 Immunohistochemical localization of SmCaMK I in sparganum
在蟲(chóng)體免疫組織化學(xué)定位中,SmCaMK I能夠在成蟲(chóng)的生殖器官睪丸和蟲(chóng)卵中大量表達(dá),尤其在蟲(chóng)卵中,能夠在卵殼上有特異性的定位,這些器官都是蟲(chóng)體生長(zhǎng)發(fā)育繁殖后代的主要部位。CaMK I是參與CaM介導(dǎo)的細(xì)胞內(nèi)Ca2+信號(hào)傳導(dǎo)。在曼氏裂體吸蟲(chóng)研究中發(fā)現(xiàn),鈣離子能夠通過(guò)調(diào)節(jié)卵殼合成材料來(lái)參與蟲(chóng)卵的形成[26-27],并且還有研究發(fā)現(xiàn)曼氏裂體吸蟲(chóng)的CaM免疫感染寄生蟲(chóng)的小鼠,能夠顯著減少蟲(chóng)卵數(shù)量[28]。另外,CaMK I屬于絲氨酸/蘇氨酸蛋白激酶家族成員。姚利曉等人在東方田鼠血清中發(fā)現(xiàn)日本血吸蟲(chóng)絲氨酸/蘇氨酸蛋白激酶抗體在殺傷日本血吸蟲(chóng)中具有重要作用,并且能有效抑制該酶活性,破壞生物體內(nèi)正常的磷酸化以及去磷酸化的過(guò)程,從而干擾日本血吸蟲(chóng)童蟲(chóng)的生長(zhǎng)發(fā)育[19],這些實(shí)驗(yàn)結(jié)果都充分地證明了SmCaMK I可能在蟲(chóng)體生長(zhǎng)過(guò)程中發(fā)揮非常重要的作用。此外,還意外發(fā)現(xiàn),SmCaMK I能夠在裂頭蚴蟲(chóng)體內(nèi)大量表達(dá),還特異定位在體表,寄生蟲(chóng)體表是一個(gè)非常重要的部位,是參與蟲(chóng)體吸收營(yíng)養(yǎng)、排泄代謝產(chǎn)物、釋放保護(hù)因子。此外,蟲(chóng)體體表還是直接接觸宿主的部位,也是寄生蟲(chóng)產(chǎn)生免疫逃避的部位。CaMK I之所以能夠定位在體表可能是因?yàn)檎{(diào)節(jié)Ca2+離子,來(lái)參與了寄生蟲(chóng)肌肉和體表的運(yùn)動(dòng)。許多的研究證實(shí)了,蟲(chóng)體體表蛋白是一個(gè)很好的疫苗候選分子[29]。這進(jìn)一步證實(shí)了,SmCaMK I為今后開(kāi)發(fā)疫苗提供夯實(shí)的理論依據(jù)。
綜上所述,SmCaMK I不僅是一個(gè)參與信號(hào)傳導(dǎo)的重要蛋白,還是一個(gè)參與蟲(chóng)體生長(zhǎng)發(fā)育繁殖的因子,并且還可能是一個(gè)潛在的疫苗靶標(biāo)蛋白。
[1] Li YL, Zhu XP. Human parasitology[M].8th ed. Beijing: The People's Health Press, 2013:120-123. (in Chinese)
李雍龍,諸欣平.人體寄生蟲(chóng)學(xué)[M].8版.北京:人民衛(wèi)生出版社, 2013:120-123.
[2] Fukushima T, Yamane Y. How does the Sparganosis occur?[J].Parasitol Today,1999,15(3):124. DOI:1016/S0169-4758(99)01405-2
[3] Cui J, Lin XM, Zhang HW, et al. Sparganosis, Henan Province, Central China[J]. Emerg Infec, 2011, 17(1):146-147.DOI:10.3201/eid1701.101095
[4] Guo YP, Yang XL, Wang WS, et al. Diagnosis of cerebral sparganosis on CT and MRI[J]. J Diagnos Imag Interventional Radiol,2013,12(3):137-139. (in Chinese)
郭耀平,楊學(xué)良,汪文勝,等.腦裂頭蚴病的CT和MRI診斷(附5例報(bào)告)[J].影像診斷與介入放射學(xué),2013,12(3):137-139.
[5] Niu HL, Zheng XX, Ma CL. The sparganum in pelvic cyst of a child[J]. Chin J Clin Exper Pathol,2010,26(5):642. (in Chinese)
牛會(huì)林,鄭秀霞,馬長(zhǎng)玲.幼兒盆腔裂頭蚴囊腫1例[J].臨床與實(shí)驗(yàn)病理學(xué)雜志,2010,26(5):642.
