張玉,白史且,李聰
(1.四川省草原科學研究院,四川 成都611731;2.中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100094)
農(nóng)桿菌介導含硫氨基酸γ-zein轉(zhuǎn)化菊苣的初步研究
張玉1*,白史且1,李聰2
(1.四川省草原科學研究院,四川 成都611731;2.中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100094)
摘要:含硫氨基酸具有動物營養(yǎng)與免疫相關的重要生理功能,為提高菊苣中含硫氨基酸含量,采用根癌農(nóng)桿菌介導法將玉米種子貯藏蛋白含硫氨基酸基因γ-zein和綠色熒光蛋白GFP融合基因轉(zhuǎn)入到菊苣無菌苗葉片中,經(jīng)過共培養(yǎng)、潮霉素抗性篩選、分化、再生和煉苗, 得到抗性植株。對抗性植株進行PCR、PCR-Southern、斑點雜交和RT-PCR分析,結果表明,外源目的基因已經(jīng)整合到菊苣基因組中并且得到了表達,為提高菊苣含硫氨基酸含量,改善其品質(zhì)奠定了基礎。
關鍵詞:γ-zein基因;菊苣;農(nóng)桿菌轉(zhuǎn)化;含硫氨基酸
Preliminary studies on transgenic chicory using the sulphur-amino acid gene, γ-zein, mediated byAgrobacteriumtumefacien
ZHANG Yu1*, BAI Shi-Qie1, LI Cong2
1.SichuanGrasslandScienceAcadem,Chengdu611731,China; 2.InstituteofAnimalScience,ChineseAcademyofAgriculturalScience,Beijing100094,China
Abstract:Sulfur-containing amino acids have important physiological functions related to animal nutrition and immunity. To improve the sulfur-amino acid content of chicory, leaves of chicory were transformed with the Sulphur-amino acid gene γ-zein, an important prolamin storage protein from Zea mays and a green fluorescent protein (GFP) gene using Agrobacterium mediated transfusion. After co-culture, selective differentiation and regeneration, hygromycin resistant plants were obtained. Resistant plants were detected using PCR, PCR-southern, dot blot hybridization and RT-PCR. The results demonstrated that the γ-zein genes had been integrated into the genome of chicory and expressed on a nucleic acid level in the transgenic plants.
Key words:γ-zein genes; chicory (Cichorium intybus); agrobacterium-mediated transformation; sulphur-amino acid
蛋白短缺包括蛋白含量短缺和營養(yǎng)品質(zhì)低下,是21世紀全球性的嚴重問題,在盡快提高作物品種的蛋白質(zhì)含量的同時,積極改善蛋白質(zhì)的氨基酸組成,提高營養(yǎng)價值,具有重要意義。
