• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Are“Higher-Order”and “Layer-wise Zig-Zag” Plate&Shell Theories Necessary for Functionally Graded Materials and Structures?

    2016-01-03 06:01:18YapingZhangQifengFanLeitingDong3andSatyaAtluri
    關(guān)鍵詞:分配特征

    Yaping Zhang,Qifeng Fan,Leiting Dong,3and Satya N.Atluri

    Are“Higher-Order”and “Layer-wise Zig-Zag” Plate&Shell Theories Necessary for Functionally Graded Materials and Structures?

    Yaping Zhang1,Qifeng Fan2,Leiting Dong2,3and Satya N.Atluri4

    Similar to the very vast prior literature on analyzing laminated composite structures,“higher-order”and “l(fā)ayer-wise higher-order”plate and shell theories for functionally-graded(FG)materials and structures are also widely popularized in the literature of the past two decades.However,such higher-order theories involve(1)postulating very complex assumptions for plate/shell kinematics in the thickness direction,(2)defining generalized variables of displacements,strains,and stresses,and(3)developing very complex governing equilibrium,compatibility,and constitutive equations in terms of newly-defined generalized kinematic and generalized kinetic variables.Their industrial applications are thus hindered by their inherent complexity,and the fact that it is difficult for end-users(front-line structural engineers)to completely understand all the newly-defined generalized DOFs for FEM in the higher-order and layer-wise theories.In an entirely different way,very simple 20-node and 27-node 3-D continuum solid-shell elements are developed in this paper,based on the simple theory of 3D solid mechanics,for static and dynamic analyses of functionally-graded plates and shells.A simple Over-Integration(a 4-point Gauss integration in the thickness direction)is used to evaluate the stiffness matrices of each element,while only a single element is used in the thickness direction without increasing the number of degrees of freedom.A stress-recovery approach is used to compute the distribution of transverse stresses by considering the equations of 3D elasticity in Cartesian as well as cylindrical polar coordinates.Comprehensive numerical results are presented for static and dynamic analyses of FG plates and shells,which agree well,either with the existing solutions in the published literature,or with the computationally very expensive solutions obtained by using simple 3D isoparametric elements(with standard Gauss Quadrature)available in NASTRAN(wherein many 3D elements are used in the thickness direction to capture the varying material properties).The effects of the material gradient index,the span-to-thickness ratio,the aspect ratio and the boundary conditions are also studied in the solutions of FG structures.Because the proposed methodology merely involves:(2)standard displacement DOFs at each node,(2)involves a simple 4-point Gaussian over-integration in the thickness direction,(3)relies only on the simple theory of solid mechanics,and(4)is capable of accurately and efficiently predicting the static and dynamical behavior of FG structures in a very simple and cost-effective manner,it is thus believed by the authors that the painstaking and cumbersome development of“higher-order”or“l(fā)ayer-wise higher-order”theories is not entirely necessary for the analyses of FG plates and shells.

    functionally graded plates and shells,20-node hexahedral element,27-node hexahedral element,over-integration,higher order theory,layer-wise theory.

    1 Introduction

    Functionally graded materials(FGM)were proposed as heat-shielding structural materials by Japanese material scientists in 1984[Koizumi(1997)].Typically,FGMs are mixtures of ceramics and metals with material properties varying smoothly from one structural surface to another.In this way,thermal-stress concentrations developed at material interfaces of conventional structural components can be avoided.This excellent feature has promising applications for aircrafts,space vehicles,automobiles and other engineering structures.Thus,it is important to develop a simple and accurate tool for analyzing static and dynamic behaviors of FGM structures.

    Similar to the very vast literature on laminated composite structures,specialized plate and shell theories for functionally-graded(FG)materials and structures were also extensively studied in the literature of the past two decades.These theories involve expanding the displacements using first-order,or higher-order power-series,or other types of functions,in the thickness direction of plates/shells.For example,the Kirchhoff and Reissner(or Mindlin)theories are the most widely-used plate/shell theories,see[Timoshenko and Woinowsky(1959),Reissner(1945)and Mindlin(1951)],which are embedded in almost every standard FEM packages such as Ansys,Abaqus,Nastran,etc.These and other first-order theories are also applied for static and dynamic analyses of FGM plates/shells,see[Zenkour(2006);Cheng and Batra(2000);Batra and Jin(2005)].However,for relatively thick FGM structures,Kirchhoff and Reissner assumptions usually underestimate the deflections and overestimates natural frequencies,as transverse shear strains are neglected(Kirchhoff)or assumed to be constant(Reissner)in such theories.

