基于復(fù)合前饋補(bǔ)償?shù)幕旌洗艖腋MG轉(zhuǎn)子主動(dòng)振動(dòng)控制
崔培玲1, 2,蓋玉歡1, 2,李海濤1, 2
(1. 北京航空航天大學(xué)儀器科學(xué)與光電工程學(xué)院,北京100191;2.北京航空航天大學(xué)慣性技術(shù)國(guó)家級(jí)重點(diǎn)實(shí)驗(yàn)室,北京100191)
摘要:為實(shí)現(xiàn)混合磁懸浮控制力矩陀螺轉(zhuǎn)子高速旋轉(zhuǎn)時(shí)產(chǎn)生與轉(zhuǎn)速同頻振動(dòng)的主動(dòng)控制,分析被動(dòng)磁軸承徑向平動(dòng)自由度耦合磁力隨轉(zhuǎn)子徑向扭轉(zhuǎn)角的變化規(guī)律,提出基于復(fù)合前饋補(bǔ)償?shù)幕旌洗艖腋∞D(zhuǎn)子主動(dòng)振動(dòng)控制方法;在同頻位移剛度力超前前饋補(bǔ)償中考慮被動(dòng)磁軸承徑向耦合磁力影響,并在兩徑向通道之間補(bǔ)償同頻耦合電流剛度力。仿真結(jié)果表明,該方法可使同頻軸承力減小至未補(bǔ)償前的9.3%,從而驗(yàn)證該方法的有效性。
關(guān)鍵詞:混合磁懸浮轉(zhuǎn)子;耦合磁力;主動(dòng)振動(dòng)控制;復(fù)合前饋補(bǔ)償
中圖分類號(hào):V448.22文獻(xiàn)標(biāo)志碼:A
基金項(xiàng)目:國(guó)家自然科學(xué)基金面上項(xiàng)目(51278036);教育部高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(B13002)
收稿日期:2014-09-12修改稿收到日期:2014-11-19
Active vibration control of an active-passive hybrid magnetically suspended rotor based on composite feedforward compensation method
CUIPei-ling1,2,GEYu-huan1,2,LIHai-tao1,2(1. School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China;2. Science and Technology on Inertial Laboratory, Beijing 100191, China)
Abstract:When an active-passive hybrid magnetically suspended Control Moment Gyro (CMG) rotor rotates, synchronous vibrations will be caused. To achieve its active control, the coupling characteristics along with the change of the radial deflection angles between passive and active bearings were analyzed. On this basis, a composite feedforward compensation method for active vibration control of active-passive hybrid magnetically suspended rotor was proposed. The impact of coupling magnetic forces between active and passive bearings was taken into account in the process of lead feedforward compensation for displacement stiffness forces. And the coupling current stiffness forces were compensated between the two radial passages. The simulation results show that, the proposed method can reduce the synchronous bearing forces to 9.3% of those without compensating the couplings.
