軸向移動局部浸液單向板非線性動力學分析
李紅影,李健,張英杰,李東
(東北大學理學院應(yīng)用力學研究所,沈陽110819)
摘要:研究軸向移動局部浸液單向板的非線性動力學特性及穩(wěn)定性。建立單向板非線性振動方程,考慮幾何非線性、軸向移動、軸向張力、阻尼、液固耦合作用及非線性氣動載荷,利用Galerkin法對振動方程離散化,獲得模態(tài)坐標的非線性微分方程組。對離散的非線性方程組分別用近似解析法、數(shù)值方法進行分析,研究系統(tǒng)的主共振特性。
關(guān)鍵詞:局部浸液單向板;軸向移動;非線性;主共振;穩(wěn)定性
中圖分類號:O322文獻標志碼:A
基金項目:國家自然科學
收稿日期:2014-06-03修改稿收到日期:2014-10-20
Nonlinear dynamics for unilateral plates partially immersed in fluid and moving in axial direction
LIHong-ying,LIJian,ZHANGYing-jie,LIDong(Institute of applied mechanics, Northeastern University, Shenyang 110819, China)
Abstract:The characteristics of nonlinear dynamics and stability of a unilateral plate, partially immersed in fluid and moving in axial direction, were investigated. A nonlinear equation of vibration was derived with the consideration of geometric nonlinearity, speed and tension of the unilateral plate in axial direction, damping, fluid-structure interaction and nonlinear air-knife force. The Galerkin method was used to decompose the vibration equation. Then by applying numerical and approximate analytical methods, the nonlinear modal equations were solved, and the primary resonance characteristics of the immersed plate were revealed.
Key words:unilateral plates partially immersed in fluid; moving in axial direction; nonlinearity; primary resonance; stabilities
本文模型為連續(xù)熱鍍鋅鋼板。因生產(chǎn)線上氣刀附近的鋼帶振動涉及板與液體耦合振動問題,因此用近似解析法及數(shù)值方法研究此鋼帶的振動特性。
1基本方程
兩端簡支局部浸液板模型見圖1。板以速度v沿軸向運動,且在兩端受軸向張力Nx作用。
圖1 兩端簡支局部浸液單向板模型 Fig.1 The simply supported rectangular unilateral plate partially immersed in fluid
板長為a、寬為b、厚為h,在空氣中部分長度為x1,彈性模量為E、泊松比μ、密度ρ,液體密度為ρf。在沿長、厚度方向確立的直角坐標系xoz中,氣動載荷f(x,w)、激振力F(t)均作用于x=l0處,并沿y向均勻分布。表達式為
(1)
式中:
(2)
基于軸向移動局部浸液單向板非線性彎曲振動方程[10],考慮非線性氣動載荷影響,板的彎曲振動方程為
(3)
單向板參數(shù)為:a=1.95 m,b=0.86 m,h=1 mm,E=2.07×1011N/m2,μ=0.3,ρ=7.85×103kg/m3,ρf=1.0×103kg/m3,Nx=2 kN,M1=7.85kg/m2,M2=303.495kg/m2,c1=20 N·s/m3,c2=58.4 N·s/m3,x1=1.45 m,激勵位置l0=1.1 m,單向板彎曲振動的前三階固有頻率分別為ω1=1.351 5×2π rad/s,ω2=4.187 7×2π rad/s,ω3=6.104 9×2π rad/s。
利用三振型展式
(4)
式中:Um(x)(m=1,2,3)為單向板彎曲振動振型函數(shù)。采用Galerkin法將式(3)進行離散化,整理得模態(tài)坐標下非線性方程組為
(5)
式中:si(i=1,2…48),fi(i=1,2,3)為積分系數(shù)。
2近似解析解
(6)
(7)
令τ=ωt,ω=ω0(1+ελ),ω0為系統(tǒng)某階固有頻率,λ為微小量。引入變量ai,φi(i=1,2,3)并做變化為
(8)
式中:φi=kiτ+θi(i=1,2,3);ai,φi(i=1,2,3)分別為振幅及初相角,均為時間τ的函數(shù)。
將1/(1+ελ)展成冪級數(shù),取ε一次近似,并將式(8)代入式(7)用平均法處理,得平均化方程組為
(9)
式中:di,ei,mi,pi,qi,ri,ni(i=1,2,3);dj,pj,qj,rj,nj(j=2,3,1);dk,pk,rk,nk(k=3,1,2)為平均化積分系數(shù)。
求式(9)的定常解,由于阻尼不為零,故ki=1時aj=0,ak=0。式(9)可化簡為
(10)
3近似解析結(jié)果分析
由式(10)獲得系統(tǒng)在平均化平面的幅頻特性曲線見圖2~圖6。其中圖2為用四階Runge-Kutta法求得系統(tǒng)的數(shù)值解,分別將兩種方法計算結(jié)果由式(4)及平均法逆過程轉(zhuǎn)換到物理坐標下。圖3~圖6分別考察氣動載荷、激振力、軸向速度及阻尼參數(shù)對系統(tǒng)振動特性影響。分析發(fā)現(xiàn),激振力、軸向速度、阻尼僅影響系統(tǒng)共振區(qū)域,且激振力越小軸向速度越大,阻尼越大,系統(tǒng)共振區(qū)域越小;而氣動載荷不僅影響系統(tǒng)的共振區(qū)亦改變共振頻率,且隨氣動載荷增加共振頻率逐漸增大,共振區(qū)逐漸減?。惠^系統(tǒng)第一、二階共振,氣動載荷對第三階共振影響更顯著。
