• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of NO x Formation in the Combustion Chamber of a Coke Oven

    2016-02-04 12:49:48ZhangTingWeiHongyuanZhengQianqian
    化學(xué)工業(yè)與工程 2016年1期

    Zhang Ting,Wei Hongyuan,Zheng Qianqian

    (School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)

    China is the largest coke producer,exporter and consumer in the world[1],and the coking industry has become an important part of China′s national economy[2].The coke oven,with the combustion chamber as its heating system,is the main equipment of coke production.When the coke oven is in operation,the heat,coming from the combustion between fuel gases and preheated air in the combustion chamber,is transferred to the coal on the other side of the furnace wall by convection and radiation.During combustion,a certain amount of nitrogen oxides(NOx) is produced[3],which results in atmospheric pollution to destroy the ozone layer[4],cause acid rain[5]and affect the health of human being[6].It is reported that about 67%[7]of the NOxin China comes from coal chemical industry.In order to reduce NOxemission,more rigorous emission standards of NO x in coal chemical industry have been promulgated in recent years.So,carrying out research on NOxemission produced by coal chemical industry is warranted.

    Research on NOxemission in coal chemical industry has been conducted bymany researchers.Fu[8]discussed NOxformation mechanisms in the process of coal combustion.Jin[9]and Choi[10]carried out research on NOxrelease characteristics in pulverized-coal fired boilers.In the work of Liu[11],the process simulation of formation and emission of NOxduring coal decoupling combustion was conducted.Further,a large number of research efforts are ongoing with the aim of reducing NOxemission in coal chemical industry.Technologies,i.e.oxy-fuel combustion[12],over fire air combustion[13],air staging technology[14],combustors design[15],have been used to reduce NOx.Although considerable work has been done relating to NOxemission in coal chemical industry,a limited number of studies address NOxformation in coke oven combustion chambers.

    Therefore,the objective of this study is to investigate NOxformation in a coke oven combustion chamber.Since the high temperature distributed in the combustion chamber,conducting this research by traditionalways is difficult.Numerical simulation methods,being able to reveal detail in high temperature[16],have been applied by this study.In this paper,the distribution of NOxin the combustion chamber is presented,which provides detailed information of NOxbehavior in the combustion chamber.In addition,the effects of geometry of the combustion chamber and air preheated temperature on NOxformation are discussed as well.

    1 Computational domain

    The coke oven combustion chamber is divided into many vertical flues by furnace walls.In this paper,only ad jacent two vertical flues,form ing one twin flue,are studied,which are 3.500,0.175,0.493 min height,length and width,repectively.The two flues,acted as upward vertical flue and downward vertical flue repectively,connect with each other by the cross hole on the top and two loop holes at the bttom.The nozzles at the bottom of upward vertical flue and downward vertical flue act as inlets for air and outlets for exhaust gas repectively.As heating gas,the coke oven gas(COG),whoes compositions are shown in Table 1,is input from the brick gas port in the bottom of upward vertical flue.The whole geometry of the coke oven combustion chamber is shown in Fig.1.About150,000 hexahedral grids,which were choosed by the consideration of accurate simulated results and economic simulated time in the grid independency test,were created in a computer aided design(CAD) program called Gambit 2.4.6 and exported into Ansys Fluent 14.0.

    Table 1 The compositions of COG

    2 Numerical models

    2.1 Conservation equations

    Combustion in the coke oven combustion cham-ber,contained the mixing and transport of chemical species of COG and air,could be modeled by solving conservation equations to describe convection,diffusion and reaction sources for each component species.The transport equations,included mass,momentum,energy and species equations,can be typically represented by the following general form:

    Fig.1 The geometry of the coke oven combustion chamber

    Where Φ is the generalized variable,Γ is the generalized diffusion coefficient,S is the generalized source term.The three variables have different forms for different equations and a more detailed description of transport equations is given in literature[17].

    2.2 Turbulent model

    At present,the standard k-εmodel has become the workhorse of practical engineering flow calculations since its robustness,economy and reasonable accuracy for a wide range of turbulent flows[18-19].So the standard k-εmodel with default values was adopted tomodel the dynam ic of the turbulent flow in the combustion chamber of the coke oven.k equation andεequation are given in formula(2) and (3),respectively.

    Where,Gkrepresents the generation of turbulence kinetic energy due to the mean velocity gradients;Gbis the generation of turbulence kinetic energy due to buoyancy;YMrepresents the contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate; C1ε,C2εand C3εare constants; σkand σεare the turbulent Prandtl numbers for k and ε,respectively; Skand Sεare user-defined source terms.

    2.3 Combustion model

    In this study,combustion reactions between COG and air were calculated using the eddy dissipation concept( EDC) combustion model[20-21],which considers detailed chemical mechanisms in turbulent flows and assumes reactions occur in small turbulent structures,called the fine structure,under a steady assumption,according to the law:

    Where ξ*=Cξ(vε/k2)1/4is the volume fraction of the fine structure,Cξis a volume fraction constant whose value is 2.1377;Yiis the speciesmass fraction,Y*iis the fine-scale species mass fraction after reacting over the timeτ*=Cτ(v/ε)1/2,Cτ=0.4082,which is time scale constant.