    To overcome the aforementioned limitations,many higher-order shear deformation theories(HSDT)were later proposed,see[Lo,Christensen and Wu(1977);Reddy(1984);Reddy and Robbins(1994)],wherein the variations ofin-plane displacements in the thickness direction are mostly approximated using third-order polynomials.These and other higher-order theories were used to analyze FGM plates and shells also,see[Reddy(2000);Qian,Batra and Chen(2004);Ferreira,Batra,Roque,Qian and Martins(2005)].In[Carrera,Brischetto,Cinefra and Soave(2011)],it is also concluded that the normal deflection should also be expanded in the thickness direction to include the effects of thickness-stretching.Moreover,layer-wise theories,which expand displacements in each of many artificial layers of FGM plates/shells,were also used to improve the accuracy of the solution,see[Ramirez,Heyliger and Pan(2006);Carrera,Brischetto and Robaldo(2008)].

    In order to derive higher-order or layer-wise theories of plates and shells,kinematic assumptions are substituted into the principle of potential energy of 3D elasticity.By exploring the stationarity conditions,very complex governing differential equations in terms of newly defined generalized displacements,strains and stresses can be derived,see[Reddy(2004)]for example.However,such complex differential equations cannot be directly solved.One usually goes back to derive the weak-forms of these governing differential equations,and thus develop the corresponding the finite element models to solve the problem numerically.In this sense,defining the many generalized displacements,strains,stresses,and deriving the complex higherorder or layer-wise theories and differential equations seems unnecessary.One can directly use the variational principle of 3D elasticity to develop finite elements for the modeling of plates and shells.Moreover,it is difficult for end-users to completely understand all the newly-defined generalized DOFs in higher-order theories(or their FEM counterparts),which have ambiguous physical meanings.Furthermore,it becomes very problematic when boundary conditions have to be enforced correctly for these generalized degrees of freedom,by the end-users.

    In an entirely different way,[Dong,El-Gizawy,Juhany,Atluri(2014a,b)]directly developed 2D quadrilateral 4-node elements(for beam-type structures),and 3D hexahedral 8-node finite elements(for plate and shell structures),for FG as well as laminated structures,based on the simple theories of 2D and 3D solid mechanics,respectively.Because the traditional displacement-based lowest order elements suffer from shear locking,a technique of locking-alleviation was used in Dong,El-Gizawy,Juhany,Atluri(2014a,b),by independently assuming locking-free element strains.Without using mixed variational principles,and thereby bypassing the troublesome LBB conditions of stability,a simple collocation method was used to satisfy the compatibility between the independently assumed strains and those de-rived from the independently assumed displacement fields,at carefully selected required number of points inside the elements.Over-integration was also used in the thickness direction to accurately evaluate the stiffness matrix of FG and laminated elements.However,for very thick laminated structures with only a few layers,the computational accuracy is slightly compromised if only a single lowest-order finite element is used in the thickness direction.Therefore displacement-based higherorder solid(continuum)elements were also developed in[Fan,Zhang,Dong,Li,Atluri(2015)]for analyzing very thick laminates.Similarly,for FGM plates and shells,if the span-to-thickness ratio is very large,or if the material properties are varying in the thickness direction with very large gradients,it will be beneficial to have very simple higher-order displacements-based solid elements,with the standard displacement degrees of freedom,to improve the accuracy of solutions.

    Inthisstudy,standard displacement-based3Dhexahedral20-nodeelement(DPH20)and a 3D 27-node element(DPH27),with over-integration in the thickness direction,are developed to carry out static and dynamic analyses of functionally graded plates and shells.Comprehensive numerical results are presented,which agree very well with existing solutions in the published literature,or with the computationally very-expensive solutions obtained by using standard 3D isoparametric element methodologies(with standard Gauss quadrature)available in commercial FEM codes.Because the proposed methodology:(1)merely involves the standard displacement DOFs at each node,(2)relies only on the simple theory of 3D solid mechanics,(3)simple 4-point Gauss quadrature in the thickness direction,and(4)is capable of accurately and efficiently predicting the static and dynamical behavior of FGM structures in a very simple and cost-effective manner,it is thus believed by the authors that the painstaking development of specialized“higherorder”or“l(fā)ayer-wise”theories is not entirely necessary for the analyses of FGM plates and shells.In the following sections,details of the proposed methodology are described and many numerical examples of various laminated plates/shells with different loads and boundary conditions are provided.

    2 Formulation

    2.1 Primal FEM with over-integration

    As illustrated in Fig.1,nodal shape functions of the 20-node and 27-node hexahedral elements can be defined in terms of local isoperimetric coordinates.We firstly define the following function for nodei:

    Figure 1:Numbering of nodes for 20-node/27-node hexahedral elements in ξ,η,ζcoordinates.

    where ξi,ηiand ζiare the natural coordinates of nodei,andg(ξi,ξ),g(ηi,η)andg(ζi,ζ)are defined as:

    Shape functions are therefore defined as follows.

