• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nerve growth factor protects against palmitic acidinduced injury in retinal ganglion cells

    2016-02-09 05:17:23PanshiYanShuTangHaifengZhangYuanyuanGuoZhiwenZengQiangWen1DepartmentofOphthalmologyFirstAffiliatedHospitalofZhengzhouUniversityZhengzhouHenanProvinceChina2DepartmentofPharmacyFirstAffiliatedHospitalofZhengzhouUniversit

    Pan-shi Yan, Shu Tang, Hai-feng Zhang, Yuan-yuan Guo, Zhi-wen Zeng,, Qiang Wen1 Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China2 Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, Guangdong Province, China5 Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China

    Nerve growth factor protects against palmitic acidinduced injury in retinal ganglion cells

    Pan-shi Yan1,#, Shu Tang2,#, Hai-feng Zhang3, Yuan-yuan Guo4, Zhi-wen Zeng4,*, Qiang Wen5,*
    1 Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
    2 Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
    3 Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
    4 Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, Guangdong Province, China
    5 Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China

    How to cite this article:Yan PS, Tang S, Zhang HF, Guo YY, Zeng ZW, Wen Q (2016) Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells. Neural Regen Res 11(11):1851-1856.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    Funding:This work was supported by the National Natural Science Foundation of China, No. U1304815; a grant from Key Project of Science and Technology Research of Henan Province of China, No. 132102310097.

    Graphical Abstract

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of diabetes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF significantly attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 signaling pathways.

    nerve regeneration; RGC-5 cells; palmitic acid; nerve growth factor; apoptosis; PI3K; Akt; FoxO1; ERK1/2; neural regeneration

    Introduction

    Diabetic retinopathy (DR) is a severe complication of diabetes mellitus and the leading cause of blindness worldwide (Zheng et al., 2012). Accumulating evidence suggests that excessive plasma levels of saturated fatty acids, such as palmitic acid, are caused by a high-fat diet. This can lead to insulin resistance and its associated complications, including DR (Kulacoglu et al., 2003; Shen et al., 2014; Kumar et al., 2015; Sasaki et al., 2015). Progressive loss of the retinal cells responsible for communication between the eye and brain contributes to early pathogenic events in DR, and can explain some of the vision defects that occur soon after the onset of diabetes (Barber et al., 2011; van Dijk et al., 2012; Pelikánová, 2016). Traditional treatments such as photocoagulation, vitrectomy and anti-vascular endothelial growth factor therapy can be effective, but are limited and can have considerable side effects (Yam and Kwok, 2007; Wilkinson-Berka, 2008). Novel approaches are, therefore, beingsought that can prevent or delay retinal cell death and maintain normal neuronal functions.

    Nerve growth factor (NGF), discovered in 1948 (Bradshaw et al., 1984), prevents neuronal apoptosis in primary cultured neurons and reduces neuronal degeneration in animal models of neurodegenerative diseases (Wiese et al., 1999; Sofroniew et al., 2001). In the retina, NGF is produced and utilized by retinal ganglion cell (RGCs) and glial cells in a paracrine and autocrine fashion (Turner et al., 1980; Mysona et al., 2014). Restoring NGF signaling has been reported to be a potential therapeutic strategy to overcome retinal degenerative diseases, including DR (Colafrancesco et al., 2011; Abu El-Asrar et al., 2013; Mysona et al., 2013, 2015; Mantelli et al., 2014; Wang et al., 2015b; Zhang and Zhou, 2015). NGF can prevent early retinal cell apoptosis and development of cellular occluded capillaries (Hammes et al., 1995), while an anti-NGF antibody increased RGC loss in experimental diabetic rats (Mantelli et al., 2014). Furthermore, NGF had a neuroprotective effect on RGCs after retinal ischemia/ reperfusion injury (Chen et al., 2015), while administration of NGF eye drops restored TrkA levels in the retina, and protected RGCs from degeneration in an experimental diabetic model and a glaucoma rat model (Lambiase et al., 2009; Colafrancesco et al., 2011). A large number of studies, including from our group, show that NGF confers its neuroprotectionviaPI3K/Akt and ERK1/2 signaling pathways in primary neurons and cell lines (Gan et al., 2005; Lambiase et al., 2009; Wen et al., 2011). The PI3k/Akt and ERK1/2 signaling pathways are the two main pathways involved in cell survival and apoptosis (Schmitz et al., 2007). They are activated by growth factors, drugs and hormones but play different neuroprotective roles under different conditions (Ahn, 2014; Li et al., 2014). Members of the FoxO (forkhead box, O class) Forkhead transcription factor family, including FoxO1, 3, 4, and 6, are downstream targets of PI3K/Akt and phosphorylation decreases their transcriptional activity, resulting in their redistribution to the cytoplasm (Dobson et al., 2011). FoxO1 has a crucial role in apoptosis and survival of different cells (Zhang et al., 2011).

    The retinal ganglion RGC-5 cell line, derived from post-natal rat retina, has characteristic retinal progenitor markers and can be used to study cellular and molecular mechanisms of RGC-associated eye diseases (Maher and Hanneken, 2005). However, whether NGF retains its protective action in RGC-5 cells against PA insult remains unclear. This study aimed to explore the neuroprotective effect of NGF on PA-induced RGC-5 injury.

    Materials and Methods

    Cell culture

    RGC-5 cells were provided by Sun Yat-sen University, Guangzhou, Guangdong Province, China. Cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS) (Invitrogen), streptomycin (100 μg/mL; Invitrogen) and penicillin (100 U/mL; Invitrogen) at 37°C in a 5% CO2humidified atmosphere. Medium was changed every 3 days and 25% of cells were passaged weekly.