    Reaction starts after the time scalesτ*and the reaction rate is controlled by Arrhenius equation,and the forward rate constant of the reaction is calculated through the Arrhenius formula:

    Where Aris pre-exponential factor; βris temperature exponent; Eris activation energy(J·kmol-1) and R is universal gas constant(J·kmol-1·K-1).

    2.4 Radiation model

    During the combustion process of COG,the high temperature free carbon produced by pyrolysis has strong radiation ability and radiation is the dom inant mode of heat transfer in the coke oven combustion chamber[22].In this study,the discrete ordinates(DO) radiation model[23-24],which has generally been chosen in the computational fluid dynamic(CFD) applications to simulate the industry processes because of higher accuracy[25-26],was used with the weighted sum of gray gases model to calculate the gas mixtures absorption coefficients,whose radiative transfer equation at a positionin the directioncan be written as:

    Where I is radiation intensity,σsis scattering coefficient,a is absorption coefficient,s′is the scattering direction vector,σis the Stefan-Boltzmann constant(5.669 ×10-8W·m-2·K-4),and Ω′is the solid angle,Φis the phase function.

    2.5 NO x model

    To predict NOxemission,Ansys Fluent solves additional transport equations for NOxconcentration based on a given flow field and combustion solution.In other words,NOxis postprocessed from a combustion simulation.There are three types of mechanisms for the formation of NOxin combustion process:thermal-NOx,rapid-NOxand fuel-NOx,the NOxin coke oven combustion chambers is mainly formed in thermal-NOx[3].

    Thermal-NOxmechanism arises from the thermal dissociation and subsequent reaction of nitrogen and oxygen molecules in combustion air at relatively high temperature in fuel-lean environment.Thermal-NOxmechanism is described by a set of chemical reactions known as the Zeldovich mechanism[27]:

    Using these two reactions,the net rate of NO formation can be calculated as:

    Where k1f,k2fare the rate coefficients for positive reactions,while k1b,k2bare for negative reactions.

    The expression of the overall rate of thermal-NOxis given by:

    The temperature and the concentration of O2during the combustion process are the main factors to effect the formation of thermal-NOx[28].

    3 Numerical simulations

    3.1 Boundary conditions

    In the study,mass flows at inlets were imposed,together with the pressure of-60 Pa at the outlet section,while the walls were adiabatic except carbonization chamber walls,which were set to a constant heat flux.The value of constant heat flux through carbonization chamber walls was obtained from the heat balance calculations of the combustion chamber.

    3.2 Numerical algorithm

    Simulations had been carried out with a Pressure-Based solver in Ansys Fluent14.0 and the SIMPLE was used to resolve the press-velocity correcting equation.The pressure equation was discretized by standard method and the momentum equation,the energy equation were discretized by a 1st order.

    3.3 Initialization method

    In order to solve the closed set of governing model equations,it is necessary to specify appropriate initial conditions.In this paper,initial values were obtained from material balance calculations.

    4 Results and discussion

    In the present study,six simulation cases were carried out and the detail information is listed in Table 2.In order to study the influence of exhaust gas recirculation process on the formation of NOxin the combustion chamber,the circulation ports of the geometry were cut away in case1.The reasonable range of air preheated temperature in coke oven combustion chambers,is from 1173.15 K to 1593.15 K[22],because the fuel gases will not be ignited under too low preheated temperature and toomuch energy for heating the air will be consumed in turn for air with too high preheated temperature.

    Table 2 Cases studied in this paper

    4.1 NO x distribution

    In section 4.1,only results and discussion of case4 were present since similar conclusions could be found in other cases.Fig.2 and Fig.3 show the NOxdistribution in the combustion chamber.In the upward vertical flue,area with very low mass fraction of NOxcould be found near the inlets of air and COG.Since the combustion between O2and COG does not progress actively near the inlets of gases,the temperature of gas mixtures in this region is too low to cause the dissociation of N2and activate the formation reactions of NOx.With the increase of the flue height,the combustion reactions between O2and COG become intense gradually,the temperature of gas mixtures near the combustion zone increases quickly(see in Fig.4),which is high enough to cause the formation reactions of NOx.With the happening of the combustion reactions,the temperature of gas mixtures becomes higher and more NOxis formed.At the height of1.4 m,the NOxconcentration reaches the maximum,while it decreases in the upper region of the upward vertical flue(h>1.4 m).Because of the mass consumption of O2in the combustion reactions(see in Fig.4),the contact of O2and N2drops greatly,which decreases the number of the NOxformation reactions and the NOxconcentration in the upper region.