Key words:active-passive hybrid magnetically suspended rotor; coupling magnetic forces; active vibration control; composite feedforward compensation
磁懸浮控制力矩陀螺(Control Moment Gyro, CMG)轉(zhuǎn)子采用磁懸浮軸承支承,具有無摩擦、無需潤(rùn)滑及主動(dòng)可控等特點(diǎn),是空間站、衛(wèi)星等實(shí)現(xiàn)姿態(tài)控制的關(guān)鍵執(zhí)行機(jī)構(gòu)[1-2]。
據(jù)磁懸浮CMG主動(dòng)可控自由度個(gè)數(shù),可分為混合磁懸浮CMG及全主動(dòng)磁懸浮CMG。混合磁懸浮CMG結(jié)構(gòu)緊湊、功耗低,較全主動(dòng)磁懸浮CMG更具優(yōu)勢(shì)。本文研究對(duì)象為兩徑向平動(dòng)自由度由主動(dòng)磁軸承控制、扭轉(zhuǎn)及軸向平動(dòng)自由度由被動(dòng)磁軸承控制的混合磁懸浮CMG。
磁懸浮CMG轉(zhuǎn)子動(dòng)平衡[3-5]后因存在裝配誤差及殘余不平衡質(zhì)量等在高速旋轉(zhuǎn)中會(huì)產(chǎn)生不平衡離心力,使轉(zhuǎn)子出現(xiàn)與轉(zhuǎn)速同頻的振動(dòng),并由基座傳遞給航天器,影響航天器姿態(tài)控制性能,故須進(jìn)行主動(dòng)振動(dòng)控制。對(duì)磁懸浮轉(zhuǎn)子主動(dòng)振動(dòng)控制,Herzog等[6]通過廣義陷波器對(duì)位移信號(hào)進(jìn)行陷波;Shi等[7]用最小均方差(Limit Mean Square,LMS)算法對(duì)位移信號(hào)進(jìn)行陷波;此外還有迭代搜索法[8]、模型參考自適應(yīng)法[9]及基于不平衡量識(shí)別的自動(dòng)平衡法[10]。而諸多方法僅消除同頻電流剛度力,忽略位移剛度力中的同頻量。文獻(xiàn)[11-12]在消除同頻電流剛度力基礎(chǔ)上,雖通過前饋回路補(bǔ)償同頻位移剛度力,但未考慮功率放大環(huán)節(jié)影響。文獻(xiàn)[13]在消除同頻電流剛度力、補(bǔ)償同頻位移剛度力基礎(chǔ)上,前饋環(huán)節(jié)中加入功率放大環(huán)節(jié)的逆模型,可解決因功率放大環(huán)節(jié)相位滯后、幅值衰減導(dǎo)致的同頻位移剛度力補(bǔ)償不完全問題。對(duì)混合磁懸浮CMG主動(dòng)振動(dòng)控制而言,因轉(zhuǎn)子與磁軸承間隙較全主動(dòng)磁懸浮CMG大,且存在全主動(dòng)磁懸浮CMG轉(zhuǎn)子不曾面對(duì)的各自由度間耦合問題,故已有方法不適用。因此,進(jìn)行混合磁懸浮CMG轉(zhuǎn)子的主動(dòng)振動(dòng)控制研究具有重要意義。
本文通過分析混合磁懸浮CMG轉(zhuǎn)子系統(tǒng)結(jié)構(gòu),建立含不平衡量的主動(dòng)自由度動(dòng)力學(xué)模型,認(rèn)為該轉(zhuǎn)子存在不可忽略的主動(dòng)通道耦合電流剛度力與被動(dòng)磁軸承耦合磁力問題,并分析主動(dòng)通道被動(dòng)耦合磁力的非線性特性。在此基礎(chǔ)上提出復(fù)合前饋補(bǔ)償方法,能減小轉(zhuǎn)子不平衡振動(dòng),使轉(zhuǎn)子近似繞慣性軸旋轉(zhuǎn)。
1混合磁懸浮CMG轉(zhuǎn)子動(dòng)力學(xué)建模