    MTT assay

    Cell viability was assessed using the MTT assay as described previously (Wang et al., 2013; Zeng et al., 2016a). Briefly, RGC-5 cells were seeded in 96-well plates at a density of 2 × 105 cells/well. Cultures were incubated with 100 μM PA (Sigma-Aldrich, St. Louis, MO, USA) or pretreated with 25-100 ng/mL NGF for 24 hours, and were then incubated with MTT (0.5 mg/mL; Sigma-Aldrich) for another 3 hours. Medium was removed and dimethyl sulfoxide (DMSO; 200 μL) added to each well. The optical density (OD) of each well was measured at a wavelength of 570 nm using a Multiskan Ascent Revelation Plate Reader (Thermo Fisher Scientific, Waltham, MA, USA) and the data are presented as a percentage relative to the control. Assays were repeated three to six times.

    To evaluate the role of PI3K/Akt and Erk1/2 pathways on the survival promoting effect of NGF on cell apoptosis induced by PA, the cultures were pretreated with NGF (50 ng/mL) in the presence of preincubated with the PI3K inhibitor LY294002 (10 μM; Calbiochem, La Jolla, CA, USA), AktVIII (5 μM; Calbiochem) and the Erk1/2 inhibitor PD98059 (10 μM; Calbiochem) for 30 minutes then PA treated for another 24 hours, and the viability of cells was determined by the MTT assay.

    Annexin V-FITC/PI staining to evaluate apoptosis

    RGC-5 cells were treated for 16 hours with 100 μM PA with or without 50 ng/mL NGF pretreatment. Cells were then digested, washed twice with ice-cold phosphate buffered saline (PBS) then centrifuged for 5 minutes and re-suspended in 195 μL Annexin V-FITC binding buffer (Beijing 4A Biotech, China) as described previously (Zeng et al., 2016b). Annexin V-FITC (20 μg/mL) was added and the cells incubated away from light at 20–25°C for 10 minutes. Then cells were then washed with ice-cold PBS and resuspended in binding buffer. Propidium iodide (PI) (1 mg/mL) (Beijing 4A Biotech) was then added and the cells incubated in darkness. Apoptosis was quantified by flow cytometry using Cell Quest Pro software (Beckman Coulter, Brea, CA, USA).

    Measurement of reactive oxygen species (ROS)

    Intracellular ROS accumulation was measured using H2DCF-DA (Wang et al., 2015a). Briefly, after treatment, RGC-5 cells were washed and then stained with 10 μM H2DCF-DA (Sigma-Aldrich) in serum-free medium for 30 minutes at 37°C in the dark. The cells were photographed using a fluorescence microscope (Olympus, Tokyo, Japan).

    Estimation of malondialdehyde (MDA)

    MDA reacts with thiobarbituric acid (TBA) to produce a fluorescent product (Wang et al., 2015a) that can be measured using a pectrofluorometer microplate reader (Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of 535 nm. Therefore, RGC-5 cells in 6-well plates were exposed to 100 μM PA with or without 50 ng/mL NGF pretreatment and cultured to more than 90% confluence. Cells were harvested and MDA levels were determined using an MDA detection kit from Nanjing Jiancheng Bioengineering Institute (Nanjing, China) according to the manufacturer’s instructions.

    Western blot assay

    Following treatment, RGC-5 cells were lysed with ice-cold radioimmunoprecipitation assay (RIPA) lysis buffer as described previously (Zheng and Quirion, 2009). Protein concentration was determined with a protein assay kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to the manufacturer’s instructions. Samples with equal amounts of protein were separated on 10% polyacrylamide gels, then transferred to polyvinylidene fluoride (PVDF) membranes and probed with selective anti-phospho Akt (Ser473), FoxO1 or ERK1/2 antibodies or a total Akt/FoxO1/ERK1/2 antibody, at 4°C overnight. Anti-phospho-Akt (Ser473) antibody (1:1,000), anti-Akt antibody (1:1,000), anti-phospho-FoxO1 antibody (1:1,000), anti-FoxO1 antibody (1:1,000), anti-phospho ERK1/2 antibody (1:1,000), and anti-ERK1/2 antibody (1:1,000) were obtained from Cell Signaling Technology (Woburn, MA, USA). Membranes were then washed twice with Tris-buffered saline containing Tween (TBST) and incubated at room temperature for 1 hour with appropriate secondary antibodies conjugated with horseradish peroxidase (Cell Signaling Technology). Membranes were finally washed several times with TBST to remove unbound secondary antibodies and visualized using enhanced chemiluminescence (ECL) as described by the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA). Blots were subsequently stripped of antibodies and re-probed with the pan antibody to confirm equal protein loading. Band intensity was quantified in the linear range by densitometry using image J software (NIH, Bethesda, MD, USA).

    Statistical analysis

    Data are expressed as the mean ± SEM or mean ± SD. Variation between groups was analyzed using one-way analysis of variance and least significant differencepost hoctest.P< 0.05 was considered statistically significant. Statistical analyses were conducted with SPSS 13.0 (SPSS, Chicago, IL, USA).