    Fig.2 Mass fraction of NO x in the upward flue

    The NOxdistribution in the downward vertical flue is clearly different compared to that in the upward vertical flue.In the downward vertical flue,the temperature of gas mixtures decreases with the decline of the flue height due to the absence of combustion reactions.In addition,the change of the temperature of gas mixtures does not lead to marked change of NOxmass fraction (as shown in Fig.5),which indicates that the formation of NOxin the downward vertical flue is controlled by O2concentration.On account of the reversible reactions of NOxformation,the mass fraction of O2in the downward vertical flue is almost unchanged,which causes the uniform distribution of NOxconcentration in the downward vertical flue.

    Fig.3 Mass fraction of NO x in the dow nward flue

    Fig.4 The distribution of temperatu re,concentrations of NO x and O 2in the upward flue

    Fig.5 The distribution of temperatu re,concentrations of NO x and O 2in the downward flue

    4.2 Effect of exhaust gas recirculation process

    Exhaust gas recirculation process is often used to reduce NOxformation in coal chemical industry.Therefore,the effect of exhaust gas recirculation process on the formation of NOxin the combustion chamber is discussed.The only difference between cases 1 and case 4 is that the combustion chamber in case4 employs the exhaust gas recirculation process.

    Fig.6 The velocity fields in case 1 and case 4

    Fig.7 The concentrations of NO x in case 1 and case 4

    The flow fields in the two cases are shown in Fig.6.Similar velocity distributions in cases 1 and case 4 can be found in the upward vertical flue,and apparent difference exist in the downward vertical flue.For case 1,the gas mixturesmove down continuously and all of them are discharged from the nozzles of outlets as exhaust gas,while in case 4,at the bottom zone of the downward vertical flue,only a part of the gas mixtures are discharged from the nozzles of outlets as exhaust gas,some flow into the upward vertical flue through circulation ports between the flues.

    Owing to the exhaust gas recirculation process,the NOxconcentration in case 4 drops by 33.8%compared to that of case 1,as shown in Fig.7.The exhaust gas recirculation process employed in case 4 accelerates the upward flow velocity of gas mixtures in the upward vertical flue,which extends the combustion flame and causes larger combustion zone to dilute the concentration of O2in high temperature zone.The access of gas mixtures from the downward vertical flue increases the total number of gas molecules in the upward vertical flue,which dilutes the concentration of O2as well.On the other hand,the mix of gases from the downward vertical flue and the original gases existed in the upward vertical flue lowers the temperature of gas mixtures in the upward vertical flue.Because of the dual influence of decline of O2concentration and temperature in the upward vertical flue,where contains the main formation area for NOx,the formation of NOxin case4 is reduced.Therefore,employing exhaust gas recirculation process in combustion chambers is an effective way to reduce NOxconcentration in exhaust gas.

    Comparison of simulated NOxconcentrations in case 1 and case 4 tomeasured values[29]is listed in Table 3.From Table 3 we can see that the differences in term of NOxconcentration between simulated results and measured values are within 10%,which confirms the reliability of simulated results in this paper well.

    Table 3 Comparison of simulated NO x concentrations to measured values

    4.3 Effect of air preheated temperature

    Different coke oven has different air preheated temperature,so the effect of air preheated temperature on the formation of NOxin the coke oven combustion chamber is investigated as well.

    The NOxconcentrations in different height of the flues in dependence of air preheated temperature are shown in Fig.8 and Fig.9.The NOxconcentrations in all cases studied in this section have the same trend:they increase and then decrease in the upward vertical flue and decline slow ly in the downward vertical flue.However,curves of cases with higher air preheated temperature are always above that of the other cases,no matter in the upward vertical flue or the downward vertical flue.The reason is that air with higher preheated temperature not only possesses higher enthalpy,but also enhances the temperature of combustion reactions in the combustion chamber.With higher combustion reaction temperature,more heatwill be released by the combustion reactions and higher temperature result,which enhances the formation of NOxin the combustion chamber.In addition,narrow gaps between curves occur in the bottom region of the upward vertical flue(h<1.1 m),this is due to the fact that this region rarely has NOxformation,thus the NOxconcentrations here in all cases close to each other.

    Fig.8 NO x concentrations abou t case 2~6 in upward flue

    Fig.9 NO x concentrations about case 2~6 in downward flue

    The NOxconcentrations in exhaust gas of case 2~6 are shown in Fig.10.It can be noticed that the NOxconcentration in exhaust gas grows with the increase of air preheated temperature,which indicates that decreasing air preheated temperature under the premise of ensuring normal operation of coke ovens is another effective way to reducing NOxin coke oven combustion chambers.In addition,the NOxconcentrations in all casesmaintain between 450 mg·m-3to 650 mg·m-3,which are in agreement with experimental data in literature[29]and lower than the current emission standard in China.