混合磁懸浮CMG轉(zhuǎn)子結(jié)構(gòu)示意圖見圖1。采用徑向永磁偏置、軸向被動(dòng)穩(wěn)定的混合磁懸浮結(jié)構(gòu)形式。其中被動(dòng)磁軸承內(nèi)外環(huán)分別安裝于定、轉(zhuǎn)子上,均為永磁環(huán),無源穩(wěn)定懸浮轉(zhuǎn)子的軸向平動(dòng)及徑向扭轉(zhuǎn)自由度。而轉(zhuǎn)子徑向平動(dòng)自由度通過徑向磁軸承主動(dòng)控制實(shí)現(xiàn)懸浮,徑向磁軸承采用永磁偏置混合磁軸承。設(shè)轉(zhuǎn)子質(zhì)心中心平面為Ⅰ,徑向磁軸承定子中心線與面Ⅰ交于點(diǎn)N。轉(zhuǎn)子幾何軸、慣性軸分別交面Ⅰ于O、C兩點(diǎn)。在Ⅰ內(nèi),以N為原點(diǎn)建立慣性坐標(biāo)系NXY,以O(shè)為原點(diǎn)建立按轉(zhuǎn)子自轉(zhuǎn)角速度Ω轉(zhuǎn)動(dòng)的旋轉(zhuǎn)坐標(biāo)系Oεη。
圖1 混合磁懸浮CMG轉(zhuǎn)子軸向截面示意圖 Fig.1 The axial sectional schematic of active-passive hybrid magnetically suspended rotor system
設(shè)OC長(zhǎng)度為l,OC與Oε坐標(biāo)軸夾角為θ,O、C在坐標(biāo)系NXY中的坐標(biāo)分別為(x(t),y(t))、(X(t),Y(t)),有
(1)
式中:
(2)
令Fprx,F(xiàn)pry分別表示被動(dòng)磁軸承在X、Y通道耦合磁力;Kprx,Kpry分別表示被動(dòng)磁軸承在X、Y通道的位移剛度,有[14]
Fprx=Kprxx,Fpry=Kpryy
(3)
式中:Kprx,Kpry為位移剛度,隨轉(zhuǎn)子徑向扭轉(zhuǎn)角不同而變化。
混合磁懸浮CMG轉(zhuǎn)子與主動(dòng)磁軸承間隙較大且主動(dòng)磁軸承存在永磁偏置,在徑向兩平動(dòng)自由度間的耦合電流剛度力不可忽略。設(shè)X、Y通道主動(dòng)磁軸承力分別為fx、fy,通過磁路分析法,忽略相較小的控制電流二次項(xiàng),得主動(dòng)磁軸承電磁力非線性表達(dá)式[15]為
(4)
式中:Kx,Kxix分別為主動(dòng)磁軸承在X通道的位移、電流剛度;Ky,Kyiy分別為Y通道位移、電流剛度;Kxiy,Kyix分別為主動(dòng)磁軸承Y通道耦合到X通道及X通道耦合到Y(jié)通道的電流剛度;ix,iy分別為由位移x,y引起的磁軸承電流。
用Fx,F(xiàn)y表示混合磁軸承產(chǎn)生的X、Y通道總磁力,即
Fx=fx+Fprx,Fy=fy+Fpry
(5)
由式(1)、(3)、(4)、(5)得
(6)
設(shè)轉(zhuǎn)子質(zhì)量為m,將混合磁懸浮CMG轉(zhuǎn)子含不平衡量的徑向平動(dòng)自由度動(dòng)力學(xué)方程寫為
(7)
由式(7)可知,兩主動(dòng)通道的位移、電流剛度力及被動(dòng)磁軸承在主動(dòng)通道上的耦合磁力均含轉(zhuǎn)速同頻成分。去除該成分,即可消除轉(zhuǎn)子的不平衡振動(dòng)。
2被動(dòng)磁軸承在主動(dòng)通道的耦合磁力分析
本文采用磁荷積分法[16]進(jìn)行被動(dòng)磁軸承在主動(dòng)通道的耦合磁力分析。被動(dòng)磁軸承兩磁環(huán)作用力示意圖見圖2。其中f1,f2為磁環(huán)兩上、下表面間吸力;f3,f4為磁環(huán)上下表面間斥力。當(dāng)兩磁環(huán)無相對(duì)位移時(shí)f1=f2,f3=f4。兩磁環(huán)有相對(duì)位移的幾何關(guān)系見圖3。以內(nèi)環(huán)坐標(biāo)系為參考坐標(biāo)系,外磁環(huán)平動(dòng)位移為r0;半徑為r2;內(nèi)磁環(huán)半徑為r1;磁環(huán)兩上表面(或兩下表面)間距離為r;此距離在X軸分量為rx;r′,θ1,θ2,θ′為幾何關(guān)系變換中間變量,兩磁環(huán)內(nèi)外半徑分別為rin1,rout1,rin2,rout2。
