• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Finite Element Procedure for Analysis of Chemo-Mechanical Coupling Behavior of Hydrogels

    2016-01-03 06:01:23WeiWeiQingshengYang

    Wei Wei,Qingsheng Yang

    A Finite Element Procedure for Analysis of Chemo-Mechanical Coupling Behavior of Hydrogels

    Wei Wei1,2,Qingsheng Yang1,3

    Chemo-mechanical coupling behavior of materials is a transformation process between mechanical and chemical energy.In this paper,based on the coupled chemo-mechanical constitutive equations and governing equations during isothermal process,the equivalent integral forms of chemo-mechanical coupling governing equations and corresponding finite element procedure are obtained by using Hamilton’s principle.An isoparametric plane element for chemo-mechanical coupling is associated into ABAQUS finite element package through user element subroutine UEL.The numerical examples exhibit that the ionic concentration variation can cause mechanical deformation and mechanical action can produce redistribution ofionic concentration for hydrogels.It is proved that the present developed chemo-mechanical coupling finite element procedure can be utilized to model the coupling behavior of hydrogels effectively.

    Hydrogel;Chemo-mechanical coupling;Hamilton’s principle;Coupled finite element method.

    1 Introduction

    The hydrogel is a kind ofintelligent soft polymer materials generally composed of crosslinked polymer network,solvent and ions,with physical properties of swelling with water absorption,and dehydration shrinkage.Under the external field(such as heat,electricity,magnetism,chemistry,light,etc),the hydrogel can exchange energy and substance and produce a large mechanical response exhibiting obvious multi-field coupling characteristics, and that is the thermo-electro-chemo-mechanical coupling behavior.

    According to the responses under different external environmental stimulus,hydro-gels can be divided into temperature-sensitive,pH-sensitive,electrical-sensitive,bio-response and pressure-sensitive types,etc[Ullah,Othman,Javed,Ahmad,and Akil(2015)].Over the past decades,it has rapid development in fundamental and applied research for hydrogels.Due to such characteristic behaviors,many hydrogel-based networks have been designed and fabricated to meet the needs ofindustrial and medical fields etc.At present,the hydrogels have been used in wide fields,such as tissue engineering[Thankam and Muthu(2015);Nawrotek,Tylman,Rudnicka,Balcerzak,and Kaminski(2016)],biological and food Engineering[Gregorova,Saha,Kitano,and Saha(2015);Wu,Degner,and McClements(2014)],actuators and sensors[Rivero,Molina,Rivarola,and Barbero(2014);Ionov(2014)],drug delivery[Li,Fan,Ma,Zhu,Luo,Liu,and Chen(2014);Sagiri,Singh,Kulanthaivel,Banerjee,Basak,Bat-tachrya,and Pal(2015)],contact lenses[Maulvi,Soni,and Shah(2015);Filipecki,Sitarz,Kocela,Kotynia,Jelen,Filipecka,and Gaweda(2014)],packers in oilfields[Gu,Liu,Chai,Li,and Sun(2014);Tongwa and Bai(2014)],and wound dressings[Zheng,Xue,Wei,Li,Xiao,and Guan(2014);Gonzalez,Ludue?a,Ponce,and Alvarez(2014)].

    Due to the wide applications of hydrogels,it is an important practical significance to study their physical properties and multi-field coupling characteristics.The phenomenological continuum mechanics is an effective way to study the coupled problem.Grimshaw,Nussbaum,Grodzinsky,and Yarmush(1990)proposed an electrochemical coupling equation to describe the swelling of a polymer dielectric gel.De,Aluru,and Johnson(2002),De and Aluru(2004)employed electrochemo-mechanical model to develop equilibrium expansion and dynamic behavior of the pH-responsive hydrogel.Kang,Dai,Shen,and Chen(2008)established electro-chemo-mechanical coupling model and studied the dynamic behavior of the swelling or shrinkage for the pH-sensitive gel.Wallmersperger and co-workers presented a coupled electro-chemo-mechanical equation and finite element method for polyelectrolyte gels,and applied a fully coupled electro-chemo-mechanical model to analyze the effect of electrical and chemical stimulation on hydrogels,respectively[Wallmersperger,Kr?plin,and Gülch(2004);Wallmersperger and Ballhause(2008);Ballhause and Wallmersperger(2008)].Li and co-workers developed an electro-chemo-mechanical model with Poisson-Nernst-Planck(PNP)equations,and studied the influences of the ionic strength in surrounding solution on the distribution of the diffusive ions concentration and electric potential as well as the deformation for the pH-stimulus-responsive hydrogel[Li,Ng,Yew,and Lam(2005);Li,Ng,Yew,and Lam(2007);Li and Yew(2009)].Additionally,Li(2009)published a monograph on the fundamental theory modeling and numerical simulation of the smart hydrogels,and systematically documented the response behaviour of the smart hydrogels to various environmental stimuli.Yang and co-workers introduced the chemical effect into the free energy,to build thermo-electro-chemo-mechanical coupled constitutive equations for hydrogels.The coupled finite element program was presented to analyze chemo-mechanical coupling problems[Yang,Liu,and Meng(2009);Yang,Qin,Ma,Lu,and Cui(2010)].Yang,Ma,and Shang(2013)analyzed chemo-mechanical coupling behavior of hydrogel composite beams by using the general form of free energy density function for a neutral hydrogel.

    In recent years,many studies aimed to develop a finite element method for large deformation of hydrogels based on a nonlinear continuum theory.Hong,Zhao,Zhou,and Suo(2008);Hong,Liu,and Suo(2009)formulated a theory of the coupled mass transport and large deformation with the free-energy function and implemented this approach in ABAQUS to analyze examples of swelling-induced deformation,contact,and bifurcation in polymeric gels.Duda,Souza,and Fried(2010)presented a theory about a mechanical deformation and a migration of a chemical species by employing the principle of virtual power,to study the polymer network swelling with the influences of mechanical and chemical interactions.Marcombe,Cai,Hong,Zhao,Lapusta,and Suo(2010)developed a theory of constrained swelling for the pH-sensitive hydrogel and a network of polymers in equilibrium with an aqueous solution and mechanical forces.Zalachas,Cai,Suo,and Lapusta(2013)investigated the large and inhomogeneous deformation and creasing instability by using the developed nonlinear field theory and finite element method for pH-sensitive hydrogels.Lucantonio,Nardinocchi,and Teresi(2013)used the finite element software package COMSOL to perform several numerical simulations for transient swelling-induced large deformations in polymeric gels.Ding,Liu,Hu,Swaddiwudhipong,and Yang(2013)studied inhomogeneous deformation in the temperature-sensitive hydrogel with many meaningful numerical results using a user-supply subroutine in ABAQUS.Duan,Zhang,An,and Jiang(2013)and Toh,Liu,Ng and Hong(2013)used the built-in thermo-mechanically coupled finite elements to simulate the transient diffusion and swelling kinetics of polymeric gels by adopting an analogy between diffusion and heat transfer in solids in ABAQUS.Chester,Di Leo,and Anand(2015)summarized the theory in Chester and Anand(2011)for fluid diffusion and large deformations of non-ionic elastomeric gels.Several illustrative numerical simulations are applied to demonstrate the correctness of the numerical implementation described in detail with ABAQUS software.Bouklas,Landis,and Huang(2015)implemented a mixed finite element method in ABAQUS by introducing a finite bulk modulus in the nonlinear continuum theory proposed by Hong,Zhao,Zhou,and Suo(2008),with specific attention to the numerical stability issues associated with the Ladyzhenskaya–Babuska–Brezzi(LBB)condition for spatial discretization.