    Results

    NGF attenuated PA-induced cell death in RGC-5 cells

    MTT assays showed that RGC-5 cells pretreated with NGF for 30 minutes were protected from PA-induced insult in a concentration-dependent manner (Figure 1A). A significant inhibition effect of NGF commenced at 50 and 100 ng/mL. Flow cytometry indicated that 100 μM PA caused apoptosis of RGC-5 cells, while NGF (50 ng/mL) pretreatment reversed the effect (Figure 1B,C).

    NGF inhibited the levels of ROS and MDA in RGC-5 cells

    PA produces oxidative stress in cells (Wong et al., 2014). MDA, formed by the degradation of polyunsaturated lipids by ROS is used as a marker of oxidative stress (Clarkson and Thompson, 2000). As shown inFigure 2, NGF diminished the elevation of ROS and MDA caused by PA.

    PI3K/Akt and ERK1/2 signaling pathways mediated the protective effect of NGF in RGC-5 cells

    We have previously shown that NGF stimulates PI3K/Akt and ERK1/2 pathways in PC12 cells (Wen et al., 2011). MTT assays showed that the protective effect of NGF was diminished in the presence of the PI3K inhibitor, LY294002, the Akt inhibitor, AktVIII, and the ERK1/2 inhibitor, PD98059 (Figure 3). The concentrations of inhibitors used (LY294002, 10 μM; AktVIII, 5 μM; and PD98059, 5 μM) had no effect on cell death itself, as previously reported (Wang et al., 2015b). Thus, both PI3K/Akt and ERK1/2 pathways mediated the protective effect of NGF.

    NGF stimulated the phosphorylation of Akt, FoxO1, and ERK1/2 in RGC-5 cells in a concentration-dependent manner

    As shown inFigure 4, NGF increased the phosphorylation of p-Akt (Ser473), p-FoxO1 and p-ERK1/2 in RGC-5 cells in a dose-dependent fashion after 10 minutes of stimulation.

    NGF reversed the down-regulation of Akt/FoxO1 and ERK1/2 phosphorylation induced by PA

    Cells incubated with NGF (50 ng/mL) for 30 minutes were exposed to PA for 4 hours and the phosphorylation of Akt/ FoxO1 and ERK1/2 were analyzed. PA decreased the phosphorylation of Akt/FoxO1 and ERK1/2 in RGC-5 cells, while NGF prevented this effect (Figure 5).

    Discussion

    DR, a major ocular complication of diabetes, is a leading cause of blindness in working age adults worldwide and limited treatments are available (Mysona et al., 2014). In addition to microcirculation abnormalities, neurodegenerative changes appear in the retina at an early stage of DR (van Dijk et al., 2012). Recently, increased apoptosis of RGCs was demonstrated in humans with diabetes, which leads to the progressive loss of retinal neurons and functional deficits in vision (Ng et al., 2016). Nevertheless, the effect of excessive PA on apoptosis of RGCs is unknown. In line with a previous report (Wang et al., 2016), we show that PA exposure induced dramatic apoptosis of RGC-5 cells but at a lower PA concentration. Thus, our data support high levels of saturated fatty acids as an important metabolic risk factor associated with the increased apoptosis of RGCs at the onset of DR.

    The widespread involvement of NGF in retinal dysfunction is based on a diabetes-induced proNGF/NGF imbalance and alterations in TrkA and p75NTR receptor function and expression (Mohamed and El-Remessy, 2015). Reduction of trophic support due to decreased NGF expression contributes to diabetes-induced RGC death. The importance of NGF in RGC survival is illustrated by recent studies, in which NGF supplementation reduced diabetes-induced RGC death (Hammes et al., 1995; Mantelli et al., 2014). In our study, we discovered that NGF was able to protect against PA-induced death of RGC-5 cells, which further indicated that NGF can block diabetes-induced RGC death. In the development of diabetic retinopathy, increased oxidative stress is another early event (Wu et al., 2014). Our findings suggest that decreasing oxidative stress caused by PA might be another mechanism by which NGF ameliorates the PA insult.

    The PI3K/Akt and ERK1/2 pathways are the two mainpathways involved in the survival and adaptive protection of various cell types that are activated by growth factors, hormones and drugs. They also play different roles in neuroprotection observed under different conditions (Schmitz et al., 2007). Previous reports indicate that NGF exerts a neuroprotective effect on RGCs against retinal ischemia/reperfusion injury by regulating the PI3K/Akt signaling pathway (Chen et al., 2015). Similarly, we show here that the protective effect of NGF was completely abolished in the presence of the PI3K inhibitor, LY294002, Akt inhibitor VIII, as well as the ERK1/2 inhibitor, PD98059, indicating that NGF elicits its protective effects via PI3K/Akt and ERK1/2 signaling pathways. In addition, treatment of RGC-5 cells with NGF leads to the phosphorylation of Akt and ERK1/2, as seen in our previous report (Wen et al., 2011), while PA decreases Akt and Erk1/2 phosphorylation. In general, these data suggest that NGF promotes RGC-5 cell survival and protects cells from the toxic effects of PA insult by specifically activating the pro-survival PI3K/Akt and ERK1/2 pathways.

    Figure 1 NGF attenuated PA-induced cell death in RGC-5 cells.

    Figure 2 NGF inhibited the levels of ROS and MDA elevated by PA in RGC-5 cells.

    Figure 3 Both Akt and ERK1/2 signaling pathways mediated the protective effect of NGF in RGC-5 cells.