圖2 被動(dòng)磁軸承兩磁環(huán)相互作用力示意圖 Fig.2 The schematic diagram of interaction forces of two passive magnetic rings
圖3 被動(dòng)磁軸承兩磁環(huán)幾何關(guān)系圖 Fig.3 The geometry diagram of two passive magnetic rings
利用圖3的三角關(guān)系,得積分中幾何參數(shù)為
ds1=r1dr1dθ1,ds2=r2dr2dθ2
(8)
(9)
2r1r2sinθ1sinθ2-2r0r1cosθ1
(10)
兩磁環(huán)上、下表面間距設(shè)為r″,有
(11)
式中:rz為磁環(huán)軸向高度。
以轉(zhuǎn)子繞X軸扭轉(zhuǎn)為例,扭轉(zhuǎn)角為α?xí)r可在幾何分析基礎(chǔ)上,通過坐標(biāo)變換矩陣將幾何變量長(zhǎng)度轉(zhuǎn)換到旋轉(zhuǎn)后坐標(biāo)系中,計(jì)算獲得r″及r,即
被動(dòng)磁軸承的徑向力為兩磁環(huán)吸力之和減去斥力之和,則X通道被動(dòng)磁軸承力為
(12)
式中:σ1,σ2為內(nèi)外環(huán)表面磁荷密度;μ0為真空磁導(dǎo)率。
設(shè)α、β分別表示轉(zhuǎn)子繞X、Y軸轉(zhuǎn)角,所得被動(dòng)磁軸承在X通道的耦合磁力受α的影響結(jié)果見圖4(a),X通道被動(dòng)耦合磁力受β影響的結(jié)果見圖4(b)。由圖4(a)知,X通道被動(dòng)耦合磁力因受α影響較小,不予考慮;而X通道被動(dòng)耦合磁力受β影響較大(圖4(b))。被動(dòng)磁軸承X通道耦合位移剛度Kprx隨β的變化曲線見圖5。同樣可得Y通道耦合磁力受α的影響。通過分析,將式(3)改寫為
Fprx=Kprx(β)x,Fpry=Kpry(α)y
(13)
式中:Kprx(β),Kpry(α)分別為隨β,α變化的X、Y通道被動(dòng)磁軸承徑向位移剛度。
(a) 被動(dòng)磁軸承在X通道耦合磁力受α影響(b) 被動(dòng)磁軸承在X通道耦合磁力受β影響圖4 轉(zhuǎn)子扭轉(zhuǎn)對(duì)被動(dòng)磁軸承X通道耦合磁力的影響Fig.4TheeffectsofcouplingmagneticforceinXchannelbytherotordeflection圖5 被動(dòng)磁軸承X通道耦合位移剛度隨β變化曲線Fig.5ThecurveofKprxvarieswithβ
3基于復(fù)合前饋補(bǔ)償?shù)幕旌洗艖腋MG轉(zhuǎn)子振動(dòng)主動(dòng)控制
本文所提基于復(fù)合前饋補(bǔ)償?shù)幕旌洗艖腋MG轉(zhuǎn)子主動(dòng)振動(dòng)控制方法,采用通用陷波器實(shí)現(xiàn)位移同頻量陷波,消除同頻電流剛度力,在位移剛度力超前前饋補(bǔ)償中將被動(dòng)磁軸承在主動(dòng)通道的耦合磁力及兩主動(dòng)通道耦合電流剛度力同時(shí)前饋補(bǔ)償。此外,考慮轉(zhuǎn)子加工、裝配誤差,X、Y兩通道位移同頻量不會(huì)完全相同,因此同頻電流剛度力前饋補(bǔ)償在兩主動(dòng)通道間進(jìn)行。
以X通道為例,在未考慮X、Y兩通道耦合電流剛度力情況下,其主動(dòng)振動(dòng)控制框圖見圖6。其中閉環(huán)磁懸浮轉(zhuǎn)子系統(tǒng)由控制器Gc(s)、功率放大器Gw(s)、電磁鐵-轉(zhuǎn)子P(s)及位移傳感器Ks(s)組成,位移剛度力超前前饋補(bǔ)償控制器為Gcf(s),陷波器閉環(huán)傳遞函數(shù)為N(s)??刂破鬏斎胄盘?hào)及超前前饋補(bǔ)償輸出信號(hào)分別為ex(s)、qx(s),陷波器輸出cx(s)為位移同頻量,ε為陷波深度參數(shù)。
圖6 未考慮主動(dòng)磁軸承耦合電流剛度力的 X通道主動(dòng)振動(dòng)控制框圖 Fig.6 Block diagram of active vibration control for active-passive hybrid magnetically suspended rotor without compensating the current stiffness forces
