張佳興 高殿奎
摘 要:針對合透平膨脹機和離心式壓縮機的調(diào)節(jié)特點和連體膨脹壓縮機的結(jié)構(gòu),將PFC和PID控制相結(jié)合,提出了基于預測函數(shù)控制(PFC)原理和傳統(tǒng)控制相結(jié)合的串級控制算法。轉(zhuǎn)子、蒸汽容積,控制閥使用傳統(tǒng)控制使對象穩(wěn)定且迅速消除內(nèi)部擾動,轉(zhuǎn)子、蒸汽容積,控制閥和排氣蝸殼環(huán)節(jié)構(gòu)成預測函數(shù)的廣義對象。該算法計算量少,能在實際工程中方便實現(xiàn)。計算機實驗表明與傳統(tǒng)控制相結(jié)合的串級控制算法的動態(tài)品質(zhì)明顯優(yōu)于傳統(tǒng)PID控制策略。
關(guān)鍵詞:連體膨脹壓縮機;預測函數(shù)控制;串級控制
中圖分類號:TB
文獻標識碼:A
文章編號:1672-3198(2015)25-0289-02
預測函數(shù)控具有計算方法簡單,計算量小,適用于快速系統(tǒng),控制性能優(yōu)良。PFC在石油、化工、軍事等領(lǐng)域得到了的應(yīng)用,但沒有在壓縮機自動控制系統(tǒng)中的應(yīng)用報導。本文針對透平膨脹機和離心式壓縮機的特點,將轉(zhuǎn)速作為副調(diào)節(jié)器的被控量, 副回路采用PID控制,而主回路采用PFC控制,設(shè)計了一套PFC和傳統(tǒng)PID相結(jié)合的串級控制系統(tǒng)。實驗結(jié)果表明,采用PFC-PID串級控制策略在連體膨脹機的控制中有良好的動態(tài)品質(zhì),明顯優(yōu)于采用傳統(tǒng)控制策略的系統(tǒng)。
1 連體膨脹壓縮機的工藝流程
整個系統(tǒng)的工藝流程如圖1所示。
圖1 連體膨脹壓縮機的工藝流程圖
本文透平膨脹機的調(diào)節(jié)采用機前氣動薄膜調(diào)節(jié)閥調(diào)節(jié)方式。其預估性能曲線如圖2所示。壓縮機根據(jù)機器轉(zhuǎn)速變化進行調(diào)節(jié), 使機器出口蒸汽壓力達到設(shè)定值。其預估能曲線如圖3所示。
圖2 膨脹機預估性能曲線
圖3 壓縮機預估性能曲線
當壓縮機出口蒸汽壓力小于設(shè)定值時,從圖3我們可以看到,為了使壓力達到設(shè)定值,得增加機器的轉(zhuǎn)速。從圖2我們可以看到,隨著壓縮機出口壓力的降低,膨脹比變大。如果壓縮機出口壓力不再變化, 膨脹比隨著轉(zhuǎn)速的提高進一步增大, 與此同時,因為轉(zhuǎn)速和出口壓力同時增高, 使得膨脹比變小, 從而達到一個動態(tài)平衡。
當壓縮機出口蒸汽壓力高于設(shè)定值時, 從圖3我們可以看到,為了使壓力達到設(shè)定值,需降低機器的轉(zhuǎn)速。 從圖2我們可以看到, 膨脹比隨著壓縮機出口壓力的升高而減小。如果壓力不再變化, 膨脹比隨著轉(zhuǎn)速的提高進一步變小, 與此同時,因為轉(zhuǎn)速和出口壓力同時減小, 使得膨脹比增大, 從而形成一個動態(tài)平衡。
2 連體膨脹壓縮機系統(tǒng)數(shù)學模型
2.1 氣動薄膜調(diào)節(jié)閥的動態(tài)模型
氣動薄膜調(diào)節(jié)閥的動態(tài)特性可以用一個一階慣性加純滯后環(huán)節(jié)來表示::
GV1(s)=KVTVs+1e-τvs(1)
其中: KV為放大系數(shù); TV 為執(zhí)行機構(gòu)的時間數(shù), τv為時滯。
2.2 連體膨脹壓縮機的動態(tài)模型
(1)蒸汽容積方程。
蒸汽容積的動態(tài)特性可以用一個一階慣性環(huán)節(jié)來表示:
Grj(s)=χp(s)χsz1(s)=1T0s+1
(2)
其中:χsz1為閥桿位移;χp為容積壓力;T0為時間常數(shù)。
(2) 轉(zhuǎn)子方程。