含硫氨基酸如甲硫氨酸(也稱為蛋氨酸,methionine,Met)、胱氨酸、半胱氨酸(cysteine, Cys)等是合成蛋白質(zhì)的重要氨基酸,蛋白質(zhì)中含硫氨基酸的含量與種子萌發(fā)、生長和作物品質(zhì)均有密切關系。含硫氨基酸是人體必需氨基酸之一,也是形成動物毛發(fā)角蛋白的必需組分,并且研究表明含硫氨基酸含量的增加可提高羊毛產(chǎn)量22%以上,增產(chǎn)的幅度在22%~104%[1-2],同時還可增加牲畜的重量,含硫氨基酸的這種獨特作用是別的氨基酸不具有的[2]。如能提高牧草或動物飼料中含硫氨基酸的含量,對提高動物重量、改善動物品質(zhì),具有重要的經(jīng)濟價值。是穩(wěn)定畜產(chǎn)品價格和確保畜產(chǎn)品安全的有效途徑之一[3]。
菊苣(Cichoriumintybus)為菊科菊苣屬多年生宿根草本植物,其適應性廣,根系發(fā)達,產(chǎn)量高,營養(yǎng)豐富,粗蛋白質(zhì)16.44%~27.35%,菊苣常用作牧草飼料、蔬菜、制糖原料及咖啡的替代品,也是工業(yè)和藥品的生產(chǎn)原料[3-4]。雖然菊苣蛋白質(zhì)含量高,但是蛋白質(zhì)中氨基酸組成不平衡,含硫氨基酸含量較低。
近年來,基因工程的誕生使人類的農(nóng)業(yè)生產(chǎn)史發(fā)生了巨大的變化,通過轉(zhuǎn)基因技術提高植物抗性、改善織物品質(zhì),具備并已展現(xiàn)了巨大的應用價值和經(jīng)濟價值[5]。目前已經(jīng)從玉米(Zeamays)、水稻(Oryzasativa)、向日葵(Helianthusannuus)及豌豆(Pisumsativum)等中分離得到富含硫氨基酸的蛋白及其編碼基因。玉米醇溶蛋白(zein)是玉米種子中的主要貯藏蛋白質(zhì),可分為α-、β-、γ-和δ-zein 4種主要類型。其中β-、γ-和δ-zein富含蛋氨酸和半胱氨酸2種含硫氨基酸[6]。通過轉(zhuǎn)γ-zein基因來提高植物的含硫氨基酸已經(jīng)在擬南芥(Arabidopsisthaliana)[7]、煙草(Nicotianatabacum)[8]、白三葉草(Trifoliumrepens)[9]、紫花苜蓿(Medicagosativa)[10-11]等中取得良好的結果。γ-zein基因的成功轉(zhuǎn)入和表達為增加牧草可食性組織的含硫氨基酸含量提供了新的途徑,但這在菊苣上還沒見報道。本文通過農(nóng)桿菌介導將GFP和γ-zein融合基因轉(zhuǎn)化菊苣,對獲得的轉(zhuǎn)基因植株進行檢測,以期提高菊苣植株含硫氨基酸的含量,改善菊苣品質(zhì),同時也為菊苣新品種的培育提供中間材料。
1材料與方法
普那菊苣(Cichoriumintybuscv. puna)由四川省草原科學研究院提供。普那菊苣是一個產(chǎn)量高、抗蟲性強的國家登記牧草品種。
本實驗中使用根癌農(nóng)桿菌菌株LBA4404、植物表達載體pCAMBIA1302和γ-zein基因均由中國農(nóng)業(yè)科學研究院畜牧獸醫(yī)研究所李聰實驗室提供。質(zhì)粒圖譜見圖1。該質(zhì)粒包括CaMV35S啟動子、γ-zein、GFP蛋白基因。
圖1 植物表達載體pCB-GFP-zein結構Fig.1 Schematic maps of plant expression vectors pCB-GFP-zeinLB為左邊界Left T-border;RB為右邊界Right T-border.
見表1。
1.4.1菊苣無菌苗的獲得選取飽滿菊苣種子,經(jīng)體積分數(shù)75%乙醇浸泡2 min,倒出浸泡液,再用0.1%的升汞浸泡10 min,無菌水反復清洗4~5次,無菌濾紙吸干水分后, 接種于1/2 MS培養(yǎng)基上,放于溫室,待植株成苗。
表1 培養(yǎng)基成分
1.4.2菌液的活化參照王關林和方宏藥(2002)的方法,略有變動。取-80℃加入15%甘油保存的菌液于碎冰上融化,用接種針蘸取少量菌液,在添加有50 mg/L Kan和50 mg/L Str的固體平板培養(yǎng)基上劃線,于28℃恒溫培養(yǎng)箱中倒置暗培養(yǎng)2 d。待長出單菌落后,用牙簽挑取單菌落于含50 mg/L Kan和50 mg/L Str的液體LB或YMB培養(yǎng)基中,振蕩培養(yǎng)16~24 h至對數(shù)生長期,然后按1∶100比例轉(zhuǎn)入不含抗生素的新鮮液體培養(yǎng)基中繼續(xù)振搖培養(yǎng)至OD600達0.6左右。無菌條件下取新鮮菌液于50 mL離心管中于常溫5000 r/min離心10 min,去除上清液,用1/2 MS無菌液體培養(yǎng)基重懸沉淀至需要的OD值,用于侵染轉(zhuǎn)化。