將式(2)中X通道同頻量進(jìn)行拉氏變換,得
(14)
陷波器閉環(huán)傳遞函數(shù)為
(15)
以轉(zhuǎn)子同頻量Θx(s)為輸入、軸承力Fx(s)為輸出,閉環(huán)系統(tǒng)傳遞函數(shù)為
(16)
令轉(zhuǎn)子X通道同頻振動(dòng)力為0,則有
(17)
由式(15)~式(17)可得
(18)
由式(18)可知,采用陷波器并引入被動(dòng)磁軸承在主動(dòng)通道的耦合磁力超前前饋補(bǔ)償,可消除轉(zhuǎn)子X通道同頻電流剛度力,補(bǔ)償被動(dòng)磁軸承在主動(dòng)通道的耦合同頻位移剛度力;但Y通道耦合在X通道的電流剛度力Kxiyiy的同頻量并未考慮。
考慮主動(dòng)磁軸承耦合電流剛度力的混合磁懸浮CMG轉(zhuǎn)子兩主動(dòng)通道主動(dòng)振動(dòng)控制框圖見圖7。在消除本通道同頻電流剛度力、補(bǔ)償同頻位移剛度力基礎(chǔ)上,將X、Y通道陷波位移同頻量cx(s)、cy(s)分別前饋疊加輸入Y、X通道控制器輸出端,消除兩通道同頻耦合同頻電流剛度力。其中,ey(s)、qy(s)分別為Y向控制器輸入及前饋補(bǔ)償輸出。
圖7 考慮主動(dòng)磁軸承耦合電流剛度力的混合磁懸浮CMG轉(zhuǎn)子兩主動(dòng)通道主動(dòng)振動(dòng)控制框圖 Fig.7 Block diagram of active vibration control for active-passive hybrid magnetically suspended rotor with compensating the current stiffness forces
由式(15)知,當(dāng)s→jΩ時(shí)N(s)=0,有
ex(s)=0
(19)
因此有
cx(s)=-Ksx(s)=KsΘx(s)
(20)
X通道前饋補(bǔ)償輸出信號(hào)qx(s)為
(21)
X通道功放輸出電流為
ix=Gw(s){Gc(s)[-Ksx(s)-cx(s)]+qx(s)}
(22)
考慮X、Y兩通道耦合電流剛度力時(shí),由式(20)~式(22)及式(6)中X通道軸承力表達(dá)式,得
Fx(s)=[Kx+Kprx(β)][x(s)+Θx(s)]+
Kxix{-Gw(s)KsGc(s)[x(s)+Θx(s)]}+Kxiyiy
(23)
Y通道陷波器輸出為
cy(s)=-Ksy(s)=KsΘy(s)
(24)
(25)
Y通道控制電流為
iy=Gw(s){Gc(s)[-Ksy(s)-cy(s)]+qy(s)}
(26)
由式(23)~式(26),得
Fx(s)=[Kx+Kprx(β)][x(s)+Θx(s)]+
Kxix{-Gw(s)KsGc(s)[x(s)+Θx(s)]}+
Kxiy{-Gw(s)Gc(s)Ks[y(s)+Θy(s)]}+
(27)
Fx(s)=[Kx+Kprx(β)][x(s)+Θx(s)]+
Kxix{-Gw(s)KsGc(s)[x(s)+Θx(s)]}+
Kxiy{-Gw(s)Gc(s)Ks[y(s)+Θy(s)]}
(28)
由式(28)看出,通過同頻位移、電流剛度力復(fù)合前饋補(bǔ)償?shù)闹鲃?dòng)振動(dòng)控制方法,可消除軸承力的同頻成分。
4仿真結(jié)果及分析
由于本文控制方法中陷波器影響控制系統(tǒng)的低頻穩(wěn)定性,需進(jìn)行穩(wěn)定性分析,確定方法的頻率下限。磁懸浮轉(zhuǎn)子Ω的根軌跡見圖8。由圖8看出,根軌跡以虛軸為漸近線,并在65 Hz以上時(shí)回到左半平面,300 Hz時(shí)仍具有負(fù)實(shí)部,故本文控制方法適用于65 Hz以上。
用北京航空航天大學(xué)自研的雙框架混合磁懸浮CMG對(duì)主動(dòng)振動(dòng)控制方法進(jìn)行仿真研究,參數(shù)見表1。
表1 仿真參數(shù)
給定轉(zhuǎn)子轉(zhuǎn)頻200 Hz,扭轉(zhuǎn)角度從0.1°~0.5°變化,采用Matlab擬合的被動(dòng)磁軸承徑向位移剛度變化規(guī)律,三次擬合結(jié)果為