    The FoxO1 transcription factor is important in the cell cycle as its nuclear localization causes apoptosis (Zhang et al.,2011). We have previously reported that NGF induced the phosphorylation of FoxO1 in cultured PC12 cells (Wen et al., 2011). Interestingly, FoxO1 is a direct downstream target of Akt; thus, we examined the potential role of FoxO1 in the NGF promotion of RGC-5 cell survival. We found that PA inhibited the level of phosphorylated FoxO1, in contrast to the increase caused by NGF.

    Figure 4 NGF stimulated the phosphorylation of Akt, FoxO1, and ERK1/2 in RGC-5 cells.

    Figure 5 NGF reversed the down-regulation of Akt/FoxO1 and ERK1/2 phosphorylation induced by PA.

    In summary, the present study demonstrates that the protective effect of NGF against apoptosis of RGC-5 cells is mediated through stimulation of the PI3K/Akt and ERK1/2 pathways. Most importantly, the present study also illustrates that inhibition of oxidative stress and FoxO1 are involved in these events. However, the effects of NGFin vivoand its specific mechanisms of action require further detailed investigation.

    Acknowledgments:We are very grateful to the Wen-hua Zheng from the Sun Yat-sen University, China for providing RGC-5 cells.

    Author contributions:QW designed the study. PSY, ST and HFZ per-formed the experiments. YYG analyzed data and ZWZ wrote the paper. All authors approved the final version of the paper.

    Conflicts of interest:None declared.

    Plagiarism check:This paper was screened twice using CrossCheck to verify originality before publication.

    Peer review:This paper was double-blinded and stringently reviewed by international expert reviewers.

    Abu El-Asrar AM, Mohammad G, De Hertogh G, Nawaz MI, Van Den Eynde K, Siddiquei MM, Struyf S, Opdenakker G, Geboes K (2013) Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One 8:e65472.

    Ahn JY (2014) Neuroprotection signaling of nuclear akt in neuronal cells. Exp Neurobiol 23:200-206.

    Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Visual Sci 52:1156-1163.

    Bradshaw RA, Dunbar JC, Isackson PJ, Kouchalakos RN, Morgan CJ (1984) Nerve growth factor: mechanism of action. Symp Fundam Cancer Res 37:87-101.

    Chen Q, Wang H, Liao S, Gao Y, Liao R, Little PJ, Xu J, Feng ZP, Zheng Y, Zheng W (2015) Nerve growth factor protects retinal ganglion cells against injury induced by retinal ischemia-reperfusion in rats. Growth Factors 33:149-159.

    Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S-646S.

    Colafrancesco V, Coassin M, Rossi S, Aloe L (2011) Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita 47:284-289.

    Dobson M, Ramakrishnan G, Ma S, Kaplun L, Balan V, Fridman R, Tzivion G (2011) Bimodal regulation of FoxO3 by AKT and 14-3-3. Biochim Biophys Acta 1813:1453-1464.

    Gan L, Zheng W, Chabot JG, Unterman TG, Quirion R (2005) Nuclear/ cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem 93:1209-1219.

    Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527-534.

    Kulacoglu DN, Kocer I, Kurtul N, Keles S, Baykal O (2003) Alterations of fatty acid composition of erythrocyte membrane in type 2 diabetes patients with diabetic retinopathy. Jpn J Ophthalmol 47:551-556.

    Kumar B, Kowluru A, Kowluru RA (2015) Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Visual Sci 56:2985-2992.

    Lambiase A, Aloe L, Centofanti M, Parisi V, Mantelli F, Colafrancesco V, Manni GL, Bucci MG, Bonini S, Levi-Montalcini R (2009) Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc Natl Acad Sci U S A 106:13469-13474.

    Li Q, Chen M, Liu H, Yang L, Yang T, He G (2014) The dual role of ERK signaling in the apoptosis of neurons. Front Biosci (Landmark Ed) 19:1411-1417.

    Maher P, Hanneken A (2005) The molecular basis of oxidative stress-induced cell death in an immortalized retinal ganglion cell line. Invest Ophthalmol Visual Sci 46:749-757.

    Mantelli F, Lambiase A, Colafrancesco V, Rocco ML, Macchi I, Aloe L (2014) NGF and VEGF effects on retinal ganglion cell fate: new evidence from an animal model of diabetes. Eur J Ophthalmol 24:247-253.

    Mohamed R, El-Remessy AB (2015) Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy. J Clin Exp Ophthalmol 6:483.

    Mysona BA, Shanab AY, Elshaer SL, El-Remessy AB (2014) Nerve growth factor in diabetic retinopathy: beyond neurons. Expert Rev Ophthalmol 9:99-107.

    Mysona BA, Al-Gayyar MM, Matragoon S, Abdelsaid MA, El-Azab MF, Saragovi HU, El-Remessy AB (2013) Modulation of p75(NTR) prevents diabetes- and proNGF-induced retinal inflammation and blood–retina barrier breakdown in mice and rats. Diabetologia 56:2329-2339.

    Mysona BA, Matragoon S, Stephens M, Mohamed IN, Farooq A, Bartasis ML, Fouda AY, Shanab AY, Espinosa-Heidmann DG, El-Remessy AB (2015) Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. Biomed Res Int 2015:571456.

    Ng DS, Chiang PP, Tan G, Cheung CG, Cheng CY, Cheung CY, Wong TY, Lamoureux EL, Ikram MK (2016) Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol 44:243-250.

    Pelikánová T (2016) Diabetic retinopathy: pathogenesis and therapeutic implications. Vnitr Lek 62:620-628.