1.4.3轉(zhuǎn)基因抗性植株的獲得選取無菌苗中上部充分展開、生長健壯、均勻一致的幼嫩葉片,用5~10 mm打孔器制取葉盤外植體,將其接種在預培養(yǎng)基中預培養(yǎng)2 d后,用OD600=0.4 Abs農(nóng)桿菌菌液浸泡10 min, 其間不斷搖動,取出后用無菌濾紙吸取受體表面多余菌液,迅速將受體材料移置鋪有一層無菌濾紙的共培養(yǎng)基上,黑暗中共培養(yǎng)到有肉眼可見微菌落。共培養(yǎng)結束后,將其轉(zhuǎn)入含25 mg/L Hyg和500 mg/L Cef的篩選培養(yǎng)基中篩選得到抗性芽。當抗性芽長到1 cm時,轉(zhuǎn)入含15 mg/L Hyg和500 mg/L Cef的分化培養(yǎng)基中擴繁,將擴繁芽轉(zhuǎn)入含10 mg/L Hyg和250 mg/L Cef的生根培養(yǎng)基中進行生根培養(yǎng),直到長成完整的小植株,然后馴化移栽,得到轉(zhuǎn)基因抗性植株。
1.4.4抗性植株的檢測1) PCR檢測
用CTAB法和普博欣植物基因組DNA小量提取試劑盒提取抗性植株及對照(未轉(zhuǎn)化植株)的總DNA,根據(jù)標記基因GFP和目的基因γ-zein序列用primer 5.0設計引物進行PCR擴增,GFP引物序列為:
5′-CAGTGGAGAGGGTGAAGGTG-3′
5′-CGAAAGGGCAGATTGTGTGG-3′
預期擴增長度為538 bp。
γ-zein引物序列為:
5′-TGCCACTACCCTACTCAACCG-3′
5′-GGAGGACCAAGCCGAAGAT-3′
預期擴增長度為283 bp。
以質(zhì)粒pCB-GFP-zein作為陽性對照,以未轉(zhuǎn)化的植株作為陰性對照。PCR反應體系為:10×PCR Reaction Buffer 2.5 μL,dNTP Mixture(10 mmol/L)2 μL,上游引物(10 μmol/L)1 μL,下游引物(10 μmol/L)1 μL,基因組DNA 1 μg Taq DNA Polymerase(5 U/μL) 0.5 μg, 添加 ddH2O 補充到 25 μL。PCR反應程序為:94℃ 4 min,94℃ 30 s,50℃ 30 s, 72℃ 1 min,30個循環(huán), 最后72℃ 10 min。電泳完后,取5 μL PCR擴增產(chǎn)物在濃度為1.5%的瓊脂糖凝膠上電泳,檢測擴增結果。
2) PCR-Southern
以質(zhì)粒pCB-GFP-γ-zein DNA 為模板進行PCR,對PCR產(chǎn)物進行回收,用回收產(chǎn)物做探針標記,具體標記方法見Roche 公司的DIG High Prime DNA Labeling and Detection Starter Kit I,然后對PCR 產(chǎn)物進行電泳、轉(zhuǎn)膜、預雜交、雜交和顯色檢測,具體方法見Roche 公司的說明書。
3)斑點雜交
對陽性植株DNA變性,冰中速冷。在帶正電荷尼龍膜上用鈍鉛筆劃0.5 cm×0.5 cm方格網(wǎng),先用蒸餾水浸潤尼龍膜,然后用20×SSC浸泡,用Tip將變性DNA點于膜上,以質(zhì)粒pCB-GFP-zein DNA為陽性對照,以未轉(zhuǎn)基因植株為陰性對照,每個樣點2~10 μg DNA,室溫晾干,烘烤,進行預雜交、雜交和顯色檢測[12]。
4) 轉(zhuǎn)基因植株RT-PCR檢測
利用TRIzol法對菊苣陽性轉(zhuǎn)化植株和非轉(zhuǎn)化植株的總RNA進行提取、純化,然后對RNA進行反轉(zhuǎn)錄。逆轉(zhuǎn)錄反應體系為25 μL,含模板RNA 2 μg,Oligo(dT)15 Primer 1 μL,M-MLV Reaction Buffer 5 μL,Dntp (10 mmol/L) 5 μL,Ribonuclease Inhibitor 1 μL,M-MLV RT 200 U,加DEPC水補足25 μL。用γ-zein基因引物對反轉(zhuǎn)錄的cDNA進行PCR檢測和電泳分析。
2結果與分析
菊苣無菌苗葉片預培養(yǎng)2 d后,葉片邊緣開始膨大,用含pCB-gfp-zein的LBA4404浸染,浸染后的菊苣葉片(圖2A)在黑暗下共培養(yǎng)2~3 d,轉(zhuǎn)于含20 mg/L Hyg和500 mg/L Cef的篩選培養(yǎng)基上,20 d后分化出具有抗性的不定芽(圖2B),將抗性芽轉(zhuǎn)入含15 mg/L Hyg和500 mg/L Cef的分化培養(yǎng)基中擴繁1~2周 (圖2C),再轉(zhuǎn)入含10 mg/L Hyg和250 mg/L Cef的生根培養(yǎng)基中進行生根培養(yǎng),2~3周后植株生根(圖2D)發(fā)育成完整植株(圖2E),煉苗室內(nèi)盆栽,最終獲得48株形態(tài)特征正常的菊苣抗性再生植株 (圖2F)。