Kprx=105×(-1.41β3+
2.82β2+0.26β-2.48) (N/m)
(29)
擬合結(jié)果與圖5剛度曲線對(duì)比見圖9。對(duì)三種情況下軸承力進(jìn)行仿真,結(jié)果見圖10。由圖10看出,第一種情況,在消除本通道同頻電流剛度力并對(duì)同頻位移剛度力超前前饋補(bǔ)償前提下,不對(duì)被動(dòng)磁軸承徑向位移剛度力補(bǔ)償時(shí),軸承力幅值為4.3 N。第二種,按扭轉(zhuǎn)角擬合的Kprx對(duì)被動(dòng)磁軸承徑向位移剛度力超前前饋補(bǔ)償后,同頻軸承力降為1 N。第三種,在前面補(bǔ)
圖8 Ω根軌跡Fig.8TheΩrootlocus圖9 被動(dòng)磁軸承在X通道耦合位移剛度三次擬合對(duì)比Fig.9ThecomparisonchartoffittingKprxandsimulationKprx圖10 混合磁懸浮轉(zhuǎn)子同頻軸承力仿真Fig.10Thesimulationresultsofproposedmethod
償基礎(chǔ)上對(duì)X、Y兩通道主動(dòng)磁軸承耦合電流剛度力補(bǔ)償,軸承力僅0.4 N,減小為未補(bǔ)償耦合時(shí)軸承力的9.3%。仿真結(jié)果表明,按復(fù)合前饋方法對(duì)混合磁懸浮CMG轉(zhuǎn)子同頻振動(dòng)力進(jìn)行消除,可實(shí)現(xiàn)磁懸浮轉(zhuǎn)子近似繞慣性軸旋轉(zhuǎn)。
5結(jié)論
針對(duì)混合磁懸浮CMG轉(zhuǎn)子的特點(diǎn),分析被動(dòng)磁軸承在徑向主動(dòng)通道的耦合磁力,提出復(fù)合前饋補(bǔ)償方法對(duì)混合磁懸浮CMG轉(zhuǎn)子的主動(dòng)振動(dòng)進(jìn)行控制,在消除主動(dòng)通道同頻電流剛度力、補(bǔ)償同頻位移剛度力基礎(chǔ)上,對(duì)被動(dòng)磁軸承在徑向主動(dòng)通道耦合的同頻位移剛度力超前前饋補(bǔ)償及兩主動(dòng)通道之間耦合的同頻電流剛度力前饋補(bǔ)償,能實(shí)現(xiàn)轉(zhuǎn)子近似繞慣性軸旋轉(zhuǎn)。該方法簡(jiǎn)單,易于實(shí)現(xiàn),被動(dòng)磁軸承徑向位移剛度對(duì)轉(zhuǎn)子扭轉(zhuǎn)角位移變化規(guī)律需離線測(cè)試獲得。
參考文獻(xiàn)
[1]肖鵬飛,謝振字,徐欣,等. 傳感器冗余的磁懸浮軸承轉(zhuǎn)子系統(tǒng)研究[J]. 振動(dòng)與沖擊, 2012, 31(14):143-156.
XIAO Peng-fei, XIE Zhen-yu, XU Xin, et al. Active magnetic bearing rotor system with redundant sensors [J].Journal ofVibration and Shock, 2012, 31(14):143-156.
[2]龍亞文,謝振宇,徐欣. 磁懸浮軸承H∞魯棒控制策略研究[J].振動(dòng)與沖擊, 2013, 32(23):115-120.
LONG Ya-wen, XIE Zhen-yu, XU Xin. H∞r(nóng)obust control strategy for an active magnetic bearing[J]. Journal of Vibration and Shock, 2013, 32(23):115-120.
[3]喬曉利,祝長(zhǎng)生. 基于內(nèi)置力執(zhí)行器的砂輪不平衡振動(dòng)主動(dòng)控制[J]. 振動(dòng)與沖擊, 2012, 31(24):125-130.
QIAO Xiao-li, ZHU Chang-sheng. A built-in force actuator for unbalanced vibration active control of a grinding wheel [J]. Journal ofVibration and Shock, 2012, 31(24):125-130.