    Sasaki M, Kawasaki R, Rogers S, Man RE, Itakura K, Xie J, Flood V, Tsubota K, Lamoureux E, Wang JJ (2015) The Associations of Dietary Intake of Polyunsaturated Fatty Acids With Diabetic Retinopathy in Well-Controlled DiabetesDietary PUFAs and Diabetic Retinopathy. Invest Ophthalmol Visual Sci 56:7473-7479.

    Schmitz KJ, Lang H, Wohlschlaeger J, Sotiropoulos GC, Reis H, Schmid KW, Baba HA (2007) AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. World J Gastroenterol 13:6470-6477.

    Shen J, Bi YL, Das UN (2014) Potential role of polyunsaturated fatty acids in diabetic retinopathy. Arch Med Sci 10:1167-1174.

    Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217-1281.

    Turner JE, Delaney RK, Johnson JE (1980) Retinal ganglion cell response to nerve growth factor in the regenerating and intact visual system of the goldfish (Carassius auratus). Brain Res 197:319-330.

    van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, DeVries JH, Schlingemann RO, Abràmoff MD (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Visual Sci 53:2715-2719.

    Wang DD, Zhu HZ, Li SW, Yang JM, Xiao Y, Kang QR, Li CY, Zhao YS, Zeng Y, Li Y, Zhang J, He ZD, Ying Y (2016) Crude saponins of panax notoginseng have neuroprotective effects to inhibit palmitate-triggered endoplasmic reticulum stress-associated apoptosis and loss of postsynaptic proteins in staurosporine differentiated rgc-5 retinal ganglion cells. J Agric Food Chem 64:1528-1539.

    Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S, Feng ZP, Zheng W (2013) The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology 228:129-141.

    Wang H, Liao S, Geng R, Zheng Y, Liao R, Yan F, Thrimawithana T, Little PJ, Feng ZP, Lazarovici P, Zheng W (2015a) IGF-1 signaling via the PI3K/Akt pathway confers neuroprotection in human retinal pigment epithelial cells exposed to sodium nitroprusside insult. J Mol Neurosci 55:931-940.

    Wang R, Yang J, Peng L, Zhao J, Mu N, Huang J, Lazarovici P, Chen H, Zheng W (2015b) Gardenamide A attenuated cell apoptosis induced by serum deprivation insult via the ERK1/2 and PI3K/AKT signaling pathways. Neuroscience 286:242-250.

    Wen Q, Duan X, Liao R, Little P, Gao G, Jiang H, Lalit S, Quirion R, Zheng W (2011) Characterization of intracellular translocation of Forkhead transcription factor O (FoxO) members induced by NGF in PC12 cells. Neurosci Lett 498:31-36.

    Wiese S, Digby MR, Gunnersen JM, G?tz R, Pei G, Holtmann B, Lowenthal J, Sendtner M (1999) The anti-apoptotic protein ITA is essential for NGF-mediated survival of embryonic chick neurons. Nat Neurosci 2:978-983.

    Wilkinson-Berka JLM, A G. (2008) Update on the treatment of diabetic retinopathy. ScientificWorldJournal 8:98-120.

    Wong KL, Wu YR, Cheng KS, Chan P, Cheung CW, Lu DY, Su TH, Liu ZM, Leung YM (2014) Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep 66:1106-1113.

    Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev 2014:752387.

    Yam JC, Kwok AK (2007) Update on the treatment of diabetic retinopathy. Hong Kong Med J 13:46-60.

    Zeng Z, Wang H, Shang F, Zhou L, Little PJ, Quirion R, Zheng W (2016a) Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways. Psychopharmacology 233:785-794.

    Zeng Z, Wang X, Bhardwaj SK, Zhou X, Little PJ, Quirion R, Srivastava LK, Zheng W (2016b) The atypical antipsychotic agent, clozapine, protects against corticosterone-induced death of PC12 cells by regulating the Akt/FoxO3a signaling pathway. Mol Neurobiol doi: 10.1007/s12035-016-9904-4.

    Zhang P, Zhou Z (2015) Combination of bevacizumab and NGF reduces the risk of diabetic retinopathy. Cell Biochem Biophys 73:79-85.

    Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813:1978-1986.

    Zheng WH, Quirion R (2009) Glutamate acting on N-methyl-D-aspartate receptors attenuates insulin-like growth factor-1 receptor tyrosine phosphorylation and its survival signaling properties in rat hippocampal neurons. J Biol Chem 284:855-861.

    Zheng Y, He M, Congdon N (2012) The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 60:428-431.

    Copyedited by Allen J, Frenchman B, Yan PS, Yu J, Li CH, Li JY, Song LP, Zhao M

    *Correspondence to: Qiang Wen, Ph.D., or Zhi-wen Zeng, Ph.D., qiangwen7619@163.com or zengzw1122@163.com.