    Fig.10 The NO x concentrations in exhaust gas of case 2~6

    5 Conclusions

    This paper is targeted on the research of distribution of NOxand the effects of exhaust gas recirculation process and air preheated temperature on the formation of NOxin a coke oven combustion chamber by establishing models of k-ε,EDC,DO and thermal-NO to describe the flow,combustion,heat transfer and NOxformation in the combustion chamber.The main conclusions including:

    1)The distribution of NOxin the upward vertical flue and the downward vertical flue is different.Due to the influence of temperature and O2concentration,the distribution of NOxin the upward vertical flue is uneven,while the distribution of NOxin the downward vertical flue is uniform,which is only controlled by O2concentration.

    2) The exhaust gas recirculation process,which decreases the temperature of gas mixtures and the O2concentration near combustion zone,is an effective way to reduce NOxconcentration in exhaust gas.

    3) Higher air preheated temperature,causing higher temperature in the combustion chamber,leads to a growth in NOxemission.Therefore,decreasing air preheated temperature on condition of ensuring normal operation of coke ovens is another effective way to reduce NOxemission.

    [1]Hao Dandan.Numerical simulation of carbonization process and macro-scale operations technology for coke oven[D].Tianjin:Tianjin University,2012(in Chinese)

    [2]Zhang Xinxin,Zhang Anqiang,F(xiàn)eng Yanhui,et al.Energy consumption analysis and technologies of waste heat utilization for coke oven[J].Iron and Steel,2012,47(8):1-12(in Chinese)

    [3]Zhong Yingfei.Formation mechanism and control of NOxduring coke oven heating and combustion[J].Fuel&Chemical Processes,2009,40(6):5-12 (in Chinese)

    [4]Row land F S.Stratospheric ozone depletion[J].Philosophical Transactions of The Royal Society B-Biological Science,2006,361(1469):769-790

    [5]Jin Y M,Veiga M C,Kennes C.Bioprocesses for the removal of nitrogen oxides from polluted air[J].Journal of Chem ical Technology and Biotechnology,2005,80(5):483-494

    [6]Naeher L P,Brauer M,Lipsett M,et al.Woodsmoke health effects:A review[J].Inhalation Toxicology,2007,19(1):67-106

    [7]Ding Weixia.Study of numerical simulation of staged combustion reducing NOxemission of 300 MW boiler[D].Beijing:North China Electric Power University,2006

    [8]Fu G.NOxformation mechanism and control technology in the process of coal combustion[J].Energy Environmental Protection,2005,19(3):1-8 (in Chinese)

    [9]Jin J,F(xiàn)an J,Sha Y,et al.Experimental research and numerical simulation on NOxrelease characteristics along the boiler during pulverized coal combustion[J].Energy&Fuel,2010,24:940-944

    [10]Choi C R,Kim C N.Numerical investigation on the flow,combustion and NOxemission characteristics in a 500 MW tangentially fired pulverized-coal boiler[J].Fuel,2009,88:1720-1731

    [11]Liu B,Yang X,Song W,et al.Process simulation of formation and emission of NO and N2O during coal decoupling combustion in a circulating fluidized bed combustor using Aspen Plus[J].Chemical Engineering Science,2012,71:375-391

    [12]Cao H,Sun S,Liu Y,et al.Computational fluid dynam icsmodeling of NOxreduction mechanism in oxy-fuel combustion[J].Energy&Fuel,2010,24:131-135

    [13]Zhou H,Mo G,Si D,et al.Numerical simulation of the NOxemission in a 1000 MW tangentially fired pulverized-coal boiler:Influence of themulti-group arrangement of the separated over fire air[J].Energy&Fuel,2011,25:2004-2012

    [14]Li Xiaolei,Xiong Yangheng,Mo Chongjun.Numerical simulation on air-staged low NOxcombustion system in a 1000 MW-class ultra-supercritical boiler[C]//IEEE.Asia-Pacific Power and Energy Engineering Conference.Wuhan,China:2012(in Chinese)

    [15]Li Z,Wei F,Jin Y.Numerical simulation of pulverized coal combustion and NOxformation[J].Chemical Engineering Science,2003,58:5161-5171

    [16]Hao D,Liu W,Dang L,et al.Numerical simulation of a coke oven[J].Advanced Materials Research,2012:586-589

    [17]Wang Fujun.Computational fluid dynam ics:CFD principles and applications[M].Beijing:Tsinghua University Press,2004 (in Chinese)

    [18]Hellberg P,Jonsson T L I,Jonsson P G.Mathematical modeling of the injection of coke oven gas into a blast furnace tuyere[J].Scandinavian Journal of Metallurgy,2005,34:269-275

    [19]Liu Daifei,Ding Fengqi,Zhang Hongliang,et al.Numerical simulation of high temperature air combustion in alum inum hydroxide gas suspension calcinations[J].Transactions of Nonferrous Metals Society of China,2009,19:259-266(in Chinese)

    [20]Magnussen B F.On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[C]//Proceedings of the 19th AIAA Aerospace Science Meeting,St.Louis,United States:1981

    [21]Cui K,Liu B,Zhang H,et al.Modeling of pulverized coal combustion in turbulent flow with the consideration of intermediate reactions of volatile matter[J].Energy&Fuels,2013,27:2246-2254