圖2 轉(zhuǎn)化菊苣分化與再生Fig.2 Differentiation and regeneration of transformed chicory A:浸染后的菊苣葉片Leaf soaked of chicory;B:不定芽的篩選(箭頭指向為抗性芽) Screen the Hyg-resistant regeneration buds (the arrowed places are the transgene buds);C: 抗性植株生根培養(yǎng)Radicating of the Hyg-resistant regeneration buds; D:抗性芽的分化Differentiation of the Hyg-resistant regeneration buds;E:完整的抗性植株Intact plant;F:移栽成活的抗性植株The survival Hyg-resistant regeneration plant transplanted to plate.
提取轉(zhuǎn)化抗性植株DNA,用GFP基因和γ-zein基因引物分別對轉(zhuǎn)化植株及非轉(zhuǎn)基因植株總DNA進行PCR擴增,結果顯示轉(zhuǎn)化的48株抗性再生植株中有29株能擴增出γ-zein基因的283 bp預期片段,只列出部分PCR圖(圖3),有26株能擴增出GFP基因538 bp的預期片段(圖4,只列出部分PCR圖),而非轉(zhuǎn)基因植株均未擴增出任何條帶(圖3,圖4)。
圖3 轉(zhuǎn)基因植株γ-zein-PCR 檢測Fig.3 PCR analysis of γ-zein gene from transformed chicory 1: DL 2000 DNA marker;2: pCB-gfp-zein質(zhì)粒Plasmid pCB-gfp-zein;3:陰性對照(非轉(zhuǎn)基因菊苣) Negative control(non-transgenic );4~10:轉(zhuǎn)化植株Transformed plants.
圖4 轉(zhuǎn)基因植株gfp-PCR 檢測Fig.4 PCR analysis of gfp gene from transformed chicory
對gfp 和γ-zein基因PCR檢測都為陽性的植株進行γ-zein-PCR——Southern檢測,檢測結果(圖5)表明:檢測的植株都為陽性,初步說明外源目的基因γ-zein已經(jīng)轉(zhuǎn)化到菊苣基因組中。
圖5 轉(zhuǎn)基因植株γ-zein-PCR-Southern 檢測Fig.5 PCR-Southern analysis of γ-zein gene from transformed chicory
M: DL 2000 DNA marker; P: pCB-gfp-zein質(zhì)粒Plasmid pCB-gfp-zein; CK: 陰性對照(非轉(zhuǎn)基因菊苣) Negative control(non-transgenic );1~7: 轉(zhuǎn)化植株Transformed plants.1: pCB-gfp-zein質(zhì)粒Plasmid pCB-gfp-zein; 2: 陰性對照(非轉(zhuǎn)基因菊苣) Negative control(non-transgenic);3~7: 轉(zhuǎn)化植株Transformed plants.
對上面檢測均為陽性的轉(zhuǎn)基因植株DNA進行斑點雜交,所用探針為pCB-gfp-zein質(zhì)粒DNA的γ-zein-PCR回收產(chǎn)物,雜交結果顯示(圖6):除陰性對照外,轉(zhuǎn)基因植株都有雜交信號,說明γ-zein已經(jīng)整合到菊苣基因組中。
圖6 轉(zhuǎn)基因植株γ-zein斑點雜交檢測Fig.6 Dot blot hybridization analysis of γ-zein gene P: pCB-gfp-zein質(zhì)粒Plasmid pCB-gfp-zein; CK: 陰性對照(非轉(zhuǎn)基因菊苣) Negative control (non-transgenic);1~8: 轉(zhuǎn)化植株Transformed plants.