    #These authors contributed equally to this study.

    orcid: 0000-0002-3437-2457 (Qiang Wen)

    10.4103/1673-5374.194758

    Accepted: 2016-10-21

    亚洲人成网站在线播| 成人18禁高潮啪啪吃奶动态图 | 黄色视频在线播放观看不卡| 日日啪夜夜爽| 欧美激情极品国产一区二区三区 | 国产亚洲欧美精品永久| 国模一区二区三区四区视频| 中文字幕免费在线视频6| a级片在线免费高清观看视频| 国产成人精品无人区| 3wmmmm亚洲av在线观看| 天美传媒精品一区二区| 热re99久久精品国产66热6| 亚洲图色成人| 美女中出高潮动态图| 91精品一卡2卡3卡4卡| 久久亚洲国产成人精品v| 欧美激情极品国产一区二区三区 | 成人手机av| 人妻夜夜爽99麻豆av| 高清黄色对白视频在线免费看| 久久热精品热| 最新的欧美精品一区二区| 日本与韩国留学比较| 亚洲av.av天堂| av在线播放精品| 久久精品久久久久久久性| 免费看不卡的av| 美女大奶头黄色视频| xxx大片免费视频| 婷婷色综合www| av黄色大香蕉| 我的老师免费观看完整版| 一本色道久久久久久精品综合| 91精品伊人久久大香线蕉| 欧美成人精品欧美一级黄| 亚洲久久久国产精品| 男的添女的下面高潮视频| 3wmmmm亚洲av在线观看| 人体艺术视频欧美日本| 男人爽女人下面视频在线观看| 亚洲综合精品二区| av不卡在线播放| a级毛片黄视频| 天堂俺去俺来也www色官网| 国产精品久久久久久久久免| 黄色欧美视频在线观看| 免费看光身美女| 纵有疾风起免费观看全集完整版| 大香蕉久久成人网| av黄色大香蕉| 精品一品国产午夜福利视频| 日韩成人伦理影院| 大陆偷拍与自拍| 日韩av在线免费看完整版不卡| 美女主播在线视频| 日韩大片免费观看网站| 99热网站在线观看| 亚洲精品乱久久久久久| 久久久精品94久久精品| 国产高清有码在线观看视频| 国产亚洲精品久久久com| 国产精品一区www在线观看| 亚洲三级黄色毛片| 午夜日本视频在线| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 免费高清在线观看日韩| 大码成人一级视频| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 亚洲精品亚洲一区二区| 久久精品久久精品一区二区三区| 晚上一个人看的免费电影| 久久久久国产网址| 色吧在线观看| a 毛片基地| 亚洲精品国产av蜜桃| 亚洲国产欧美日韩在线播放| 中文字幕最新亚洲高清| 一二三四中文在线观看免费高清| 免费观看无遮挡的男女| 一本大道久久a久久精品| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区 | 日日啪夜夜爽| 久久久久久久久久久久大奶| 免费大片18禁| 丝瓜视频免费看黄片| 夫妻性生交免费视频一级片| 国产精品免费大片| 一级黄片播放器| 成人午夜精彩视频在线观看| 国产黄色免费在线视频| 日本爱情动作片www.在线观看| 飞空精品影院首页| 人体艺术视频欧美日本| 亚洲国产欧美在线一区| 国产精品国产三级国产专区5o| 尾随美女入室| 视频区图区小说| av国产久精品久网站免费入址| 免费黄网站久久成人精品| 久久女婷五月综合色啪小说| 亚洲av.av天堂| 在现免费观看毛片| 97超碰精品成人国产| 在线观看免费日韩欧美大片 | 成人免费观看视频高清| 国产成人91sexporn| av电影中文网址| 亚洲第一av免费看| 交换朋友夫妻互换小说| 国产成人av激情在线播放 | 天天躁夜夜躁狠狠久久av| 伦理电影免费视频| 成年av动漫网址| 九九在线视频观看精品| √禁漫天堂资源中文www| 99热全是精品| 久久久久久久久久人人人人人人| 七月丁香在线播放| 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 免费人妻精品一区二区三区视频| 最近中文字幕高清免费大全6| 午夜精品国产一区二区电影| 亚洲成色77777| 国产一区亚洲一区在线观看| 丰满少妇做爰视频| 美女视频免费永久观看网站| 久久久久精品性色| 免费久久久久久久精品成人欧美视频 | 在线免费观看不下载黄p国产| a级毛片黄视频| 欧美成人午夜免费资源| 国产免费又黄又爽又色| 国产熟女欧美一区二区| 99热网站在线观看| 啦啦啦视频在线资源免费观看| 自线自在国产av| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 香蕉精品网在线| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91| 美女国产高潮福利片在线看| 国产精品人妻久久久久久| 免费观看a级毛片全部| 热re99久久国产66热| 一级爰片在线观看| 日本av免费视频播放| 毛片一级片免费看久久久久| 日日啪夜夜爽| 在线观看免费日韩欧美大片 | 精品国产一区二区三区久久久樱花| 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 久久久久久久久久久免费av| 精品午夜福利在线看| 日韩免费高清中文字幕av| 成人综合一区亚洲| 69精品国产乱码久久久| 五月天丁香电影| 午夜福利,免费看| 草草在线视频免费看| 日本欧美国产在线视频| 国产在线视频一区二区| 各种免费的搞黄视频| a 毛片基地| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| 国产精品国产av在线观看| 成人黄色视频免费在线看| 日韩免费高清中文字幕av| 考比视频在线观看| 亚洲国产av影院在线观看| 亚洲国产色片| 久久女婷五月综合色啪小说| 大片电影免费在线观看免费| 三级国产精品片| 久久女婷五月综合色啪小说| 少妇的逼好多水| 国产一级毛片在线| 国产永久视频网站| 国产免费一区二区三区四区乱码| h视频一区二区三区| 亚洲天堂av无毛| 午夜福利影视在线免费观看| 日韩一区二区视频免费看| 免费观看a级毛片全部| 国产精品久久久久成人av| kizo精华| 中文精品一卡2卡3卡4更新| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 丰满乱子伦码专区| 国产一区有黄有色的免费视频| 亚洲精品自拍成人| 美女cb高潮喷水在线观看| 亚洲欧美成人精品一区二区| 