    For vertex nodesi=1,2,...,8:

    whereGefor each vertex node is the sum of theGivalues of nodes on the three adjacent edges.

    For mid-edge nodesi=9,10,...,20:

    Nodal shape functions for the 27-node hexagonal element is slightly different,which can be found in most books of finite elements[Atluri(2005),Zienkiewicz and Taylor(1997)].

    Thus the displacement fields within the element are interpolated by using nodal shape functions:

    or in equivalent matrix-vector notations:

    where?uerepresents nodal displacements of the element.

    Strain fields within the element are obtained by differentiating Eq.(7)with respect to Cartesian coordinates:

    whereLis a linear differential operator.

    By using the Galerkin Weak-Form or equivalent variational principles[Atluri(2005);Dong,Alotaibi,Mohiuddine and Atluri(2014c)],the element stiffness matrix and mass matrix are computed by:

    As discussed in[Dong,EI-Gizawy,Juhany and Atluri(2014b,c)],a scheme of overintegration in the thickness direction is used to evaluate the element stiffness and mass matrices for FGM.We know that for homogeneous materials,a 3×3×3 Gauss integration is mostly used for evaluating Eq.(9).However,for FGM materials,the material properties are varying in the thickness direction,therefore the conventional 3×3×3 Gauss integration will be insufficient.Thus,an increased-order integration,which is a 4-point Gauss integration in the thickness direction,is used to capture to varying material properties in the thickness direction.

    The transverse normal and shear stresses are computed by using a stress-recovery approach considering the equilibrium equations of 3D linear elasticity.For the laminated plates,the distribution of transverse stresses can be obtained by numerically evaluating:

    wherez=z0denote the lower surface of the plate.

    For cylindrical shells,the distribution of transverse stresses can also be evaluated,by numerically solving the following 3 differential equations:

    In Eq.(11),the left hand-side involves stress components to be recovered,and the right-hand side are directly evaluated from the solutions of DPH20orDPH27.Each equation is a first-order single-variable ODE,which can be solved with a variety of computational methods,see[Dong,Alotaibi,Mohiuddine and Atluri(2014c)].In this study,simple collocation of Eq.(11)is implemented at a variety of points along the thickness direction. Combined with the traction free condition at the inner surface of the cylindrical shell,stress components σrθ,σrz,σrrcan be efficiently recovered from the computed in-plane normal and shear stresses.

    2.2 Functionally graded material properties

    Figure 2:Geometry and the reference coordinate system for the FG plate.

    We firstly consider a FG plate of lengtha,widthb,and thicknessh,as shown in Fig.2.Thex-,y-,andz-coordinates are along the length,width,and height directions of the plate,respectively.z=0 is placed at the mid-surface of the plate.

    The FG plate is mostly made by a mixture of two material phases,for example,a metal and a ceramic.The material properties of the FG plate,such as Young’s modulusE,mass density ρ and Poisson’s ratio μ,are assumed to be varying continuously throughout the thickness of plate according to the power law distribution of volume fraction of constituents.According to the rule of mixtures,the effective material properties can be expressed as:

    wherePm,Pc,VmandVcare defined as the material properties and volume fractions of metal and ceramic,respectively.

    In this paper,the volume fraction of ceramic is assumed to be subjected to the following power-law distribution along the thickness direction:

    wherepis the material gradient index which should only be positive.Then the effective material properties of the FG plate can be expressed as:

    where the subscriptscandmrepresent ceramic and metal,respectively.The material properties of metals and ceramics used in this study are listed in Table 1.

    Table 1:Material properties of metals and ceramics used in this study.

    As an example,the variation of Young’s modulusEin the thickness direction of a FGAl/Al2O3plate with various values of gradient indexpisshownFig.3.Forp=0 and p=∞,the FG plate is purely ceramic(Al2O3)or metallic(Al),respectively.For other positive values ofp,the material properties vary smoothly from metalrich-surface to ceramic-rich surface with different gradients.

    For functionally graded shells,material properties also vary smoothly from one surface to the other in the thickness direction,which is similar to the FGM plate.

    Figure 3:Variation of Young’s modulus E through the dimensionless thickness(z/h)of Al/Al2O3plate.

    3 Numerical Examples and Results

    3.1 Static analysis

    3.1.1A simply-supported Al/Al2O3FG plate subjected to a uniformly distributed lateral load

    The first example studies a simply-supported thick-section Al/Al2O3FG square plate subjected to a uniformly distributed lateral load:q=1GPa.The plate is square witha=b=100 mm,and the plate thickness ish=10mm.Material parameters used for the FG plate are listed in Table 1.Three different gradient indexes(p=0.2,2,10)are used.