轉(zhuǎn)子的動態(tài)特性可以用一個一階慣性環(huán)節(jié)來表示:
Gz(s)=χn(s)χp(s)=1Tas+γ
(3)
其中: Ta 為轉(zhuǎn)子的飛升時間常數(shù);γ為自平衡系數(shù);χp為蒸汽壓力;χn為轉(zhuǎn)子轉(zhuǎn)速。
(3) 排氣蝸殼 。
排氣蝸殼的動態(tài)特性可以用一個一階慣性環(huán)節(jié)來表示:
Gp(s)=χp(s)χn(s)=knTns+1
(4)
其中:轉(zhuǎn)速χn為轉(zhuǎn)速;χp為壓力;kn為放大系數(shù);Tn為時間常數(shù)。
3 預測函數(shù)控制
3.1 預測模型
作用可表示為若干已知基函數(shù)fn(n=1,…,N)的線性組合:
u(k+i)=∑Nn=1μnfn(i),i=0,1,…,H-1
(5)
其中fn(i)為基函數(shù)在t=iTs時的值,Ts為采樣周期,H為優(yōu)化時域的長度。μn為線性組合系數(shù)。
3.2 反饋校正
預測模型的輸出和實際對象的輸出之間有一定的偏差,叫預測誤差,預測誤差起到對模型預測值進行校正的作用,模型預測值的預測誤差e(k+i)為:
e(k+i)=y(k)-ym(k)
(6)
其中,ym(k)是k時刻的模型輸出。
在此基礎(chǔ)上,可得到誤差補償后的預測輸出:
yH(k+i)=ym(k+i)+e(k+i)
(7)
3.3 滾動優(yōu)化
3.3.1 參考軌跡
使用從現(xiàn)在時刻實際值的一階指數(shù)形式作為預測函數(shù)控制的參考軌跡:
yr(k+i)=c(k+i)-βi(c(k)-y(k))
(8)
其中,yr(k+i)為參考軌跡,c為設(shè)定值,β=exp(-Ts/Tr),Ts為采樣周期,Tr為參考軌跡的時間常數(shù)。
3.3.2 性能指標
優(yōu)化的目的是為了使優(yōu)化時域內(nèi)的預測輸出盡可能接近參考軌跡確定的期望值yr(k+i),(i=0,…,H-1)要得到一組系數(shù)μ1,μ2,…,μN,。取二次型性能指標為:
JH=min∑H2i=H1[yr(k+i)-yH(k+i)]2
(9)
3.4 簡化預測函數(shù)控制算法
對于一階對象,可以解出的PFC顯式解,使算法實現(xiàn)更易。通常把高階漸近穩(wěn)定對象擬合為一階加純滯后對象,或者在高階對象上加一個傳統(tǒng)的PID控制,調(diào)節(jié)傳統(tǒng)PID控制的參數(shù)使其成為一階加純滯后的廣義對象。設(shè)對象傳遞函數(shù)為
Gm(s)=kmTms+1e-τds
(10)
式中:Tm,km,τd為時間、模型的穩(wěn)態(tài)增益、常數(shù)和純滯后時間。零階保持器離散化后,得預測模型的差分方程:
ym(k+1)=amym(k)+km(1-am)u(k-τd)
(11)
對于一階環(huán)節(jié),使用一個階躍函數(shù)作為基函數(shù)可基本滿足控制要求,可得:
u(k+i)=u(k), i=1,2,…,H-1
根據(jù)當前信息和將要加入的控制量導出未來預測時域內(nèi)預測輸出值。為先考慮τd=0即無滯后情況下,在加一個零階保持器離散化后,并利用數(shù)學歸納法可以得到:
ym(k+H)=aHmym(k)+km(1-aHm)u(k)
(12)
其中,am=e(-TS/Tm)。aHmym(k)自由響應(yīng)yl(k),km(1-aHm)u(k-τd)為模型的受迫輸出yf(k)。
對于優(yōu)化目標函數(shù)式(9)可以取H1=H2=H并令
Ju(k)=0
結(jié)合以上公式和預測函數(shù)的優(yōu)化目標得到k時刻控制量為:
u(k)=c(k+H)-βHc(k)-y(k)(1-βH)km(1-αHm)+ym(k)km(13)
當τd≠0時,修正系統(tǒng)對象輸出PFC,使用τd=0的模型。
設(shè)D=τd/TS,如下所示:
ypav(k)=y(k)+ym(k)-ym(k-D) (14)