    In this paper,starting from the laws of thermodynamics,by establishing a phe-nomenological free energy density function and introducing the definition of chemical potential in classical physical chemistry,continuum mechanics approach is developed to derive chemo-mechanical coupled constitutive equations and governing equations during isothermal process.By employing Hamilton’s principle,the equivalent integral forms of chemo-mechanical governing equations and corresponding finite element equations are derived.To implement the finite element calculation,a user element subroutine UEL in ABAQUS package is developed and an isoparametric plane element for chemo-mechanical coupling behavior is programmed.Physical properties of hydrogels in chemo-mechanical coupling field are analyzed by means of typical numerical examples.

    2 Basic equations

    2.1 Governing equations of the chemo-mechanical coupling problem

    In this section,based on the laws of thermodynamics,the chemo-mechanical coupled constitutive equations and governing equations during isothermal process are summarized.

    It is assumed that the medium(volumeV,boundary Γ)is subjected to the chemical and mechanical stimuli simultaneously,and therefore there exists a mutual coupling effect between two fields.For example,the changes ofion concentration can induce the osmotic pressure during the mixed diffusion process with ions and mediums.The chemo-mechanical coupling problem needs to satisfy the general mass,momentum and energy conservation equations,and every physical field should comply with their governing equations and boundary conditions.

    The governing equation of mechanical field is

    The natural(stress)boundary condition and forced(displacement)boundary condition are

    The gradient equation of mechanical field is

    where σijis stress;εijis strain;fiis unit volume force;uiis displacement;ˉtiis the applied surface force on the boundary;ˉuiis specified displacement on the boundary;Γtis specified force boundary;and Γuis specified displacement boundary.

    In classical physical chemistry[Levine(2002)],the chemical potential is expressedwhereμ0is the chemical potential in the reference state;R?is the universal gas constant;Tis the reference temperature;c0is the ion concentration;andcis the increment of the ionic concentration.A partial derivative with respect to concentration yields?μ/?c=R?T/(c0+c).For a small increment of the concentration,we havec0+c≈c0.Thus,the Fick’s second law describing the non-steady diffusion process can be represented by

    where ξiis the diffusion flux ofions,and τ0=R?T/c0.The natural(chemical flux)boundary condition and forced(ion concentration)boundary conditions for chemical field are

    where Γξand Γcare the boundaries subjected to the ion fl ux and concentration,respectively;ξnis the given ion fl ux on the boundary Γξ;andcˉ is the given concentration increment on the boundary Γc.The gradient equation for chemical diffusion is given by

    where ?ijis the chemical diffusion coefficient ofions in medium.

    According to the law of thermodynamics,and omitting the electrostatic effect in the electrostatic field of the constituents,the differential form of the total internal energy density composed of the elastic energy,the chemical energy and thermal energy is formulated as Yang,Liu,and Meng(2009)

    whereTis temperature;Sis entropy;and α denotes the number ofion species.The classic form of Helmholtz free energy is defined by

    According to Eqs.(7)and(8),the differential form of Helmholtz free energy in the system in chemo-mechanical coupling field can be expressed as

    where three terms on the right side represent the incremental form of energy contribution in mechanical field,chemical field and temperature field,respectively.

    Considering an isothermal process,namely the temperature increment dT=0,the canonical equations in chemo-mechanical coupling can be obtained as follows

    Taking the small strain and the small concentration increment as the independent variables,respectively,the Helmholtz free energy during the isothermal process can be expanded by using Taylor’s series

    where ε0,c0are the strain and the concentration in the initial state,respectively.It is assumed that the material parameters can be defined as

    wherecijklis the stiffness coefficient under constant concentration;sis the chemical potential coefficient ofions under constant strain;andis the chemo-mechanical coupling coef ficient.

    According to Eqs.(10)–(12),and omitting the quadratic terms,a linear constitutive relation At the equilibrium state in coupled chemo-mechanical field can be given as

    It is noted that in classic physical chemistry,chemical potential and ionic concentration have logarithmic relations.However,the present linear constitutive equation is still reasonable when the concentration transformation is even small.The coupling coefficients in constitutive equations can be achieved through theoretical derivation and regular mechanical experiments[Qin and Yang(2008)].

    For the medium bathed in a solution,only one ofions plays a dominant role,Eqs.(13)and(14)can be simplified as

    Eqs.(15)and(16)are fully coupled equations in chemical and mechanical field,respectively.The hydrogel is essentially a porous media containing interstitial fluid.The deformation in porous media is controlled by complete stress corresponding to external loading and superposition value in pore-fluid pressure.The effective stress[Terzaghi,Peck,and Mesri(1996)]is

    Comparing the constitutive relation Eq.(15)with the effective stress Eq.(17),it is found thatpδij=Rijcis the pressure caused by ionic diffusion.The theory of thermodynamics[Flory and Rehner(1943a,b)]considered that the pressure causing swelling in hydrogels consists of three parts:mixing pressure in polymer and solution,elastic deformation pressure of the chains in polymer network,and osmotic pressurepioncaused by the concentration difference ofions inside and outside the colloid.This paper only considers the osmotic pressure caused by concentration difference ofions inside and outside the hydrogel derived from the Donnan osmotic pressure.The osmotic pressure caused by concentration difference is

    By using this equation,we can obtain the chemo-mechanical coupling coefficientRij=R?Tδij.

    A partial derivative with respect to concentration for Eq.(16)leads to chemical potential coefficients=R?T/(c0+c).If the concentration undergoes a very small increment,it can be approximately considered ass=R?T/c0.Thus the chemomechanical coupling constitutive equations during isothermal process can be written as

    where εmis the volume strain in the system.

    2.2 The hamilton’s principle and finite element procedure

    The Hamilton’s principle can be used to derive governing equations and natural boundary conditions for the fully chemo-mechanical coupled theory.The power generated by the kinetic energy density[Mindlin(1974)]in the system is

    Becauseui(t1)andui(t2)are known,there is δui(t1)= δui(t2)=0.Thus Eq.(22)becomes

    whereUis total potential energy in the system.The rate of potential energy can be read

    whereVis the volume in region;Γ is the surface in region;ψ is a generalized free energy density in the system,δ˙ψ=σijδ˙εij+˙μδc;andPcis the chemical diffusion power ofions,[Yang,Qin,Ma,Lu,and Cui(2010)].

    According to Hamilton’s principle,we have

    It is noted that δu˙i,δcare independent variables,and the governing equations and the natural boundary conditions can be obtained in the mechanical and chemical field,respectively.In other words,Eq.(29)is equivalent to the governing Eqs.(1)and(2)and the natural boundary conditions(4)and(5)completely.Eq.(29)is the weighted residual form of the natural boundary conditions and governing equations in two physical fields.This means that the present chemo-mechanical coupling theory is completely closed.