    [22]Yao Zhaozhang,Zheng Mingdong.Coking plant science[M].Beijing:Metallurgical Industry Press,2008 (in Chinese)

    [23]Fiveland W A.Three-Dimensional radiative heat-transfer solutions by the discrete-ordinatesmethod[J].Journal of Thermophysics and Heat Transfer,1988,2(4):309-316

    [24]Stamnes K,Tsay SC,Wiscombe W,et al.Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[J].Applied Optics,1988,27(12):2052-2059

    [25]Backreedy R I,Jones JM,Ma L,et al.Prediction of unburned carbon and NOxin a tangentially fired power station using single coals and blends[J].Fuel,2005,84:2196-2203

    [26]Ma L,Gharebaghi M,Porter R,et al.Modelling methods for co-fired pulverised fuel furnaces[J].Fuel,2009,88(12):2448-2454

    [27]Huang Zhonglang.Research on engineering application of membrane method oxygen-enrichment local supporting combustion technigue on decreasing NOxemission of pulverized coal boiler[D].Changsha:Central South U-niversity,2007 (in Chinese)

    [28]Ou Jianping.Study on application of HTAC in Metallurgy and its optimization with numerical simulation[D].Changsha:Central South University,2004 (in Chinese)

    [29]Zhong Yingfei.Controlling pollutant discharge quantity and improving the present situation of cokemaking environment[J].Fuel&Chem ical Processes,2000,31(6):277-283(in Chinese)