式中,ypav(k)為修正后的過程輸出值。這樣式(6)可以修正為
e(k+i)=ypav(k)-ym(k)
(15)
則PFC控制輸出變?yōu)椋簎(k)=c(k+H)-βHc(k)-ypav(k)(1-βH)Km(1-αHm)+ym(k)Km
(16)
4 連體膨脹壓縮機PFC-PID串級控的仿真研究
4.1 PFC-PID串級壓縮機控制系統(tǒng)結(jié)構(gòu)
本文副回路采用PID控制,主回路采用PFC控制。PFC控制器根據(jù)出口壓力的變化給出PID控制器的設(shè)定值。PID控制器根據(jù)主控制器給出的設(shè)定值調(diào)節(jié)氣動薄膜調(diào)節(jié)閥。其控制系統(tǒng)方框圖如圖4所示。
圖4 壓縮機PFC-PID 串級控制系統(tǒng)
副回路包括PID控制器,氣動薄膜調(diào)節(jié)閥、蒸汽容積環(huán)節(jié),轉(zhuǎn)子環(huán)節(jié)等構(gòu)成。主回路由PFC控制器,副回路輸出和排氣蝸殼構(gòu)成。
4.2 仿真結(jié)果
當Kv=3.75;TV=4.375s;τv=2.5s ;To=0.25s ;Ta=8s;γ=1 ;Kn=1.37;Tn=12s,PID控制器參數(shù)為KP=0.24,KI=0.02,KD=0。在本控制系統(tǒng)中,對壓縮膨脹機作為廣義對象,進行擬合得到相應(yīng)的一階加純滯后模型為
Gm(s)=1.7316s+1e-7s
圖5給出了一階加純滯后模型與廣義受控對象的階躍響應(yīng)曲線,圖 5可以看出,一階加純滯后模型與廣義受控對象擬合精度比較高。
圖5 廣義受控對象的擬合
為對比預測函數(shù)控制策略相對于常規(guī)PID控制方法的優(yōu)越性,本文同時做了兩者的仿真研究。PFC
使用階躍函數(shù),采樣周期為TS=1,預測時域優(yōu)化長度為P=3,參考軌跡時間常數(shù)為Tr=1 。仿真結(jié)果見圖6。
圖6 連體膨脹壓縮機控制系統(tǒng)的仿真結(jié)果
5 結(jié)論
本文介紹了預測函數(shù)控制的算法及其在壓縮機控制系統(tǒng)中的應(yīng)用,并針對其典型的一階加純滯后系統(tǒng)模型進行計算機仿真研究.實驗結(jié)果表明,PFC-PID串級控制策略相對于傳統(tǒng)PID控制有更好的控制效果。
參考文獻
[1]諸靜.智能預測控制及其應(yīng)用[M].杭州:浙江大學出版社,2002,174-184.
[2]張泉靈,王樹青.基于ARMAX模型自適應(yīng)預測函數(shù)控制[J].信息與控制:2000, 29(5):431-436.
[3]王寅,榮岡,王樹青.基于T-S模糊模型的非線性預測控制策略[J].控制理論與應(yīng)用:2002, 19(4):599-603.
[4]秦玉堯, 張武平. 連體熱機-熱泵的結(jié)構(gòu)及工作原理[J].華東理工大學學報,2004,(8):407-410.
[5]計光華. 透平膨脹機[M]. 北京: 機械工業(yè)出版社,1988:161-170.
[6]王志清. 透平壓縮機的調(diào)節(jié)運行與振動[M].北京:機械工業(yè)出版社,1996:34-57.
[7]付靜娟. 透平驅(qū)動壓縮機組的控制[J].裝備應(yīng)用,2004,(5) : 35-37.
[8]向小強,王益群,孫旭光,等.連體膨脹壓縮機PID串級控制系統(tǒng)研究[J].機床與液壓:2008,36(6):115-118.
[9]王東風,韓璞,王國玉.非自衡系統(tǒng)和不穩(wěn)定系統(tǒng)預測函數(shù)控制[J].電機與控制學報,2003,7(3):235-238.
[10]王國玉,韓璞,王東風,等.PFC-PID串級控制在主汽溫控制系統(tǒng)中的應(yīng)用研究[J].中國電機工程學報,2002,22(12):50-55.