    The Eq.(27)can be written for the following form

    Therefore,it can be obtained that

    To produce the finite element equations,the displacement and concentration increment are interpolated by

    whereare the shape functions of displacement and concentration,respectively;andare the nodal displacement and concentration vectors,respectively.

    where superscriptTis the vector transpose.Substituting discrete forms of the displacement and concentration increment,we can get

    Whereis the elastic constant matrix;is the mechanical strain matrix;is the strain matrix of volume strain;is the strain matrix of concentration gradient;andis the coefficient matrix of chemical diffusion.The independence ofandyields

    Thus,the finite element equations of chemo-mechanical coupling can be get

    A linear difference method can be performed in the time domain.In?t=tn+1?tn,the linear interpolations are

    Applying the formulas ofue=θuen+1+(1?θ)uenandce=θcen+1+(1?θ)cenin which θ is the interpolation parameter,substitution of equations above into E-qs.(41)and(42)leads to

    When θ=1,the fully implicit method can be used to produce relatively smooth results,and not to result in shock phenomena[Smith and Griffths(2003)].It is concluded that

    3 The verification and application of the user element subroutine UEL

    The hydrogel is really a porous medium composed of the solid skeleton and porefluid.The structure of the applicable hydrogel is relatively complex,and nonuniform deformation behavior will be produced under the chemo-mechanical coupling.Numerical methods are widely used for solving coupled chemo-mechanical problems for hydrogels owing to great difficulties to obtain analytical solutions.

    To implement the finite element equations derived,the user element subroutine UEL is developed by using the software ABAQUS,and an isoparametric plane eight-node element for chemo-mechanical coupling is programmed.Here a few examples can be applied to verify the accuracy of the user element subroutine UEL programmed.

    Figure 1:Schematic of the model.

    3.1 Example 1

    As a first example,there is a 20×50(mm)2hydrogel plane in which BC boundary is constrained and AB boundary is contact with the solution as shown in Fig.1.

    The material parameters of the hydrogel are listed in Table 1[Loret,Simoes,and FMF(2005)].The initial concentration of the hydrogel isc0=250 mol/L.Three cases are studied here.Case 1:a uniform forceq=1 × 10?4N/mm is applied on the left side AB;Case 2:a solution concentrationcw=500 mol/L is applied on the right side CD;Case 3:the uniform forceq=1 × 10?4N/mm on the left side AB and the concentrationcw=500 mol/L on the right side CD are applied simultaneously.

    Table 1:Material parameters of the hydrogel plane.

    As seen from Figs.2 and 3,the concentration at points B and G in Fig.2 and the concentration at points D and M in Fig.3 increases quickly during the initial time in coupling state,respectively,and then the increasing trend of the concentration slows down gradually.After the timet=6000 s,concentration values do not change,which proves that the whole system reaches the force equilibrium state and the diffusion equilibrium state att=6000 s.

    Figure 2:The concentration at AB side in coupling state versus time.

    Figure 3:The concentration at CD side in coupling state versus time.

    Furthermore,the concentration at points E,F and A in Fig.2 and the concentration at points H,N and C in Fig.3 decreases quickly in coupling state,respectively,and then the decreasing trend of the concentration gradually slows down too.However,the concentration eventually changes to a constant value after the equilibrium state.At the equilibrium state,the maximum and minimum of the concentration on the left side AB lie in point B and point A as shown in Fig.2,respectively.Besides,the maximum and minimum of the concentration on the right side CD locate in point D and point C in Fig.3,respectively.Thus,it is observed that the variation of the concentration is different between the upper and lower parts of plane because of the constraint effect on the bottom side BC.At the equilibrium state,the point of maximum concentration is located in the lower left corner point B,and the point of minimum concentration is located in the lower right corner point C in the whole plate.

    Therefore,the variation of the concentration versus time is dissimilar in different sample positions.There exist various points with increasing and decreasing concentration,respectively.The diffusion phenomenon of the external concentration can lead to concentration redistribution inside the whole plane.If somewhere the concentration increases,inevitably the concentration decreases in another position during which the mechanical energy and chemical energy can be transformed into each other.That is to say,a new balance state would be reached gradually with increase of time.

    As seen from Figs.4 and 5,the variation of the concentration at each point on AB and CD sides is dissimilar in three cases.Yet,concentration values in coupling state lie between those in two other states,which confirms the chemo-mechanical coupling behavior obviously.Additionally,it is shown that physical effective properties are changed due to the chemo-mechanical coupling in the hydrogel plate,which influences the behaviors of diffusion and deformation simultaneously.

    Figure 4:The concentration at AB side in three cases side.

    Figure 5:The concentration at CD in three cases.

    Fig.6(a)shows the undeformed gridding mesh of the hydrogel plane with constraint conditions at the initial time in Abaqus software.By the way,every subfigure(a)for all figures below in this paper represents the initial undeformed gridding mesh with constraint conditions,respectively.In Fig.6(b)–(d),the invariant black gridding lines in each subfigure indicate the original reference body,which is similar to the following figures in this paper.The hydrogel plane presents coupled deformation when concentration and force are applied simultaneously in Fig.6(c),which coincides with the literature in Wallmersperger,

    Wallmersperger,Kr?plin,and Gülch(2004).As seen from the example,there exists obvious coupling phenomena in chemical and mechanical field under the combination of force and concentration in hydrogels.Changes of concentration can cause mechanical deformation of the medium,and mechanical stimulations can lead to concentration redistribution too.

    3.2 Example 2

    Let us consider the second example.As shown in Fig.7,there is a simply supported rectangular hydrogel bar in its middle whose upper side is contact with the solution.The values of material parameters for the list{E,R?,T,ν}in our simulation for the transient swelling problem are taken from the Table 1 in example 1,and to that list we replace the value{D}for simulation of the transient response.It is assumed that the initial concentration in hydrogel isc0=250 mol/L,and the external concentration is considered ascw=600 mol/L.In addition,we have chosen a value D=6.749×10?10m2/s,with the length BC=20 mm,and the height AB=0.5 mm described in the literature in Lucantonio,Nardinocchi,and Teresi(2013).

    Figure 7:Schematic of the rectangular hydrogel bar.

    Fig.8(a)–(d)shows the swelling-induced bending at different times.As time goes on,diffusion will be conducted from a high concentration to a low concentration.The hydrogel bar is absorbed slowly inducing a differential volume expansion which bends downward towards a maximum curvature in subfigure(b).Then,the bar tends to recover its original configuration,and it slowly returns back in subfigure(c).Finally,

    Figure 8:Deformations of the hydrogel bar at different times.

    when the timet=4000 s,the system reaches the equilibrium state.Then,a new straight and steady configuration is reached in subfigure(d).The extent to swelling is greater than the configuration in the initial state obviously.It is illustrated that there exactly exists chemo-mechanical coupling process in the rectangular hydrogel bar.The deformation process is consistent with the literature in Lucantonio,Nardinocchi,and Teresi(2013).

    3.3 Example 3

    Hydrogels have a significant advantage over conventional microfluidic devices owing to their ability to undergo abrupt volume changes in response to the surrounding environment without the requirement of an external power source.In a variety of microfluidic devices in engineering fields,we can utilize chemo-mechanical coupling characteristics to design the hydrogel valve.By changing the concentration,the swelling degree of the hydrogel can be used to adjust the opening and closing of flow in the hydrogel valve.