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 啦啦啦在线观看免费高清www| 在线观看www视频免费| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久热这里只有精品99| 成人黄色视频免费在线看| 99久国产av精品国产电影| 18禁观看日本| 免费av不卡在线播放| 男女边吃奶边做爰视频| 国产高清三级在线| 最新中文字幕久久久久| av黄色大香蕉| 亚洲欧美清纯卡通| 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 亚洲国产欧美在线一区| 午夜激情av网站| 国产又色又爽无遮挡免| 一区二区三区精品91| 国产精品女同一区二区软件| 999精品在线视频| 亚洲国产精品999| 国产 一区精品| 在线观看美女被高潮喷水网站| 国产视频内射| 午夜福利,免费看| 国产精品偷伦视频观看了| 日韩中文字幕视频在线看片| 久久久久网色| 国产深夜福利视频在线观看| 成人免费观看视频高清| 视频区图区小说| .国产精品久久| 天天躁夜夜躁狠狠久久av| 日本与韩国留学比较| 国产欧美亚洲国产| 亚洲精品日韩在线中文字幕| 日本wwww免费看| 亚洲高清免费不卡视频| 极品少妇高潮喷水抽搐| 国产熟女欧美一区二区| 少妇人妻久久综合中文| videossex国产| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| www.色视频.com| 99热这里只有是精品在线观看| 高清午夜精品一区二区三区| 国产黄片视频在线免费观看| 国产色婷婷99| 免费不卡的大黄色大毛片视频在线观看| 麻豆精品久久久久久蜜桃| 欧美日韩一区二区视频在线观看视频在线| av卡一久久| 日韩在线高清观看一区二区三区| 中国三级夫妇交换| 99热这里只有精品一区| 国产精品一国产av| 久久99热6这里只有精品| 高清午夜精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 多毛熟女@视频| 国产日韩欧美视频二区| 日韩电影二区| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 欧美日韩av久久| 精品人妻一区二区三区麻豆| 全区人妻精品视频| 各种免费的搞黄视频| 九色亚洲精品在线播放| 尾随美女入室| 久久精品久久久久久噜噜老黄| 日韩免费高清中文字幕av| 一级毛片aaaaaa免费看小| freevideosex欧美| 久久女婷五月综合色啪小说| 免费播放大片免费观看视频在线观看| 少妇丰满av| 国产成人av激情在线播放 | 一级爰片在线观看| 成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 一边摸一边做爽爽视频免费| 亚洲,欧美,日韩| 午夜久久久在线观看| 亚洲少妇的诱惑av| 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 久久人人爽人人爽人人片va| videos熟女内射| 欧美人与性动交α欧美精品济南到 | 亚洲av中文av极速乱| 2021少妇久久久久久久久久久| 麻豆成人av视频| 亚洲精品国产色婷婷电影| 精品久久久噜噜| 亚洲国产精品专区欧美| 亚洲不卡免费看| 哪个播放器可以免费观看大片| 国产成人aa在线观看| 国产免费福利视频在线观看| 久久午夜福利片| 国产成人freesex在线| 国产视频首页在线观看| 一级黄片播放器| 精品久久久噜噜| 亚洲色图 男人天堂 中文字幕 | 一本大道久久a久久精品| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 国产成人精品婷婷| 一级毛片aaaaaa免费看小| 精品久久蜜臀av无| tube8黄色片| 草草在线视频免费看| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片 | 搡女人真爽免费视频火全软件| 婷婷成人精品国产| 观看av在线不卡| 天堂俺去俺来也www色官网| 亚洲精品亚洲一区二区| 国产日韩欧美视频二区| av播播在线观看一区| 97精品久久久久久久久久精品| 天天操日日干夜夜撸| 高清欧美精品videossex| 黑丝袜美女国产一区| 久久 成人 亚洲| 伊人久久精品亚洲午夜| av在线播放精品| 国产探花极品一区二区| 久久久久久久精品精品| 国产伦理片在线播放av一区| 男女国产视频网站| 午夜免费男女啪啪视频观看| 国产片内射在线| 国产av一区二区精品久久| 亚洲内射少妇av| 日韩视频在线欧美| xxx大片免费视频| 一级爰片在线观看| 九色成人免费人妻av| 久久国产精品男人的天堂亚洲 | 国产成人a∨麻豆精品| 岛国毛片在线播放| 黄色毛片三级朝国网站| 欧美最新免费一区二区三区| 99久久综合免费| 女人久久www免费人成看片| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 在线观看美女被高潮喷水网站| 国产不卡av网站在线观看| 日本午夜av视频| 国产精品久久久久久精品古装| 欧美日韩在线观看h| 热re99久久精品国产66热6| 街头女战士在线观看网站| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 欧美3d第一页| 国产欧美日韩综合在线一区二区| 亚洲国产成人一精品久久久| 26uuu在线亚洲综合色| 国产视频内射| 国产熟女欧美一区二区| 综合色丁香网| 亚洲精品中文字幕在线视频| 久久99热6这里只有精品| 精品酒店卫生间| 又粗又硬又长又爽又黄的视频| a 毛片基地| 在线 av 中文字幕| 国产又色又爽无遮挡免| 蜜臀久久99精品久久宅男| 啦啦啦视频在线资源免费观看| 日韩电影二区| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 色94色欧美一区二区| 成人影院久久| 精品亚洲成a人片在线观看| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 国产在线视频一区二区| 一级毛片电影观看| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 简卡轻食公司| 尾随美女入室| 亚洲在久久综合| 精品久久国产蜜桃| 97在线人人人人妻| a级毛片在线看网站| 