采用TRIzol法對菊苣轉(zhuǎn)化植株和未轉(zhuǎn)化植株提取RNA,經(jīng)檢測RNA質(zhì)量良好(圖7),經(jīng)過RT-PCR檢測,結果表明(圖8),除1株為陰性外其余都為陽性,表明大部分基因在轉(zhuǎn)基因菊苣植株中得到了表達。檢測表明陰性的植株是假陽性,還是在RNA上沉默,還有待Southern雜交的進一步檢測。
圖7 提取的植株RNA Fig.7 RNA extraction of plants
圖8 轉(zhuǎn)基因植株γ-zein-RT-PCR 檢測Fig.8 RT -PCR analysis of γ-zein gene 1: DL 2000 DNA marker; 2:pCB-gfp-zein質(zhì)粒Plasmid pCB-gfp-zei; CK: 陰性對照(非轉(zhuǎn)基因菊苣) Negative control (non-transgenic);3~8: 轉(zhuǎn)化植株Transformed plants.
3結論與討論
改進農(nóng)作物品質(zhì)歷來為各國科學工作者所重視。菊苣中缺乏蛋氨酸和半胱氨酸, 蛋氨酸和半胱氨酸成了其營養(yǎng)限制,菊苣是一個多用途的經(jīng)濟作物、藥用植物和飼料作物, 提高其蛋氨酸和半胱氨酸含量具有巨大的潛在經(jīng)濟價值。該論文以菊苣無菌苗葉片為外植體,利用根癌農(nóng)桿菌介導法對含硫氨基酸γ-zein基因和GFP基因的融合基因轉(zhuǎn)移到菊苣的研究,迄今還未見報道。在菊苣中利用基因工程法進行基因轉(zhuǎn)化的報道并不多見,目前在國內(nèi)外報道的只有與花發(fā)育相關AFL2基因[13]、β-glucuronidase (uidA)基因[14]、抗壞血酸過氧化物酶(APX)基因[15]、pBI121-GFP載體[16]、菊苣中分離克隆的DREB基因[17]和茅液泡膜Na+/H+逆向轉(zhuǎn)運蛋白基因(ALNHX)[18]被導入菊苣,并且這些報道都只做了最初的PCR檢測,沒有在RNA的表達上進行檢測。
在植物遺傳轉(zhuǎn)化中,預培養(yǎng)的主要作用是促進細胞分裂,因為處于分裂狀態(tài)的細胞更易整合外源DNA,提高轉(zhuǎn)化率。研究發(fā)現(xiàn)菊苣預培養(yǎng)時間比較短,只需要2 d即可,如果預培養(yǎng)時間超過3 d,外植體邊緣除了膨大外,還開始分化出綠點,影響轉(zhuǎn)化效率。根癌土壤農(nóng)桿菌只能感染植物的損傷部位,在植物細胞損傷及修復過程中,植物細胞釋放出一些化學物質(zhì)(酚類物質(zhì)、酸性多糖等),這些誘導物可以通過外膜蛋白將環(huán)境中的植物損傷信號傳遞到農(nóng)桿菌細胞內(nèi),最終引起vir 基因的表達和T-DNA 的轉(zhuǎn)移。其中誘導效果最佳的為乙酰丁香酮(AS),它可以使農(nóng)桿菌質(zhì)粒上的vir 基因活化,提高轉(zhuǎn)化率。也有報道稱AS對于轉(zhuǎn)化效果沒有明顯影響。本研究中得出共培養(yǎng)中AS濃度對抗性率影響差異顯著,其中以濃度為100 μmol/L最佳。有報道AS 對于河北楊的侵染轉(zhuǎn)化并沒有促進效果,隨著施加濃度的增加反而還會產(chǎn)生一定的抑制作用。不同研究獲得結果不一致,可能與所選用材料、菌液濃度和菌株的類型有關系。
PCR的高度靈敏極易產(chǎn)生假陽性結果。DNA插入植物基因組后易發(fā)生重排,即使載體上的抗性基因或其他基因能表達, 目的基因也未必完整的存在于轉(zhuǎn)化體中,從而造成檢測結果的假陽性。而且,轉(zhuǎn)基因植株存在基因沉默等現(xiàn)象,影響外源基因的正常表達,因此,轉(zhuǎn)基因PCR檢測結果可能不是百分之百準確,所以,除了PCR檢測外,還有必要在DNA水平用點雜交、Southern Blot檢測,在RNA表達水平上用RNA-PCR進行檢測。本文通過轉(zhuǎn)化葉片進行不同濃度梯度潮霉素的篩選,分化和再生得到了菊苣抗性植株,通過PCR、PCR-Southern和斑點雜交檢測證明了γ-zein基因已經(jīng)轉(zhuǎn)化到菊苣基因組中。再通過RT-PCR進一步證明了γ-zein基因已整合到菊苣基因組中,并在轉(zhuǎn)錄水平上得到了正確表達,并且該轉(zhuǎn)化方法抗性率高,陽性率也較高,為菊苣以后的遺傳轉(zhuǎn)化和育種中間材料的創(chuàng)制奠定了基礎。一個完整的轉(zhuǎn)基因植株的檢測應該包括DNA、RNA方面的檢測,還應該包括該基因表達產(chǎn)物的檢測。本試驗中,γ-zein基因表達的產(chǎn)物主要為含硫氨基酸的蛋氨酸和半胱氨酸,但是由于含硫氨基酸在轉(zhuǎn)基因菊苣中表達量的檢測,需要一定量的菊苣干樣并打成草粉,因此,該指標只有等到轉(zhuǎn)基因菊苣單株樣品比較多的情況下才能進行測定。