    The third example is considered as shown in Fig.9.There is a rectangular hydrogel plate in which AB,AD,and CD sides are constrained,respectively,and BC side is contact with the solution.The concentration of external solution iscw=500 mol/L,and the concentration inside the hydrogel plate isc0=200 mol/L.Hydrogel parameters are shown in Table 1.

    Figure 9:Schematic of the hydrogel valve.

    Figure 10:Deformations of the hydrogel valve at different times.

    As shown in Fig.10(a)–(d),because the solution concentrationcwis greater thanc0,diffusion will be conducted from a high concentration to a low concentration.As time goes on,the extent to absorption of the solution on BC side increases gradually so as to result in the greater expansion degree.When the timet=4800 s,the system reaches the equilibrium state,as shown in subfigure(d).According to the reversible deformation for hydrogels,this device can be designed as a hydrogel valve,which was shown to be in agreement with the literature in Romero,Dario Arrua,Alvarez Igarzabal,and Hilder(2013).

    3.4 Example 4

    Next,the fourth example is considered as shown in Fig.11,with a free expansion square hydrogel plate whose four sides are contact with the solution,respectively.We assume that the initial concentration in hydrogel isc0=300 mol/L,andcw=600 mol/L for external concentration.Moreover,the values of material parameters for the list{E,ν,R?,T}are taken from the Table 1.We have selected a valueD=5× 10?9m2/s,and the side length in initial time is taken as 20 mm shown in the literature from Chester and Anand(2011).

    Figure 11:Schematic of the square hydrogel plate.

    Fig.12 shows contours of the hydrogel plate after a few different times:(a)0 s;(b)1000 s;(c)2100 s;and(d)3200 s.As time progresses,the initially square specimen is no longer square-this is because of the faster swelling near the corners due to the enhanced fluid flux from the two edges.Finally,the system reaches the equilibrium state in the timet=3200 s,and then the square hydrogel plate turns into a swelling square plate again whose configuration is bigger than original configuration in initial time.The course of deformation is consistent with the literature in Chester and Anand(2011).

    Figure 12:Deformations of the hydrogel square plate at different times.

    3.5 Example 5

    In engineering fields,many functional components are needed to creat microchannels for local flow regulation in microfluidic systems.Here,we can design a hydrogel groove channel to implement the adjustment of local flow.By changing the concentration,the flow inside the groove can be controlled by the extent of expansion or contraction of the hydrogel.

    As a final example,we consider a hydrogel groove shown in Fig.13.The solution concentration inside the hydrogel isc0=200 mol/L,and the concentration in groove is considered ascw=550mol/L.Hydrogel parameters areshown in Table1.As shown in Fig.14(a)–(d),whencwis greater thanc0,due to the concentration gradient between the external solution and the internal solution,diffusion will be proceeded from a high concentration to a low concentration.The greater extent to solution absorption on inner sides,the greater the expansion degree is.Whent=4500 s,the system reaches the equilibrium state.By changing the concentration value the hydrogel groove could realize expansion and recovery deformations so as to adjust the flow inside the groove meantime.

    Figure 13:Schematic of the hydrogel groove.

    Figure 14:Deformations of the hydrogel groove at different times.

    Thus,we can clearly confirm the correctness and accuracy of the user element subroutine UEL programmed by representative numerical examples.In the meantime,with the benefit of articles[Dong,El-Gizawy,Juhany,and Atluri(2014a,b)],the locking phenomenon of lowest order isoparametric elements are effectively avoided,which greatly overcomes the shortcomings of mesh distortion,while maintaining both efficiency and generalization of the chemo-mechanical element developed.Moreover,it is illustrated that the theory of chemo-mechanical coupling proposed and the application of finite element method are greatly convincible.

    4 Conclusions

    In this paper,starting from the laws of thermodynamics and the definition of the chemical potential,continuum mechanics approach is developed to derive chemomechanical coupled constitutive equations and governing equations during isothermal process.With the Hamilton’s principle,the equivalent integral forms of chemomechanical governing equations and corresponding finite element equations can be derived in chemo-mechanical coupling system.The closeness of the chemomechanical coupling theory and mutual coupling effect between chemical system and mechanical system are validated.

    By using the user element subroutine UEL in ABAQUS FE package, several numerical examples of chemo-mechanical coupling behavior are analyzed in hydrogels under different boundary conditions.It is proved that the changes of concentration can cause shape deformation of the hydrogel,and mechanical effect can also induce concentration redistribution.The chemo-mechanical coupling process is actually a process during which the mechanical energy and the chemical energy can be converted to one another.At equilibrium state,the mechanical energy and the chemical energy achieve an overall balance with each other.In addition,the detailed discussions on the numerical examples validate the rationality and effectiveness of the present theory and method.

    Although the behavior of deformation has small elastic properties with present theory,the deformation results and processes are similar to the typical examples in several publications related to the numerical implementation with the finite deformation theory.Consequently,we can provide a valuable enrichment and supplement which can assist in the exploration and characterization in research methodology applicable to more general physical and mechanical problems for hydrogels.Next,by complementing and having an even deeper understanding of the knowledge of present theory,hopefully our goal is to enhance present theory to areas of the finite deformation theory,which is the research’s direction.

    Acknowledgement:The financial support from the National Natural Science Foundation of China under grants#11172012,#11472020 is gratefully acknowledged.

    Ballhause,D.;Wallmersperger,T.(2008):Coupled chemo-electro-mechanical finite element simulation of hydrogels:I.Chemical stimulation.Smart Mater.Struct.,vol.17,no.4,pp.045011.

    Bouklas,N.;Landis,C.M.;Huang,R.(2015):A nonlinear,transient finite element method for coupled solvent diffusion and large deformation of hydrogels.J.Mech.Phys.Solids,vol.79,pp.21–43.

    Chester,S.A.;Anand,L.(2011):A thermo-mechanically coupled theory for fluid permeation in elastomeric materials:Application to thermally responsive gels.J.Mech.Phys.Solids,vol.59,pp.1978–2006.

    Chester,S.A.;Di Leo,C.V.;Anand,L.(2015):A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels.Int.J.SolidsStruct.,vol.52,pp.1–18.

    De,S.K.;Aluru,N.R.(2004):A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels.Mech.Mater.,vol.36,no.5,pp.395–410.

    De,S.K.;Aluru,N.R.;Johnson,B.(2002):Equilibrium swelling and kinetics of pH-responsive hydrogels:models,experiments,and simulations.J Microelectromech Syst,vol.11,no.5,pp.544–555.

    Ding,Z.W.;Liu,Z.S.;Hu,J.Y.;Swaddiwudhipong,S.;Yang,Z.Z.(2013):Inhomogeneous large deformation study of temperature-sensitive hydrogel.Int.J.Solids Struct.,vol.50,no.16–17,pp.2610–2619.

    Dong,L.T.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014a):A simple locking-alleviated 4-node mixed-collocation finite element with over-integration,for homogeneous or functionally-graded or thick-section laminated composite beams.CMC:Comput.Mater.Continua,vol.40,no.1,pp.49–77.