国产免费视频播放在线视频| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看| 性色av一级| 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 久久久国产欧美日韩av| 成人黄色视频免费在线看| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 精品国产乱码久久久久久小说| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 日韩av免费高清视频| 十八禁高潮呻吟视频| 只有这里有精品99| 简卡轻食公司| 国产在视频线精品| 精品人妻熟女毛片av久久网站| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 日韩在线高清观看一区二区三区| 在线观看三级黄色| 久久精品国产a三级三级三级| 蜜臀久久99精品久久宅男| 亚洲四区av| 亚洲成色77777| 日韩成人av中文字幕在线观看| av有码第一页| 国产精品熟女久久久久浪| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 在线观看三级黄色| 尾随美女入室| 久久午夜福利片| 我的老师免费观看完整版| 99热全是精品| 搡女人真爽免费视频火全软件| 久久久久久久亚洲中文字幕| 欧美少妇被猛烈插入视频| 99国产精品免费福利视频| 精品少妇内射三级| 国产一区有黄有色的免费视频| 国产精品秋霞免费鲁丝片| 午夜影院在线不卡| 久久久久人妻精品一区果冻| 黄色一级大片看看| 一本大道久久a久久精品| 精品人妻偷拍中文字幕| 如何舔出高潮| 国产精品人妻久久久影院| 少妇的逼水好多| 精品少妇久久久久久888优播| 男女国产视频网站| 18禁动态无遮挡网站| 国产熟女午夜一区二区三区 | 国产av码专区亚洲av| 精品国产国语对白av| 一级毛片aaaaaa免费看小| 九色成人免费人妻av| 精品一区二区三卡| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲成人一二三区av| av网站免费在线观看视频| 男人爽女人下面视频在线观看| 永久免费av网站大全| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 亚洲四区av| 九九在线视频观看精品| 91精品伊人久久大香线蕉| 黄色配什么色好看| 国精品久久久久久国模美| 亚洲中文av在线| av卡一久久| 人人妻人人澡人人爽人人夜夜| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 亚洲av电影在线观看一区二区三区| 日韩熟女老妇一区二区性免费视频| 五月天丁香电影| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品国产精品| 激情五月婷婷亚洲| 国产成人精品在线电影| 欧美精品亚洲一区二区| 日韩精品有码人妻一区| 午夜免费观看性视频| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人 | 热99国产精品久久久久久7| 欧美亚洲 丝袜 人妻 在线| 乱人伦中国视频| 国产亚洲欧美精品永久| 国产在线视频一区二区| 亚洲精品日本国产第一区| 制服诱惑二区| 亚洲第一av免费看| 视频中文字幕在线观看| 日本免费在线观看一区| 麻豆精品久久久久久蜜桃| 日本vs欧美在线观看视频| 国产精品国产av在线观看| 亚洲婷婷狠狠爱综合网| 男女啪啪激烈高潮av片| 99久久人妻综合| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 人人澡人人妻人| 午夜91福利影院| 国产免费现黄频在线看| 嫩草影院入口| 全区人妻精品视频| 在线 av 中文字幕| 亚洲精品自拍成人| 成人二区视频| 久久久久久伊人网av| 亚洲第一av免费看| 色哟哟·www| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 免费看不卡的av| 成人漫画全彩无遮挡| 啦啦啦中文免费视频观看日本| 尾随美女入室| 9色porny在线观看| 尾随美女入室| 国产黄片视频在线免费观看| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 久久久久精品性色| 日产精品乱码卡一卡2卡三| 特大巨黑吊av在线直播| 一级毛片 在线播放| 国产免费又黄又爽又色| 久久ye,这里只有精品| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| 亚洲精品自拍成人| 中文字幕亚洲精品专区| 国产精品人妻久久久影院| 精品一品国产午夜福利视频| 亚洲情色 制服丝袜| 欧美人与善性xxx| 丰满少妇做爰视频| 久久久久国产网址| 人妻人人澡人人爽人人| 亚洲av欧美aⅴ国产| 欧美丝袜亚洲另类| 日本色播在线视频| 精品亚洲乱码少妇综合久久| av又黄又爽大尺度在线免费看| 久久久久久久久久久丰满| 各种免费的搞黄视频| 国产又色又爽无遮挡免| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 亚洲欧美一区二区三区国产| 男人操女人黄网站| 一个人免费看片子| 91久久精品国产一区二区三区| 免费大片黄手机在线观看| 性色avwww在线观看| 久久99一区二区三区| 久久99热6这里只有精品| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 色视频在线一区二区三区| 99精国产麻豆久久婷婷| av电影中文网址| 这个男人来自地球电影免费观看 | av在线app专区| 91久久精品国产一区二区三区| 伦理电影大哥的女人| 免费观看的影片在线观看| 这个男人来自地球电影免费观看 | 黄色怎么调成土黄色| 在线观看免费视频网站a站| 国产高清国产精品国产三级| 十八禁网站网址无遮挡| h视频一区二区三区| 国产成人freesex在线| 91精品国产国语对白视频| 日韩熟女老妇一区二区性免费视频| 一本久久精品| 久久久午夜欧美精品| 免费黄网站久久成人精品| 日本av免费视频播放| av黄色大香蕉| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 午夜老司机福利剧场| 日韩人妻高清精品专区| 免费看av在线观看网站| 九九久久精品国产亚洲av麻豆|