[6] Qiu MH, Qiu MD. Human plerocercoidosis and sparganosis: II. A historical review on pathology, clinics, epidemiology and control[J]. Chin J Parasitol Parasit Dis, 2009, 27(3):251-260.(in Chinese)
裘明華,裘明德.人裂頭蚴病和無(wú)頭蚴病:II病理學(xué)、臨床、流行病學(xué)及控制的過(guò)去和現(xiàn)在[J].中國(guó)寄生蟲(chóng)學(xué)與寄生蟲(chóng)病雜志, 2009, 27(3):251-260.
[7] Wang Y, Gan XX. Progress of diagnosis ofSpirometraplerocercoid[J]. Chin J Zoonoses,2007, 23(9):942-944.(in Chinese)
王越,干小仙.曼氏裂頭蚴病診斷研究進(jìn)展[J].中國(guó)人獸共患病學(xué)報(bào), 2007, 23(9):942-944.
[8] Lu XZ, Bi XY, Yu XJ, et al. The research progress of calmodulin dependent protein kinase II and cardiovascular disease[J]. Progr Physiologic Sci, 2014,45(1):32-36.(in Chinese)
逯星竹,畢學(xué)苑,于曉江, 等.鈣/鈣調(diào)蛋白依賴(lài)性蛋白激酶II與心血管疾病的研究進(jìn)展[J].生理科學(xué)進(jìn)展, 2014,45(1)32-36.
[9] Swulius MT, Waxham MN. Ca2+/Calmodulin-dependent Protein Kinases[J]. Cellul Mol Life Scie, 2008,65(17):2637-2657. DOI:10.1007/s00018-008-8086-2
[10] SoderlingTR, Stull JT. Structure and regulation of calcium/calmodulin-dependent protein kinases[J]. Chem Rev,2001,101(8):2341-2352.DOI:10.1021/cr0002386
[11] Skelding KA, Rostas JaP, Verrills NM. Controlling the cell cycle: The role of calcium/calmodulin-stimulated protein kinases I and II [J]. Cell Cycle,2014,10(4):631-639. DOI:10.4161/cc.10.4.14798
[12] Jones KT. Intracellular calcium in the fertilization and development of mammalian eggs[J]. Clin Exp Pharmacol Physiol, 2007, 34(10): 1084-1089. DOI:10.1111/j.1440-1681.2007.04726.x
[13] Shin MK, Kim MK, Bae YS, et al. A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells[J]. Cell Signal, 2008, 20(4):613-624.DOI: 10.1016/j.cellsig.2007.11.012
[14] Munevar S, Gangopadhyay SS, Gallant C, et al. CaMKIIT287 and T305 regulate history-dependent increases in alpha agonist-induced vascular tone[J]. J Cell Mol Med, 2008, 12(1): 219-226. DOI:10.1111/j.1582-4934.2007.00202.x
[15] Takemura M, Mishima T, Wang Y, et al. Ca2+/calmodulin-dependent protein kinase IV-mediated LIM kinase activation is critical for calcium signal-induced neurite outgrowth[J]. J Biol Chem, 2009, 284(42):28554-28562. DOI: 10.1074/jbc.M109.006296
[16] Racioppi L, Means A R. Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses:novel routes for an ancient traveller[J]. Trends Immunol, 2008, 29(12):600-607. DOI: 10.1016/j.it.2008.08.005
[17] Condon JC, Pezzi V, Drummond BM, et al. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase[J]. Endocrinology,2002, 143(9):3651-3657. DOI:10.1210/en.2001-211359
[18] Joseph JD, Means AR. Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division inAspergillusnidulans[J]. J Biol Chem, 2000, 275(49):38230-38238. DOI:10.1074/jbc.M006422200
[19] Yao LX, Sun AG, FU ZQ, et al. Expression and protective immunity of serine-threonine specific protein phosphatase SjPP ofSchistosomajaponicum[J]. Vet Sci in China, 2006, 36(2):122-126.(in Chinese)
姚利曉, 孫安國(guó), 傅志強(qiáng),等. 日本血吸蟲(chóng)絲氨酸/蘇氨酸蛋白磷酸酶基因的表達(dá)及其免疫保護(hù)試驗(yàn)[J].中國(guó)獸醫(yī)科學(xué), 2006, 36(2):122-126.
[20] Hook S, Means A. Ca2+/CaM-dependent kinases: from activation to function[J]. Annu Rev Pharmacol Toxicol, 2001, 41:471-505.DOI:10.1146/annurev.pharmtox.41.1.471
[21] Colomer J, Means AR. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease[J]. Subcell Biochem, 2007, 45:169-214.