    Dong,L.T.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014b):A simple locking-alleviated 3D 8-Node mixed-collocation C0 finite element with overintegration,for functionally-graded and laminated thick-section plates and shells,with&without z-pins.CMC:Comput.Mater.Continua,vol.41,no.3,pp.163–192.

    Duan,Z.;Zhang,J.P.;An,Y.H.;Jiang,H.Q.(2013):Simulation of the transient behavior of gels based on an analogy between diffusion and heat transfer.J.Appl.Mech.;vol.80,pp.041017.

    Duda,F.P.;Souza,A.C.;Fried,E.(2010):A theory for species migration in a finitely strained solid with application to polymer network swelling.J.Mech.Phys.Solids,vol.58,pp.515–529.

    Filipecki,J.;Sitarz,M.;Kocela,A.;Kotynia,K.;Jelen,P.;Filipecka,K.;Gaweda,M.(2014):Studying functional properties of hydrogel and siliconehydrogel contact lenses with PALS,MIR and Raman spectroscopy.Spectrochim.Acta Part A Mol.Biomol.Spectrosc.,vol.131,pp.686–690.

    Flory,J.;Rehner,J.(1943a):Statistical mechanics of cross-linked polymer networks I.Rubberlike elasticity.J.Chem.Phys.,vol.11,pp.512–520.

    Flory,J.;Rehner,J.(1943b):Statistical mechanics of cross-linked polymer networks II.Swelling.J.Chem.Phys.,vol.11,pp.521–526.

    Gonzalez,J.S.;Ludue na,L.N.;Ponce,A.;and Alvarez,V.A.(2014):Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings.Mater.Sci.Eng.C,vol.34,pp.54–61.

    Gregorova,A.;Saha,N.;Kitano,T.;Saha,P.(2015):Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging.Carbohydr.Polym.,vol.117,pp.559–568.

    Grimshaw,P.E.;Nussbaum,J.H.;Grodzinsky,A.J.;Yarmush,M.L.(1990):Kinetics of electrically and chemically induced swelling in polyelectrolyte gels.J.Chem.Phys.;vol.93,no.6,pp.4462–4472.

    Gu,T.;Liu,X.Y.;Chai,W.B.;Li,B.B.;Sun,H.Y.(2014):A preliminary research on polyvinyl alcohol hydrogel:A slowly-released anti-corrosion and scale inhibitor.J.Pet.Sci.Eng.;vol.122,pp.453–457.

    Hong,W.;Liu,Z.S.;Suo,Z.G.(2009):Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load.Int.J.Solids Struct.,vol.46,no.17,pp.3282–3289.

    Hong,W.;Zhao,X.H.;Zhou,J.X.;Suo,Z.G.(2008):A theory of coupled diffusion and large deformation in polymeric gels.J.Mech.Phys.Solids,vol.56,no.5,pp.1779–1793.

    Ionov,L.(2014):Hydrogel-based actuators:possibilities and limitations.Mater.Today,vol.17,no.10,pp.494–503.

    Kang,B.;Dai,Y.D.;Shen,X.H.;Chen,D.(2008):Dynamical modeling and experimental evidence on the swelling/deswelling behaviors of pH sensitive hydrogels.Mater Lett,vol.62,no.19,pp.3444–3446.

    Levine,I.N.(2002):Physical Chemistry.McGraw-Hill Press,New York.

    Li,H.(2009):Smart Hydrogel Modelling.Springer-Verlag,Berlin.

    Li,H.;Ng,T.Y.;Yew,Y.K.;Lam,K.Y.(2005):Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels.Biomacromolecules,vol.6,pp.109–120.

    Li,H.;Ng,T.Y.;Yew,Y.K.;Lam,K.Y.(2007):Meshless modeling of pH-sensitive hydrogels subjected to coupled pH and electric field stimuli:Young modulus effects and case studies.Macromol.Chem.Phys.,vol.208,pp.1137–1146.

    Li,H.;Yew,Y.K.(2009):Simulation of soft smart hydrogels responsive to pH stimulus:ionic strength effect and case studies.Mater.Sci.Eng.C,vol.29,no.7,pp.2261–2269.

    Li,X.;Fan,D.D.;Ma,X.X.;Zhu,C.H.;Luo,Y.E.;Liu,B.W.;Chen,L.(2014):A novel injectable pH/Temperature sensitive CSHLC/β-GP hydrogel:The gelation mechanism and its properties.Soft Mater.;vol.12,pp.1–11.

    Loret,B.;Simoes,F.M.F.A.(2005):framework for deformation,generalized diffusion,mass transfer and growth in multi-species multi-phase biological tissues.Eur J Mech A Solids,vol.24,pp.757–781.

    Lucantonio,A.;Nardinocchi,P.;Teresi,L.(2013):Transient analysis of swelling-induced large deformations in polymer gels.J.Mech.Phys.Solids,vol.61,pp.205–218.

    Marcombe,R.;Cai,S.Q.;Hong,W.;Zhao,X.H.;Lapusta,Y.;Suo,Z.G.(2010):A theory of constrained swelling of a pH-sensitive hydrogel.Soft Matter,vol.6,no.4,pp.784–793.

    Maulvi,F.A.;Soni,T.G.;Shah,D.O.(2015):Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.J.Biomater.Sci.Polym.Ed.,vol.26,no.15,pp.1035–1050.

    Mindlin,R.D.(1974):Equations of high frequency vibrations of thermopiezoelectric crystal plates.Int J of Solids Struct.,vol.10,pp.625–637.

    Nawrotek,K.;Tylman,M.;Rudnicka,K.;Balcerzak,J.;Kaminski,K.(2016):Chitosan-based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration.Carbohydr Polym,vol.136,pp.764–771.

    Qin,Q.H.;Yang,Q.S.(2008):Macro-micro Theory on Multifield Behaviour of Heterogeneous Materials.Higher Education Press and Springer,Beijing.

    Qian,W.C.(1980):Variational Method and Finite Element Method.Science Press,Beijing.

    Rivero,R.E.;Molina,M.A.;Rivarola,C.R.;Barbero,C.A.(2014):Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite.Sens Actuators,B Chem,vol.190,pp.270–278.

    Romero,M.R.;Dario Arrua,R.;Alvarez Igarzabal,C.I.;Hilder,E.F.(2013):Valve based on novel hydrogels:From synthesis to application.Sensors and Actuators B:Chemical,vol.188,pp.176–184.

    Roogers,G.E.(1994):Introduction to Coordination,Solid State and Descriptive Inorganic Chemistry.McGraw-Hill Press,New York.

    Sagiri,S.S.;Singh,V.K.;Kulanthaivel,S.;Banerjee,I.;Basak,P.;Battachrya,M.K.;Pal,K.(2015):Stearate organogel-gelatin hydrogel based bigels:Physicochemical,thermal,mechanical characterizations and in vitro drug delivery applications.J.Mech.Behav.Biomed.Mater.,vol.43,pp.1–17.

    Smith,I.M.;Griffths,D.V.(2003):Programming the Finite Element Method.Electronics Industry Press,Beijing.

    Terzaghi,K.;Peck,R.B.;Mesri,G.(1996):Soil mechanics in engineering practice.John Wiley&Sons Press,New York.

    Thankam,F.G.;Muthu,J.(2015):Alginate–polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering.J.Colloid Interface Sci.;vol.457,pp.52–61.