    成年版毛片免费区| 国产乱来视频区| 国产成人a∨麻豆精品| 亚洲怡红院男人天堂| 婷婷色麻豆天堂久久| 亚洲av日韩在线播放| 国产爽快片一区二区三区| videossex国产| 嫩草影院新地址| 一级黄片播放器| 国产探花在线观看一区二区| 国产精品久久久久久久电影| 高清日韩中文字幕在线| 美女内射精品一级片tv| 国产人妻一区二区三区在| 综合色丁香网| 欧美精品国产亚洲| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜爱| 五月伊人婷婷丁香| av网站免费在线观看视频| 久久精品国产亚洲av天美| 久久精品久久久久久噜噜老黄| 日日啪夜夜撸| 九九在线视频观看精品| 中文字幕av成人在线电影| 七月丁香在线播放| 亚洲伊人久久精品综合| 免费不卡的大黄色大毛片视频在线观看| 视频区图区小说| 久久久午夜欧美精品| 午夜福利在线在线| 亚洲最大成人av| 国产美女午夜福利| 国产伦精品一区二区三区四那| 日韩电影二区| 成人国产av品久久久| 亚洲美女视频黄频| 日本免费在线观看一区| 91久久精品电影网| 免费电影在线观看免费观看| 九九久久精品国产亚洲av麻豆| av在线天堂中文字幕| 久久99热这里只有精品18| 久久国产乱子免费精品| 美女主播在线视频| 国产精品偷伦视频观看了| av.在线天堂| 国产精品成人在线| 国产黄片视频在线免费观看| 极品教师在线视频| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 国产老妇女一区| 精品久久久久久电影网| 热99国产精品久久久久久7| 在线观看人妻少妇| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 大香蕉97超碰在线| 人妻 亚洲 视频| 边亲边吃奶的免费视频| 嫩草影院精品99| 久久人人爽人人片av| 波多野结衣巨乳人妻| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 三级国产精品片| 97超碰精品成人国产| 只有这里有精品99| 卡戴珊不雅视频在线播放| 欧美极品一区二区三区四区| 国产伦在线观看视频一区| 在线精品无人区一区二区三 | 国产精品国产三级专区第一集| 国产真实伦视频高清在线观看| 成人黄色视频免费在线看| 少妇的逼好多水| 国产免费一区二区三区四区乱码| 日本黄色片子视频| av线在线观看网站| 黄色欧美视频在线观看| 大香蕉久久网| 成年女人看的毛片在线观看| 久久热精品热| 日本与韩国留学比较| 美女主播在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av.av天堂| 亚洲国产av新网站| 波多野结衣巨乳人妻| 国产又色又爽无遮挡免| 看十八女毛片水多多多| 我的老师免费观看完整版| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 国产一区二区三区av在线| 大码成人一级视频| 国产乱来视频区| 特级一级黄色大片| 免费电影在线观看免费观看| 秋霞在线观看毛片| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 亚洲丝袜综合中文字幕| 亚洲精品日韩av片在线观看| 春色校园在线视频观看| 亚洲精品一二三| 日韩欧美精品v在线| 91在线精品国自产拍蜜月| 亚洲国产成人一精品久久久| 精品熟女少妇av免费看| 18禁在线播放成人免费| 熟妇人妻不卡中文字幕| 边亲边吃奶的免费视频| 国产亚洲最大av| 啦啦啦啦在线视频资源| 大陆偷拍与自拍| 亚洲精品色激情综合| 亚洲成人久久爱视频| 日韩 亚洲 欧美在线| 如何舔出高潮| 免费观看av网站的网址| 18禁在线播放成人免费| 国产综合懂色| 午夜福利在线在线| 18禁裸乳无遮挡免费网站照片| 天堂网av新在线| 欧美精品一区二区大全| 日本av手机在线免费观看| 国产爽快片一区二区三区| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 国产精品伦人一区二区| 在线a可以看的网站| 亚洲精品色激情综合| 亚洲欧美一区二区三区国产| 成人亚洲精品一区在线观看 | 日本wwww免费看| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 狠狠精品人妻久久久久久综合| 听说在线观看完整版免费高清| 少妇猛男粗大的猛烈进出视频 | 97超碰精品成人国产| 欧美人与善性xxx| 国内精品美女久久久久久| 少妇人妻久久综合中文| 丝袜美腿在线中文| 国产精品久久久久久久久免| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 亚洲成人精品中文字幕电影| 国产黄a三级三级三级人| av国产久精品久网站免费入址| 亚洲欧美一区二区三区国产| 亚洲图色成人| 在线播放无遮挡| 亚洲精品视频女| 国精品久久久久久国模美| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 真实男女啪啪啪动态图| 欧美日韩在线观看h| 18禁在线无遮挡免费观看视频| 欧美一级a爱片免费观看看| 国产极品天堂在线| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 国产色婷婷99| 国产视频首页在线观看| 好男人视频免费观看在线| 精品人妻熟女av久视频| 黄色欧美视频在线观看| 亚洲在久久综合| 精品少妇黑人巨大在线播放| 国内精品美女久久久久久| 国产精品无大码| 综合色av麻豆| 少妇 在线观看| 日日啪夜夜爽| av福利片在线观看| 精品国产乱码久久久久久小说| 一本色道久久久久久精品综合| 国产高清国产精品国产三级 | 亚洲av男天堂| av在线天堂中文字幕| 久久久久性生活片| 日本一本二区三区精品| 久久女婷五月综合色啪小说 | 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 欧美丝袜亚洲另类| 亚洲国产精品国产精品| 色5月婷婷丁香| 亚洲精品久久久久久婷婷小说| 国产伦精品一区二区三区视频9| 国产综合精华液| 男人爽女人下面视频在线观看| 成人鲁丝片一二三区免费| 