[22] Skelding KA, Rostas JA, Verrills NM. Controlling the cell cycle:the role of calcium/calmodulin-stimulated protein kinases I and II[J]. Cell Cycle. 2011,10(4):631-639. DOI:10.4161/cc.10.4.14798[23] Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling[J]. Nat Rev Mol Cell Biol. 2000,1(1):11-21. DOI:10.1038/35036035
[24] Wayman GA, Tokumitsu H, Davare MA, et al. Analysis of CaM-kinase signaling in cells[J]. Cell Calcium,2011,50(1):1-8.DOI:10.1016/j.ceca.2011.02.007
[25] Souza CF, Carneiro AB, Silveira AB, et al. Heme-inducedTrypanosomacruziproliferation is mediated by CaM kinase II[J]. Biochem Biophys Res Commun,2009,390(3):541-546.DOI: 10.1016/j.bbrc.2009.09.135
[26] Wells KE, Cordingley JS.Schistosomamansoni:eggshell formation is regulated by pH and calcium[J]. Exp Parasitol,1991,73(3):295-310. DOI:10.1016/0014-4894(91)90101-2
[27] Colhoun LM, Fairweather I, Brennan GP. Observations on the mechanism of eggshell formation in the liver fluke,Fasciolahepatica[J]. Parasitology,1998,116 (Pt 6):555-567.
[28] Lü ZY, Yang LL, Hu SM, et al. Expression profile, localization of an 8-kDa calcium-binding protein fromSchistosomajaponicum(SjCa8), and vaccine potential of recombinantSjCa8 (rSjCa8) against infections in mice [J]. Parasitol Res,2009,104(4):733-743.DOI: 10.1007/s00436-008-1249-0
[29] He L, Ren M, Chen X, et al. Biochemical and immunological characterization of annexin B30 fromClonorchissinensisexcretory/secretory products[J].Parasitol Res. 2014,113(7):2743-2755. DOI:10.1007/s00436-014-3935-4
Sequence bioinformatics analysis, expression and identification of Calcium/ Calmodulin-dependent protein kinase I (CaMK I) fromSpirometramansoni
LI Yi-ji1,2, CHEN Xin-xin2, FU Rui-jia1,2, CHEN Xiao-jing2, LYU Gang1,2, LIANG Pei1,2,3
(1.KeyLaboratoryofTranslationalMedicineforTropicalDiseases,MinistryofEducation,HainanMedicalUniversity,Haikou571199,China;2.SchoolofTropicalMedicineandLaboratoryMedicine,HainanMedicalUniversity,Haikou571199,China;3.CollegeofAgriculture,HainanUniversity,Haikou570228,China)
The aim for this study is predicting the biological characteristics and potential functions of Calcium/calmodulin dependent protein kinase I (CaMK I) fromSpirometramansoni(SmCaMK I), and cloning it into prokaryotic expression vector, as well as performing immunohistochemical localization, which paved the way for the further study. The nucleotide sequence homology analysis, the conserved sites prediction the physical and chemical parameters and the lymphocyte epitope ofSmCaMK I were performed by NCBI website and online software. The evolution tree was built by MEGA5.0 software. In addition, the CaMK I genes was amplified and cloned into the expression vector pET-28α(+). The protein was expressed and purified, as well as used to prepared for anti-rSmCaMK I rat serum, which was used to perform immunohistochemical localization in parasites.SmCaMK I was a full length gene, composed of 1 068 bp and encoded 355 amino acids. What's more, the deduced amino acid sequence shared above 88% identities withEchinococcusgranulosusandEchinococcusmultilocularis, but 44% identity withHomosapiens. The analysis of system evolution tree showed that the genetic relationship betweenSmCaMK I was the closest and CaMK I from Taenia and far from other species. The lymphocyte epitope prediction showed obviously different betweenSmCaMK I and CaMK I ofHomosapiens. The western Blot results indicate thatSmCaMK I has great immunogenicity. Immunohistochemical localization detection showed thatSmCaMK I was expressed in the testis and eggs of adult worms, and also extensive distributed in tissue and tegument of sparganum. The study indicated thatSmCaMK I is a critical protein involving in parasite's growth and reproduction, and may be a potential vaccine target protein.
Spirometramansoni;SmCaMK I; bioinformatics analysis; prokaryotic expression; immunohistochemical localization
Liang Pei, Email: liangpeilp2012@163.com
10.3969/j.issn.1002-2694.2016.012.002
國(guó)家自然科學(xué)基金(No.81560332&No.81260254)和海南省自然科學(xué)基金(No.814289)聯(lián)合資助
梁 培,Email:liangpeilp2012@163.com
1.海南醫(yī)學(xué)院熱帶病轉(zhuǎn)化醫(yī)學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,???571199; 2.海南醫(yī)學(xué)院熱帶醫(yī)學(xué)與檢驗(yàn)醫(yī)學(xué)院,???571199; 3.海南大學(xué)農(nóng)學(xué)院,???570228
R383
A
1002-2694(2016)12-1044-07
2016-07-20;
2016-10-19
Supported by the Natural Science Foundation of China (No. 81560332 & No. 81260254),and the Natural Science Foundation of Hainan Province (No. 814289)
中國(guó)人獸共患病學(xué)報(bào)2016年12期