    Toh,W.;Liu,Z.S.;Ng,T.Y.;Hong,W.(2013):Inhomogeneous large deformation kinetics of polymeric gels.Int.J.Appl.Mech.;vol.5,pp.1350001.

    Tongwa,P.;Bai,B.J.(2014):Degradable nanocomposite preformed particle gel for chemical enhanced oil recovery applications.J.Pet.Sci.Eng.,vol.124,pp.35–45.

    Ullah,F.;Othman,M.B.H.;Javed,F.;Ahmad,Z.;Akil,H.M.(2015):Classification,processing and application of hydrogels:A review.Mater.Sci.Eng.C,vol.57,pp.414–433.

    Wallmersperger,T.;Ballhause,D.(2008):Coupled chemo-electro-mechanical finite element simulation of hydrogels:II.Electrical stimulation.Smart Mater Struct,vol.17,no.4,pp.045012.

    Wallmersperger,T.;Kr?plin,B.;Gülch,R.W.(2004):Coupled chemo-electromechanical formulation for ionic polymer gels-numerical and experimental investigations.Mech.Mater.,vol.36,no.5–6,pp.411–420.

    Wu,B.C.;Degner,B.;McClements,D.J.(2014):Soft matter strategies for controlling food texture:Formation of hydrogel particles by biopolymer complex coacervation.J Phys Condens Matter,vol.26,no.46,pp.464104.

    Yang,Q.S.;Liu,B.S.,Meng,L.T.(2009):A phenomenological theory and numerical procedure for chemo-mechanical coupling behavior of hydrogel.CMC:Comput.Mater.Continua,vol.12,pp.39–55.

    Yang,Q.S.;Ma,L.H.;Shang,J.J.(2013):The chemo-mechanical coupling behavior of hydrogels incorporating entanglements of polymer chains.Int.J.Solids Struct.,vol.50,pp.2437–2448.

    Yang,Q.S.;Qin,Q.H.;Ma,L.H.;Lu,X.Z.;Cui,C.Q.(2010):A theoretical model and finite element formulation for coupled thermo-electro-chemomechanical media.Mech.Mater.,vol.42,no.2,pp.148–156.

    Zalachas,N.;Cai,S.Q.;Suo,Z.G.;Lapusta,Y.(2013):Crease in a ring of a pH-sensitive hydrogel swelling under constraint.Int.J.Solids Struct.,vol.50,pp.920–927.

    Zheng,A.;Xue,Y.;Wei,D.;Li,S.;Xiao,H.;Guan,Y.(2014):Synthesis and characterization of antimicrobial polyvinyl pyrrolidone hydrogel as wound dressing.Soft Mater.,vol.12,pp.297–305.

    1Department of Engineering Mechanics,Beijing University of Technology,Beijing 100124,PR China

    2School of Civil Engineering,Hebei University of Engineering,Handan 056038,PR China

    3Corresponding authors Email:qsyang@bjut.edu.cn,Tel&Fax:86-10-67396333(QS Yang)