References:
[1]Radcliffe B C, Hynd P I, Benevenga N J,etal. Effects of cysteine ethyl ester supplements on wool growth tate. Australian Journal of Agricultural Resear, 1985, 36: 709-715.
[2]Reis P J. Effects of amino acids on the growth and properties of wool. Physiological and Environmental Liminations to Wool Growth[M]. Amidale: University of New England Publishing Unit, 1979: 223-242.
[3]Wang C M, Yang L J, Chang S H,etal. Price analysis of domestic and international major livestock and forage products. Acta Prataculturae Sinica, 2014, 23(1): 300-311.
[4]Sanderson M A, Labreveux M, Hall M H. Nutritive value of chicory and English plantain forage. Crop Science Society of America, Madison, USA, 2003, 43(5): 1747-1804.
[5]Xu L M, Zhang Z B, Liang X L,etal. Advances in genetic engineerin for drought tolerance in plant. Acta Prataculturae Sinica, 2014, 23(6): 293-303.
[6]Shewry P R, Casey R. Seed Protein[M]. Netherlands: Kluwer Academic Publishers, 1999: 109-139.
[7]Geli M I, Torrent M, Ludevid D. Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell, 1994, 6(12): 1911-1922.
[8]Bellucci M, Alpini A, Paolocci F,etal. Accumulation of maize γ-zein and γ-zein: KDELTo high levels in tobacco leaves and differential increase of BiP synthesis in transformants. Theoretical and Applied Genetics, 2000, 101(5-6): 796-804.
[9]Sharma S B, Hancock K R, Ealing P M,etal. Expression of a sulphur-rich maize seed storage protein, δ-zein, in white clover (Trifoliumrepens) to improve forage quality. Molecular Breeding, 1998, 4: 435-448.
[10]Bellucci M, Alpini A, Arcioni S. Zein accumulation in forage species (LotuscorniculatusandMedicagosativa) and co-expression of the γ-zein: KDEL and β-zein: KDEL polypeptides in tobacco leaf. Plant Cell Reports, 2002, 20(9): 848-856.
[11]Lu D Y, Fan Y L, Yu M M,etal. Transgenic plant regeneration with high sulfur-containing amino acids protein gene about alfalfa. Acta Genetic Sinica, 2000, 27(4): 331-337.
[12]Li S J, Zhang Z Y. Expression of the Ta6-SFT gene in brassica napus under drought stress. Acta Prataculturae Sinica, 2014, 23(5): 161-167.