圖2 幅頻特性曲線Fig.2Frequency-responsecurves圖3 不同氣動載荷的幅頻特性曲線Fig.3Frequency-responsecurvesfordifferentair-knifeforce圖4 不同激振力幅值的幅頻特性曲線Fig.4Frequency-responsecurvesfordifferentexcitationamplitudes
圖5 不同軸向速度的幅頻特性曲線 Fig.5 Frequency-response curves for different axially speed
圖6 不同阻尼的幅頻特性曲線 Fig.6 Frequency-response curves for different damping
4穩(wěn)定性分析
為進一步揭示軸向移動局部浸液單向板周期解的變化過程,以系統(tǒng)第一階共振為例研究周期解的穩(wěn)定性。引入變量φi,ψi為
φi=aicosζi,ψi=aisinζi,(i=1,2,3)
(11)
利用式(11)將式(9)轉(zhuǎn)換到直角坐標系,得
(12)
式中:Si=ni/ωi;βi=-ελ+ri/ωi;Ri=di/ωi。
方程組(12)的雅可比矩陣為
(13)
其非零解的特征方程為
b0γ2+b1γ+b2=0
(14)
若b0,b1,b2均大于零,則方程(14)的特征根γ1,2具有負實部,據(jù)穩(wěn)定性定理知非零解穩(wěn)定。由此獲得系統(tǒng)第一階幅頻特性曲線不穩(wěn)定區(qū)域見圖7,其中陰影部分為不穩(wěn)定區(qū),分析結(jié)果與圖2數(shù)值解保持一致,系統(tǒng)在共振區(qū)存在三個周期解,兩個穩(wěn)定,一個不穩(wěn)定。
圖7 第一階幅頻特性曲線不穩(wěn)定區(qū)域 Fig.7 Thefirst frequency-response curve and instable region
5結(jié)論
通過研究軸向移動局部浸液單向板在非線性氣動載荷作用下的非線性動力學特性,結(jié)論如下:
(1)氣動載荷對系統(tǒng)的共振頻率、共振區(qū)域均產(chǎn)生影響,且隨氣動載荷增加系統(tǒng)共振頻率逐漸增大,共振區(qū)域有減小趨勢;氣動載荷對系統(tǒng)第三階共振影響更顯著。
(2)激振力幅值減小、軸向速度增加或阻尼增大,
均會使軸向移動局部浸液單向板系統(tǒng)共振區(qū)域減小。
參考文獻
[1]Fu Y, Price W G. Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid[J]. Journal of Sound and Vibration, 1987,118:495-513.
[2]Robinson N J,Palmer S C. A modal analysis of a rectangular plate floating on an incompressible liquid[J]. Journal of Sound and Vibration,1990,142:453-460.
[3]Jeong K H, Lee G M, Kim T W. Free vibration analysis of a circular plate partially in contact with a liquid[J]. Journal of Sound and Vibration,2009,324:194-208.
[4]Lamb H. On the vibrations of an elastic plate in contact with water[J]. Proceedings of the Royal Society of London, Series A, 1921,98:205-216.
[6]Kerboua Y,Lakis A A, Thomas M,et al. Vibration analysis of rectangular plates coupled with fluid[J]. Applied Mathematical Modelling,2008,32:2570-2586.
[7]Tubaldi E,Amabili M. Vibrations and stability of a periodically supported rectangular plate immersed in axial flow[J]. Journal of Fluids and Structures,2013,38:391-407.
[8]Banichuk N, Jeronen J, Neittaanm?ki P, et al. On the instability of an axially moving elastic plate[J]. International Journal of Solids and Structures,2010,47:91-99.
[9]劉金堂,楊曉東,張宇飛. 軸向運動大撓度板的非線性動力學行為[J].工程力學,2011,28(10):58-64.
LIU Jin-tang,YANG Xiao-dong,ZHANG Yu-fei. Nonlinear dynamical behaviors of axially moving large deflection plates[J]. Engineering Mechanics,2011,28(10):58-64.
[10]李紅影,郭星輝,王延慶,等.軸向移動局部浸液單向板的1∶3內(nèi)共振分析[J].力學學報,2012,44(3):643-647.
LI Hong-ying,GUO Xing-hui,WANG Yan-qing, et al. Analysis of 1∶3 internal resonances for unilateral plates partially immersed in fluid and moving in axial direction[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(3):643-647.
第一作者李正良男,教授,1963年生