午夜免费观看性视频| 国产黄片美女视频| 男女啪啪激烈高潮av片| 日本色播在线视频| 国产亚洲午夜精品一区二区久久 | 免费黄频网站在线观看国产| 国产一区二区三区综合在线观看 | 男人爽女人下面视频在线观看| 婷婷色av中文字幕| 欧美一级a爱片免费观看看| 大香蕉久久网| 深夜a级毛片| 我的女老师完整版在线观看| 亚洲欧美精品自产自拍| 亚洲成人中文字幕在线播放| 最近最新中文字幕免费大全7| 午夜亚洲福利在线播放| 精品久久久噜噜| 日本午夜av视频| 国产淫片久久久久久久久| 九草在线视频观看| 欧美性感艳星| 成人亚洲精品av一区二区| 国产精品人妻久久久久久| 午夜日本视频在线| 一级a做视频免费观看| 丝袜美腿在线中文| 久久精品久久久久久久性| 日韩成人伦理影院| 午夜日本视频在线| 日韩三级伦理在线观看| 国产成人免费无遮挡视频| 欧美成人午夜免费资源| 欧美国产精品一级二级三级 | 精品久久国产蜜桃| 下体分泌物呈黄色| 欧美一级a爱片免费观看看| 美女脱内裤让男人舔精品视频| 久久99精品国语久久久| 搡老乐熟女国产| 免费观看的影片在线观看| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 国产精品99久久99久久久不卡 | 高清在线视频一区二区三区| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 在现免费观看毛片| 日韩成人av中文字幕在线观看| 插阴视频在线观看视频| 亚洲久久久久久中文字幕| 亚洲av二区三区四区| 在线观看一区二区三区| 校园人妻丝袜中文字幕| 极品教师在线视频| 黄色配什么色好看| 美女国产视频在线观看| 欧美xxxx黑人xx丫x性爽| 欧美高清性xxxxhd video| 国产精品一区二区三区四区免费观看| 国内揄拍国产精品人妻在线| 一区二区三区乱码不卡18| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 99久久精品热视频| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 一个人看视频在线观看www免费| 久久久国产一区二区| 欧美成人午夜免费资源| 精品国产乱码久久久久久小说| 免费在线观看成人毛片| 男的添女的下面高潮视频| av国产久精品久网站免费入址| 特级一级黄色大片| 舔av片在线| 黄色欧美视频在线观看| 各种免费的搞黄视频| 中文字幕制服av| 2022亚洲国产成人精品| 在现免费观看毛片| 日本-黄色视频高清免费观看| 国产免费视频播放在线视频| 看免费成人av毛片| 午夜免费鲁丝| 伦精品一区二区三区| 有码 亚洲区| 久久精品国产a三级三级三级| 久久久久久久久久人人人人人人| a级毛片免费高清观看在线播放| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 热re99久久精品国产66热6| 欧美最新免费一区二区三区| 色哟哟·www| 亚洲久久久久久中文字幕| 亚洲激情五月婷婷啪啪| 一个人观看的视频www高清免费观看| 精品一区二区三卡| 国产亚洲91精品色在线| 国产成人a区在线观看| 日韩制服骚丝袜av| 狠狠精品人妻久久久久久综合| 国产精品福利在线免费观看| 国产视频内射| 亚洲真实伦在线观看| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 性色avwww在线观看| 五月开心婷婷网| 综合色丁香网| 在线精品无人区一区二区三 | 国产精品久久久久久av不卡| 亚洲最大成人中文| 综合色丁香网| 麻豆成人av视频| 久久久久久国产a免费观看| 在线观看一区二区三区激情| www.色视频.com| 久久久久久久国产电影| 美女主播在线视频| 欧美3d第一页| 国产精品福利在线免费观看| 啦啦啦啦在线视频资源| 日韩欧美精品v在线| 少妇熟女欧美另类| 久久99精品国语久久久| 色视频www国产| 日日啪夜夜撸| 简卡轻食公司| 成人毛片a级毛片在线播放| 国产在视频线精品| 久久久久久久久久久免费av| 国产男女内射视频| 免费在线观看成人毛片| 亚洲一级一片aⅴ在线观看| av国产久精品久网站免费入址| 秋霞伦理黄片| 七月丁香在线播放| 香蕉精品网在线| 亚洲国产高清在线一区二区三| 夫妻午夜视频| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 亚洲综合精品二区| 人妻 亚洲 视频| 亚洲av国产av综合av卡| 激情五月婷婷亚洲| 亚洲精品日韩av片在线观看| 欧美性猛交╳xxx乱大交人| 婷婷色av中文字幕| 在线a可以看的网站| 精品久久国产蜜桃| 99久久人妻综合| 成人毛片a级毛片在线播放| 亚洲欧洲日产国产| 人妻系列 视频| 嫩草影院入口| 久久精品夜色国产| 免费看不卡的av| 午夜日本视频在线| 国产视频首页在线观看| 91精品伊人久久大香线蕉| 2018国产大陆天天弄谢| 国产免费一区二区三区四区乱码| 成人综合一区亚洲| 99热国产这里只有精品6| 毛片女人毛片| 亚洲欧美成人精品一区二区| 亚洲国产av新网站| 国产免费视频播放在线视频| 观看免费一级毛片| 蜜桃亚洲精品一区二区三区| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 一级二级三级毛片免费看| 久久久久久久大尺度免费视频| 国产女主播在线喷水免费视频网站| 亚洲aⅴ乱码一区二区在线播放| av在线老鸭窝| 亚洲自拍偷在线| 99久久精品国产国产毛片| 国产精品不卡视频一区二区| 日本色播在线视频| 国语对白做爰xxxⅹ性视频网站| 欧美高清成人免费视频www| 免费播放大片免费观看视频在线观看| 三级国产精品片| 亚洲av日韩在线播放| 亚洲av一区综合| 人人妻人人看人人澡| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 九九在线视频观看精品| 99九九线精品视频在线观看视频| 久久久a久久爽久久v久久| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 久久女婷五月综合色啪小说 | 欧美国产精品一级二级三级 | 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 