[13]Cheng L M, Cao Q F, Gao H W. Study on the efficient systems for regeneration and AFL2 gene transformation of puna chicory (CichoriumintybusL). Acta Agrestia Sinica, 2004, 12(3): 199-203.
[14]Zhang L J, Cheng L M, Du J Z. Estabilishent and optimization of puna chicory genetic transformation system with agrobacterium-mediated method. Acta Agrestia Sinica, 2008, 2: 130-134.
[15]Fanny Frulleuxl, Guy Weyens, Michel Jacobs. Agrobacterium tumefaciens-mediatated transformation of shoot-buds of chicory. Plant Cell, Tissue and Organ Culture, 1997, 50: 107-112.
[16]Song S F, Cao F, Yang P Z,etal. High efficient system establishment on plant regeneration and study on genetics Transformation in Puna Chicory (CichoriumintybusL.). Molecular Plant Breeding, 2006, 4(4): 565-570.
[17]Zhao L. Isolation and Characterization of the DREB Transcription Factor from Commander Chicory and Establishment of Genetic Transformation System of Commander[D]. Nanjing: Nanjing Agricultural University Library, 2013.
[18]Zhao L, Chen D D, Ling M X,etal. Comparative study on regeneration and genetic transformation between puna chicory and commander chicory. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(11): 2169-2176.
參考文獻:
[3]王春梅, 楊林杰, 常生華, 等. 國內(nèi)外主要畜產(chǎn)品與飼料價格分析. 草業(yè)學報, 2014, 23(1): 300-311.
[5]徐立明, 張振葆, 梁曉玲, 等. 植物抗旱基因工程研究進展. 草業(yè)學報, 2014, 23(6): 293-303.
[11]呂德?lián)P, 范云六, 俞梅敏, 等. 苜蓿高含硫氨基酸蛋白轉(zhuǎn)基因植株再生. 遺傳學報, 2000, 27(4): 331-337.
[12]李淑潔, 張正英. Ta6-SFT 基因?qū)τ筒说霓D(zhuǎn)化及抗旱性分析. 草業(yè)學報, 2014, 23(5): 161-167.
[13]程林梅, 曹秋芬, 高洪文, 等. 菊苣再生體系的建立及轉(zhuǎn)AFL2基因的研究. 草地學報, 2004, 12(3): 199-203.
[14]張麗君, 程林梅, 杜建中, 等. 菊苣農(nóng)桿菌介導轉(zhuǎn)化受體系統(tǒng)的研究. 草地學報, 2011, 6: 1042-1049.
[16]宋書鋒, 曹鳳, 楊培志, 等. 普那菊苣高效再生體系建立和遺傳轉(zhuǎn)化研究. 分子植物育種, 2006, 4(4): 565-570.
[17]趙龍. 將軍菊苣DREB家族基因的克隆、功能研究及其遺傳轉(zhuǎn)化體系的建立[D]. 南京: 南京農(nóng)業(yè)大學, 2013.
[18]趙龍, 陳丹丹, 梁明祥, 等. 2種菊苣再生體系及遺傳轉(zhuǎn)化效率的比較. 西北植物學報, 2012, 32(11): 2169-2176.
張玉, 白史且, 李聰. 農(nóng)桿菌介導含硫氨基酸γ-zein轉(zhuǎn)化菊苣的初步研究. 草業(yè)學報, 2015, 24(9): 73-79.
ZHANG Yu, BAI Shi-Qie, LI Cong. Preliminary studies on transgenic chicory using the sulphur-amino acid gene, γ-zein, mediated byAgrobacteriumtumefacien. Acta Prataculturae Sinica, 2015, 24(9): 73-79.
通訊作者*Corresponding author.
作者簡介:張玉(1975-),女,四川仁壽人,博士。E-mail:zhyforage@126.com
基金項目:四川省十二五牧草育種攻關(2011NZ0098-11),四川省應用基礎項目(2013JY0111)和國家牧草產(chǎn)業(yè)技術體系阿壩綜合試驗站資助。
收稿日期:2014-07-07;改回日期:2015-03-10
DOI:10.11686/cyxb2014307http://cyxb.lzu.edu.cn