[4]鄭龍席,高曉果,李曉豐. 某微型渦噴發(fā)動(dòng)機(jī)現(xiàn)場(chǎng)瞬態(tài)動(dòng)平衡技術(shù)[J]. 振動(dòng)、測(cè)試與診斷, 2008, 28(3):282-285.
ZHENG Long-xi, GAO Xiao-guo, LI Xiao-feng. Transient field balancing technique for a micro turbo-jet engine[J].Journal of Vibration, Measurement & Diagnosis,2008,28(3):282-285.
[5]韓輔君,房建成. 磁懸浮飛輪轉(zhuǎn)子系統(tǒng)的現(xiàn)場(chǎng)動(dòng)平衡方法[J]. 航空學(xué)報(bào), 2010, 31(1):184-190.
HAN Fu-jun, FANG Jian-cheng. Field balancing method for rotor system of a magnetic suspending flywheel [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 184-190.
[6]Herzog R, Bühler P, Gahler C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 580-586.
[7]Shi J, Zmood R, Qin L J. The indirect method for adaptive feedforward vibration control of magnetic bearing systems[C]. Proceedings of the Eighth International Symposium on Magnetic Bearings, Mito, 2002: 223-228.
[8]Markert R, Skricka N, Zhang X T. Unbalance compensation on flexible rotors by magnetic bearings using transfer functions[C]. Proceedings of the Eighth International Symposium on Magnetic Bearings,Mito, 2002: 417-442.
[9]Matras A L, Flowers G T, Fuentes R, et al. Suppression of persistent rotor vibrations using adaptive techniques[J].Journal of Vibration and Acoustics (ASME),2006,128(6):682-689.
[10]蔣科堅(jiān),祝長(zhǎng)生. 基于不平衡識(shí)別的主動(dòng)電磁軸承轉(zhuǎn)子系統(tǒng)自動(dòng)平衡[J]. 振動(dòng)工程學(xué)報(bào), 2009, 22(6): 559-564.
JIANG Ke-jian, ZHU Chang-sheng. Auto balance of active magnetic bearings for rotor support system by means of unbalance identification[J]. Journal of Vibration Engineering, 2009, 22(6): 559-564.
[11]Tang J Q, Liu B, Fang J C, et al. Suppression of vibration caused by residual unbalance of rotor for magnetically suspended flywheel[J]. Journal of Vibration and Control, 2013, 19(13): 1963-1979.
[12]劉彬,房建成,劉剛,等. 磁懸浮飛輪不平衡振動(dòng)控制方法與試驗(yàn)研究[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(12): 188-194.
LIU Bin, FANG Jian-cheng, LIU Gang, et al. Unbalance vibration control and experiment research of magnetically suspended flywheels[J]. Chinese Journal of Mechanical Engineering, 2010, 46(12): 188-194.
[13]魏彤,向岷. 磁懸浮高速轉(zhuǎn)子基于位移剛度力超前前饋補(bǔ)償?shù)母呔茸詣?dòng)平衡方法[J].機(jī)械工程學(xué)報(bào), 2012,48(16): 184-191.
WEI Tong, XIANG Min. Autobalancing for magnetically suspended high-speed rotors based on lead feedforward compensation for displacement stiffness force [J]. Chinese Journal of Mechanical Engineering, 2012, 48(16):184-191.
[14]文通. 主被動(dòng)磁懸浮反作用飛輪永磁偏置混合磁軸承控制方法研究[D]. 北京:北京航空航天大學(xué), 2012.
[15]Wen T, Fang J C. The exact feedback linearization control for the 2-DOF flywheel suspended by the passive and active hybrid magnetic bearings[C]. The International Conference on Electronics, Communications and Control, Ningbo: [P. R.], 2011: 2922-2926.
[16]Azukizawa T, Yamamoto S, Matsuo N. Feasibility study of a passive magnetic bearing using the ring shaped permanent magnets[J]. IEEE Transactions on Magnetics, 2008, 44(11):4277-4280.
第一作者邢佶慧女,博士,副教授,1975年生
通信作者楊慶山男,教授,長(zhǎng)江學(xué)者,1968年生