精品酒店卫生间| 国产综合精华液| 亚洲在线观看片| 欧美日韩精品成人综合77777| 亚洲精品日本国产第一区| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 能在线免费看毛片的网站| 五月玫瑰六月丁香| 亚洲国产精品成人久久小说| www.av在线官网国产| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| 99久久中文字幕三级久久日本| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 免费大片黄手机在线观看| 狂野欧美激情性xxxx在线观看| 蜜桃亚洲精品一区二区三区| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 黄色配什么色好看| av又黄又爽大尺度在线免费看| 99热这里只有精品一区| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 秋霞伦理黄片| 少妇人妻 视频| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 久热久热在线精品观看| 亚洲精品视频女| 国产精品三级大全| 久久久久久国产a免费观看| 亚洲图色成人| 亚洲精品日韩在线中文字幕| 欧美丝袜亚洲另类| 人妻一区二区av| 国产男人的电影天堂91| 国产欧美日韩精品一区二区| 在线观看国产h片| 日韩国内少妇激情av| 欧美成人a在线观看| 亚洲最大成人中文| 欧美日韩国产mv在线观看视频 | 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 国产午夜精品久久久久久一区二区三区| 精品久久久精品久久久| 国产成人一区二区在线| 大话2 男鬼变身卡| 亚洲美女视频黄频| av播播在线观看一区| 一本一本综合久久| 亚洲色图av天堂| 久久人人爽人人爽人人片va| 国产乱人偷精品视频| 美女主播在线视频| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| 麻豆久久精品国产亚洲av| 国产在视频线精品| 国产精品一区二区在线观看99| 嫩草影院新地址| 欧美变态另类bdsm刘玥| 黑人高潮一二区| 国产乱人偷精品视频| 99久久精品热视频| 国产淫语在线视频| 久久99热这里只频精品6学生| 精品酒店卫生间| 国产亚洲精品久久久com| 亚洲精品视频女| 中文字幕制服av| 亚州av有码| 国产精品人妻久久久久久| 免费观看无遮挡的男女| 麻豆久久精品国产亚洲av| 国产精品一二三区在线看| 国产精品无大码| 热99国产精品久久久久久7| 国产午夜福利久久久久久| 一区二区三区乱码不卡18| 国产黄片美女视频| 国产亚洲精品久久久com| 亚洲精品日韩在线中文字幕| 丝瓜视频免费看黄片| 一边亲一边摸免费视频| 亚洲欧美日韩东京热| 高清欧美精品videossex| 汤姆久久久久久久影院中文字幕| 亚洲图色成人| 久久久精品94久久精品| 白带黄色成豆腐渣| 国产老妇伦熟女老妇高清| 国产精品无大码| 国产大屁股一区二区在线视频| 九色成人免费人妻av| 欧美激情国产日韩精品一区| 禁无遮挡网站| 亚洲精品,欧美精品| 国产乱人偷精品视频| 97在线视频观看| 伦理电影大哥的女人| av女优亚洲男人天堂| 亚洲精品日韩av片在线观看| 国产日韩欧美在线精品| 午夜亚洲福利在线播放| 国产午夜福利久久久久久| 成年免费大片在线观看| 少妇人妻久久综合中文| 免费av观看视频| 国产免费一区二区三区四区乱码| 一区二区av电影网| 国产日韩欧美在线精品| 久久久久久久精品精品| 在线看a的网站| 国产精品久久久久久精品古装| 丰满人妻一区二区三区视频av| 久久久欧美国产精品| 一个人观看的视频www高清免费观看| 交换朋友夫妻互换小说| 极品教师在线视频| 2018国产大陆天天弄谢| 国产成人精品福利久久| 熟女人妻精品中文字幕| 少妇丰满av| 国产欧美日韩精品一区二区| 色播亚洲综合网| 精品人妻偷拍中文字幕| 欧美成人午夜免费资源| 久久久精品94久久精品| 久久久久久久久久人人人人人人| 久久精品夜色国产| 美女国产视频在线观看| 国产伦理片在线播放av一区| 国语对白做爰xxxⅹ性视频网站| av在线观看视频网站免费| 老师上课跳d突然被开到最大视频| 在线观看国产h片| 国产熟女欧美一区二区| 国产视频内射| 亚洲av免费在线观看| 欧美人与善性xxx| 日本欧美国产在线视频| 精品人妻视频免费看| 99热这里只有是精品50| 亚洲精品久久午夜乱码| 永久免费av网站大全| 成人亚洲精品av一区二区| 又粗又硬又长又爽又黄的视频| 国产又色又爽无遮挡免| 久久久久九九精品影院| 国产一区二区三区av在线| 夜夜爽夜夜爽视频| 国产免费视频播放在线视频| 午夜日本视频在线| 老女人水多毛片| 美女xxoo啪啪120秒动态图| 成年版毛片免费区| 99热6这里只有精品| 少妇人妻 视频| 国产成人a区在线观看| av在线播放精品| 日韩一本色道免费dvd| 极品少妇高潮喷水抽搐| 视频中文字幕在线观看| 边亲边吃奶的免费视频| 别揉我奶头 嗯啊视频| 久久影院123| 一级毛片黄色毛片免费观看视频| 婷婷色av中文字幕| 国产黄a三级三级三级人| 欧美最新免费一区二区三区| 成年免费大片在线观看| 欧美精品国产亚洲| h日本视频在线播放| 亚洲欧美日韩另类电影网站 | 日本午夜av视频| 午夜免费观看性视频| 能在线免费看毛片的网站| 国产精品无大码| 成年女人在线观看亚洲视频 | 久久久久久九九精品二区国产| 日本三级黄在线观看| 深爱激情五月婷婷| 亚洲欧美精品自产自拍| 蜜桃久久精品国产亚洲av| 久久影院123| 亚洲av日韩在线播放| 亚洲不卡免费看| 美女xxoo啪啪120秒动态图| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 深爱激情五月婷婷| 纵有疾风起免费观看全集完整版| 别揉我奶头 嗯啊视频| 一级毛片久久久久久久久女| 日韩欧美 国产精品| 国产久久久一区二区三区| 久久人人爽av亚洲精品天堂 | 麻豆国产97在线/欧美| 国产老妇女一区| 女的被弄到高潮叫床怎么办|