    svipshipincom国产片| 我要看黄色一级片免费的| 电影成人av| 在线观看人妻少妇| 欧美日韩av久久| 美女国产高潮福利片在线看| 久久精品国产综合久久久| 少妇猛男粗大的猛烈进出视频| 别揉我奶头~嗯~啊~动态视频| 高清在线国产一区| 久久中文字幕人妻熟女| 天天影视国产精品| 午夜激情av网站| 一区二区三区国产精品乱码| av国产精品久久久久影院| 久久午夜综合久久蜜桃| 99国产精品99久久久久| 国产精品熟女久久久久浪| 最近最新中文字幕大全电影3 | 亚洲精品成人av观看孕妇| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻熟女乱码| 菩萨蛮人人尽说江南好唐韦庄| 国产成人一区二区三区免费视频网站| 在线播放国产精品三级| 熟女少妇亚洲综合色aaa.| 成人手机av| 久久久国产成人免费| 两性夫妻黄色片| 极品人妻少妇av视频| 欧美精品av麻豆av| 黄片播放在线免费| 黄片播放在线免费| 91麻豆av在线| www.熟女人妻精品国产| 夜夜夜夜夜久久久久| 久久久久视频综合| 久久久久精品国产欧美久久久| 色尼玛亚洲综合影院| 日韩大码丰满熟妇| 欧美日韩视频精品一区| 日本wwww免费看| 18在线观看网站| videosex国产| 免费观看人在逋| 免费观看av网站的网址| 亚洲欧美一区二区三区黑人| 97在线人人人人妻| 美女午夜性视频免费| 在线观看www视频免费| 亚洲国产欧美网| 国产成人欧美在线观看 | av福利片在线| 一区二区av电影网| 国产精品偷伦视频观看了| 美女主播在线视频| 如日韩欧美国产精品一区二区三区| 正在播放国产对白刺激| 欧美亚洲日本最大视频资源| 日本精品一区二区三区蜜桃| 操出白浆在线播放| 搡老熟女国产l中国老女人| 亚洲全国av大片| 性高湖久久久久久久久免费观看| av片东京热男人的天堂| 成人永久免费在线观看视频 | 成人18禁在线播放| 一级黄色大片毛片| 国产在线视频一区二区| tocl精华| 亚洲av成人一区二区三| av天堂在线播放| 黑丝袜美女国产一区| 18禁黄网站禁片午夜丰满| 一区二区三区国产精品乱码| 免费少妇av软件| 中文字幕人妻丝袜制服| 亚洲精品国产色婷婷电影| 亚洲专区国产一区二区| 久久久久精品人妻al黑| e午夜精品久久久久久久| 国产亚洲精品一区二区www | 麻豆av在线久日| 伦理电影免费视频| 亚洲熟女毛片儿| 欧美老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 中文字幕av电影在线播放| 亚洲全国av大片| 欧美激情极品国产一区二区三区| 久久精品国产a三级三级三级| 男女之事视频高清在线观看| 久久人妻福利社区极品人妻图片| 在线永久观看黄色视频| 久久人人97超碰香蕉20202| tube8黄色片| 亚洲av美国av| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 欧美 亚洲 国产 日韩一| 久久国产精品男人的天堂亚洲| 18禁美女被吸乳视频| 色婷婷av一区二区三区视频| 一二三四在线观看免费中文在| 考比视频在线观看| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 久久精品熟女亚洲av麻豆精品| 老鸭窝网址在线观看| 国产片内射在线| 亚洲精品成人av观看孕妇| 久久狼人影院| 捣出白浆h1v1| 国产精品偷伦视频观看了| 亚洲人成电影免费在线| 亚洲一卡2卡3卡4卡5卡精品中文| 别揉我奶头~嗯~啊~动态视频| 欧美日韩一级在线毛片| 正在播放国产对白刺激| 飞空精品影院首页| 国产精品一区二区在线观看99| 国产欧美日韩一区二区精品| 一本—道久久a久久精品蜜桃钙片| 久久精品成人免费网站| 人人妻人人澡人人看| 熟女少妇亚洲综合色aaa.| www.熟女人妻精品国产| 亚洲午夜理论影院| 成年动漫av网址| 国产精品久久久久久人妻精品电影 | 中亚洲国语对白在线视频| 自线自在国产av| 波多野结衣av一区二区av| 国产精品一区二区精品视频观看| 国产成人免费无遮挡视频| 亚洲免费av在线视频| 最近最新中文字幕大全免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 最近最新中文字幕大全电影3 | 天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 欧美乱妇无乱码| 久久久久国产一级毛片高清牌| 中文欧美无线码| 久久这里只有精品19| 操出白浆在线播放| 国产一区二区在线观看av| av片东京热男人的天堂| 国产熟女午夜一区二区三区| svipshipincom国产片| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| 大码成人一级视频| 12—13女人毛片做爰片一| 免费高清在线观看日韩| 正在播放国产对白刺激| 色在线成人网| 亚洲精品自拍成人| 久久精品国产综合久久久| 国产淫语在线视频| 久久香蕉激情| 成年版毛片免费区| 国产精品自产拍在线观看55亚洲 | 国产亚洲精品一区二区www | 又大又爽又粗| 国精品久久久久久国模美| 91成人精品电影| 夜夜爽天天搞| 咕卡用的链子| 精品人妻熟女毛片av久久网站| 国产成人一区二区三区免费视频网站| 免费日韩欧美在线观看| 啦啦啦 在线观看视频| 中文字幕色久视频| 精品一区二区三区视频在线观看免费 | 精品国产国语对白av| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 侵犯人妻中文字幕一二三四区| 亚洲久久久国产精品| 色婷婷av一区二区三区视频| 国产精品久久久久久精品古装| 久久精品人人爽人人爽视色| 久久影院123| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影 | 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 午夜成年电影在线免费观看| 自线自在国产av| 久久亚洲真实| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全免费视频| 亚洲在线自拍视频| 午夜影院日韩av| 欧美xxxx黑人xx丫x性爽| 熟女人妻精品中文字幕| 国产av在哪里看| 无遮挡黄片免费观看| 香蕉av资源在线| 听说在线观看完整版免费高清| 亚洲黑人精品在线| 日本熟妇午夜| 不卡av一区二区三区| 午夜精品一区二区三区免费看| netflix在线观看网站| 精品电影一区二区在线| 99热只有精品国产| 国产成人精品久久二区二区91| 午夜精品久久久久久毛片777| 亚洲一区高清亚洲精品| 日韩欧美在线乱码| 国产高清激情床上av| 在线观看免费午夜福利视频| 国产黄片美女视频| 90打野战视频偷拍视频| 国内精品久久久久精免费| 一级a爱片免费观看的视频| 香蕉国产在线看| www日本在线高清视频| 国产精品一区二区三区四区久久| 在线播放国产精品三级| 国产一区在线观看成人免费| 一本一本综合久久| 欧美日韩综合久久久久久 | 97超级碰碰碰精品色视频在线观看| 国产精品98久久久久久宅男小说| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 最新中文字幕久久久久 | 一区二区三区激情视频| 国产精品 国内视频| 免费一级毛片在线播放高清视频| 美女黄网站色视频| 欧美极品一区二区三区四区| 大型黄色视频在线免费观看| 男插女下体视频免费在线播放| 超碰成人久久| 露出奶头的视频| 中文字幕最新亚洲高清| 亚洲国产精品sss在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲五月天丁香| 久久久久久久久中文| 国产私拍福利视频在线观看| 久久草成人影院| 亚洲中文字幕一区二区三区有码在线看 | 国模一区二区三区四区视频 | 日本与韩国留学比较| 国产av不卡久久| 别揉我奶头~嗯~啊~动态视频| 成人av在线播放网站| 99热这里只有精品一区 | avwww免费| 欧美日韩一级在线毛片| 国产99白浆流出| 日本a在线网址| 一级毛片精品| 天堂动漫精品| 国产高清三级在线| 免费av毛片视频| 成年女人毛片免费观看观看9| 久久久久久人人人人人| 一本一本综合久久| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 国产av一区在线观看免费| 亚洲中文字幕日韩| 搞女人的毛片| 999久久久精品免费观看国产| 日韩欧美免费精品| 观看免费一级毛片| 亚洲 国产 在线| 两个人视频免费观看高清| 法律面前人人平等表现在哪些方面| 手机成人av网站| 1024香蕉在线观看| 成人av在线播放网站| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 亚洲国产欧美一区二区综合| 美女扒开内裤让男人捅视频| 超碰成人久久| 日韩欧美国产一区二区入口| 亚洲欧美一区二区三区黑人| 校园春色视频在线观看| 超碰成人久久| 日本与韩国留学比较| 国产精品自产拍在线观看55亚洲| 在线观看日韩欧美| 两个人看的免费小视频| 一个人看视频在线观看www免费 | 午夜福利在线在线| bbb黄色大片| 亚洲 欧美 日韩 在线 免费| 午夜免费激情av| 欧美不卡视频在线免费观看| 日本a在线网址| 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 国产 一区 欧美 日韩| 热99在线观看视频| 精品99又大又爽又粗少妇毛片 | www.精华液| 亚洲美女黄片视频| 女人被狂操c到高潮| 97碰自拍视频| x7x7x7水蜜桃| 国产三级中文精品| bbb黄色大片| 人妻夜夜爽99麻豆av| 又大又爽又粗| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频| 国产精品一区二区三区四区免费观看 | 久久久久久久精品吃奶| www日本在线高清视频| 听说在线观看完整版免费高清| 老司机福利观看| 我的老师免费观看完整版| 俺也久久电影网| 香蕉久久夜色| 香蕉丝袜av| 免费在线观看日本一区| 国产又色又爽无遮挡免费看| 在线看三级毛片| 麻豆久久精品国产亚洲av| 听说在线观看完整版免费高清| 国产av一区在线观看免费| av欧美777| 精品久久蜜臀av无| 国产一区在线观看成人免费| 欧美日韩亚洲国产一区二区在线观看| 丁香欧美五月| 成人亚洲精品av一区二区| 男女午夜视频在线观看| 亚洲人成电影免费在线| 国产乱人视频| 免费在线观看亚洲国产| 国产三级在线视频| 狂野欧美激情性xxxx| 日韩免费av在线播放| 男女之事视频高清在线观看| 成人av在线播放网站| 嫩草影院入口| e午夜精品久久久久久久| 日韩精品中文字幕看吧| 国产成年人精品一区二区| 国产真实乱freesex| 中文资源天堂在线| 国产伦精品一区二区三区视频9 | 午夜福利欧美成人| 十八禁人妻一区二区| 国产精品野战在线观看| 国产精品九九99| 精品国内亚洲2022精品成人| 久久香蕉国产精品| 啦啦啦韩国在线观看视频| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 久久精品影院6| 啦啦啦观看免费观看视频高清| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 国产真人三级小视频在线观看| 又大又爽又粗| 真人做人爱边吃奶动态| 国产男靠女视频免费网站| 久久亚洲真实| 亚洲国产日韩欧美精品在线观看 | 少妇裸体淫交视频免费看高清| 久久久久免费精品人妻一区二区| 免费观看人在逋| 欧美乱色亚洲激情| 欧美激情在线99| 手机成人av网站| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 日本免费a在线| 国产精品电影一区二区三区| 国产成人系列免费观看| www.www免费av| 成人一区二区视频在线观看| 日韩成人在线观看一区二区三区| 男插女下体视频免费在线播放| 亚洲最大成人中文| 亚洲精品国产精品久久久不卡| 特大巨黑吊av在线直播| 999精品在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产av麻豆久久久久久久| 18美女黄网站色大片免费观看| 亚洲男人的天堂狠狠| 老熟妇乱子伦视频在线观看| 国产成人福利小说| 精品99又大又爽又粗少妇毛片 | 1024香蕉在线观看| 欧美日韩一级在线毛片| 欧美日韩瑟瑟在线播放| 亚洲精品色激情综合| 色尼玛亚洲综合影院| 成人三级黄色视频| 99精品久久久久人妻精品| 亚洲专区国产一区二区| 制服丝袜大香蕉在线| 久久久精品大字幕| 欧美av亚洲av综合av国产av| 精品熟女少妇八av免费久了| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸| 亚洲天堂国产精品一区在线| 精品久久久久久,| 丝袜人妻中文字幕| 特级一级黄色大片| 欧美黑人欧美精品刺激| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 国产成人aa在线观看| av福利片在线观看| 性色av乱码一区二区三区2| 免费一级毛片在线播放高清视频| 国产一区二区三区在线臀色熟女| 天天一区二区日本电影三级| 男女视频在线观看网站免费| 亚洲成人免费电影在线观看| 成人性生交大片免费视频hd| 亚洲乱码一区二区免费版| 色av中文字幕| 他把我摸到了高潮在线观看| 成人一区二区视频在线观看| 免费看美女性在线毛片视频| 国产精品一区二区精品视频观看| 男人和女人高潮做爰伦理| 男人舔女人的私密视频| 老司机午夜福利在线观看视频| 久久久久国产一级毛片高清牌| 啦啦啦免费观看视频1| 欧美日韩亚洲国产一区二区在线观看| 国产91精品成人一区二区三区| 中文字幕久久专区| 亚洲九九香蕉| 一二三四在线观看免费中文在| 毛片女人毛片| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app | 国产综合懂色| 久久精品综合一区二区三区| 91九色精品人成在线观看| 黄频高清免费视频| 变态另类成人亚洲欧美熟女| 久9热在线精品视频| 国产av在哪里看| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 免费观看精品视频网站| 淫秽高清视频在线观看| 中文字幕av在线有码专区| 日韩三级视频一区二区三区| 午夜日韩欧美国产| 国产成人精品久久二区二区91| 中文亚洲av片在线观看爽| 操出白浆在线播放| 美女午夜性视频免费| 国产aⅴ精品一区二区三区波| 国产精品九九99| 欧美绝顶高潮抽搐喷水| 日本 欧美在线| 两个人的视频大全免费| 少妇的丰满在线观看| 在线观看一区二区三区| 亚洲在线观看片| 最近视频中文字幕2019在线8| 婷婷亚洲欧美| 香蕉国产在线看| 男女午夜视频在线观看| 伦理电影免费视频| 亚洲无线在线观看| 国产乱人伦免费视频| 1024手机看黄色片| 亚洲国产精品999在线| 午夜久久久久精精品| 国产三级黄色录像| 欧美高清成人免费视频www| 欧美在线一区亚洲| 两个人的视频大全免费| 99久国产av精品| 免费电影在线观看免费观看| 国产亚洲精品综合一区在线观看| 亚洲黑人精品在线| ponron亚洲| 欧美色欧美亚洲另类二区| av中文乱码字幕在线| 国产亚洲欧美98| 欧美在线黄色| 蜜桃久久精品国产亚洲av| 1024香蕉在线观看| 天堂网av新在线| 亚洲国产欧洲综合997久久,| 国产在线精品亚洲第一网站| 免费高清视频大片| 一区二区三区国产精品乱码| 叶爱在线成人免费视频播放| 熟妇人妻久久中文字幕3abv| 黄频高清免费视频| 国产亚洲精品av在线| 精品国产乱码久久久久久男人| 欧美日韩国产亚洲二区| 岛国在线免费视频观看| 亚洲最大成人中文| 国产精品 国内视频| 亚洲电影在线观看av| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 欧美中文日本在线观看视频| 色在线成人网| 校园春色视频在线观看| 久久99热这里只有精品18| 久久午夜综合久久蜜桃| 国产精品免费一区二区三区在线| 国产精品一区二区免费欧美| 久久久久久国产a免费观看| 成人永久免费在线观看视频| 亚洲精品中文字幕一二三四区| 亚洲午夜精品一区,二区,三区| 两个人视频免费观看高清| 韩国av一区二区三区四区| 国产精品女同一区二区软件 | 国产爱豆传媒在线观看| bbb黄色大片| 亚洲精品一区av在线观看| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| 桃色一区二区三区在线观看| 日韩欧美精品v在线| 成人三级做爰电影| 男女下面进入的视频免费午夜| 久久午夜综合久久蜜桃| 精品国产乱码久久久久久男人| 夜夜看夜夜爽夜夜摸| 亚洲成a人片在线一区二区| 国产精品,欧美在线| 窝窝影院91人妻| 色播亚洲综合网| 好男人电影高清在线观看| 蜜桃久久精品国产亚洲av| 色综合站精品国产| 小说图片视频综合网站| 日本黄色片子视频| 波多野结衣高清作品| 国产精品乱码一区二三区的特点| 午夜精品久久久久久毛片777| 在线观看一区二区三区| 少妇的逼水好多| 日本 欧美在线| 亚洲精品在线观看二区| xxx96com| 最近最新中文字幕大全免费视频| 欧美一区二区精品小视频在线| 欧洲精品卡2卡3卡4卡5卡区| 九九热线精品视视频播放| 国产亚洲av高清不卡| 性欧美人与动物交配| 老汉色av国产亚洲站长工具| 婷婷亚洲欧美| 精品一区二区三区四区五区乱码| 亚洲激情在线av| 国产免费男女视频| 成人性生交大片免费视频hd| 久久99热这里只有精品18| 欧美乱码精品一区二区三区| 久久午夜亚洲精品久久| 午夜a级毛片| 在线国产一区二区在线| 性色avwww在线观看| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 国内精品美女久久久久久| 成人亚洲精品av一区二区| 成人特级av手机在线观看| 久久香蕉精品热| 中出人妻视频一区二区| 国产精品日韩av在线免费观看| 精品不卡国产一区二区三区| 久久久国产成人精品二区| 一二三四社区在线视频社区8| 欧美不卡视频在线免费观看| 很黄的视频免费| 国产精品香港三级国产av潘金莲| 中文字幕最新亚洲高清| 久久久久久国产a免费观看| www日本在线高清视频| 欧美xxxx黑人xx丫x性爽| 成人av一区二区三区在线看| 欧美色欧美亚洲另类二区| 久久精品夜夜夜夜夜久久蜜豆| 男女那种视频在线观看| a级毛片a级免费在线| www日本在线高清视频| 十八禁人妻一区二区| 午夜福利在线观看免费完整高清在 | 免费av毛片视频| 久久久久久久久免费视频了| 琪琪午夜伦伦电影理论片6080| 亚洲专区字幕在线| 99久久无色码亚洲精品果冻| 国产精品久久久久久久电影 | 99在线视频只有这里精品首页|