    Figure 4:Finite element model for the FG plate(a/h=10)by(a)NASTRAN and(b)the present DPH20/DPH27 elements.

    We solve these problems using a uniform 10×10 mesh with DPH20 and DPH27 elements respectively,as well as using NASTRAN.We can see the difference of meshes between NASTRAN and the present DPH20/DPH27 model in Fig.4.When modeled by Nastran,it takes about half an hour to obtain the numerical results using 250,000 elements.In contrast,the present DPH20/DPH27 model requires only 100 elements and about 15 seconds of computational time on a regular PC with i7 CPU.Computed in-plane and transverse shear stress are shown in Figs.5-10,from which we can see that NASTRAN and the present method give similar results,though the computation time differs by two orders of magnitudes.Moreover,the DPH20 solution takes slightly less computational time than the DPH27 solution,as it contains a smaller number of DOFs.In fact,in all the following numerical examples,DPH20 always gives almost the same computational results as compared to DPH27,thus only results for DPH20 are demonstrated in the following subsections.

    Figure 5:Computed in-plane normal stress σxxa tx=y=50mm for the thicksection Al/Al2O3FG plate with gradient index p=0.2.

    Figure 6:Computed transverse shear stress σxzat x=y=10mm for the thicksection Al/Al2O3FG plate with gradient index p=0.2.

    Figure 7:Computed in-plane normal stress σxxat x=y=50mm for the thicksection Al/Al2O3FG plate with gradient index p=2.

    Figure 8:Computed transverse shear stress σxzat x=y=10mm for the thicksection Al/Al2O3FG plate with gradient index p=2.

    Figure 9:Computed in-plane normal stress σxxat x=y=50mm for the thicksection Al/Al2O3FG plate with gradient index p=10.

    Figure 10:Computed transverse shear stress σxzat x=y=10mm for the thicksection Al/Al2O3FG plate with gradient index p=10.

    3.1.2A simply-supported Al/Al2O3FG plate subjected to a uniform distributed lateral load

    Figure 11:Geometry and coordinate system of a FG plate.

    In this subsection,we consider a simply-supported thick-section Al/Al2O3FG shell subjected to a uniformly distributed outer-pressure:q=1GPa.Material parameters used in the FG plate are listed in Table 1.The inner radius and outer radius of the cylindrical shell arerin=10mmandrout=11mmrespectively.The spans of the cylindrical shell inzdirection and in θ direction arel=10mmand ? = π respectively.The FG shell is simply supported at θ =0,π andz=0,10.

    We solve this problem using a uniform 60×20 mesh with DPH20 elements,as well as using NASTRAN(with 1.2 million DOFs),as shown in Fig.12.Computed distributions of stresses are shown in Fig.13.It can be clearly seen that the results by the present DPH20 elements agree well with those by NASTRAN even though DPH20 requires significantly less DOFs and computational time.

    Figure 14:Mode shapes of simply-supported Al/Al2O3square FG plates with a/h=5 and p=1.

    3.2 Free vibration analysis

    3.2.1Modal analysis of functionally graded plates

    Figure 12:Finite element model for the FG shell by(a)NASTRAN and(b)the present DPH20 elements.

    Simply-supported Al/Al2O3square FG plates with various gradient indexes are analyzed in this subsection.Material parameters used in the FG plates are listed in Table 1.The span-to-thickness ratioa/h=10 is adopted in the example.The non-dimensional frequency parametersare used to compare results obtained in this paper to the results in the literatures.We solve this problem using a uniform 20×20 mesh with DPH20 elements.The present results are shown in Table 2 along with the exact solution by[Jin,Su,Shi,Ye and Gao(2014)]and the solution by a variational Ritz method[Huang,McGee and Wang(2013)].It is seen that the DPH20 solution agrees well with the exact solution of 3D elasticity to a satisfactory precision.

    Figure 13:Computed σθθ,σrr,σzzatπ,z=5mm for the thick-section Al/Al2O3FG plate.

    We then consider extremely thick simply-supported Al/Al2O3square FG plates with span-to-thickness ratioa/h=5.Two different kinds of meshes with 20×20×1 and 20×20×2 DPH20 elements(one or two layers of elements in the thickness direction)are used.The first five non-dimensional frequency parametersare presented in Table 3. Although both models give acceptable solutions,more accurate results are obtained by using two layers of elements(3.33%and 0.12%maximum errors for 20×20×1 and 20×20×2 meshes respectively).

    Therefore,a uniform 20×20×2 mesh with DPH20 elements will be used if the FG plate is extremely thick(i.e.a/h≤5)in the following numerical examples.

    Simply-supported Al/Al2O3square FG plates with span-to-thickness ratio varied from 5 to 20 and gradient index varied from 0 to 10 are analyzed to verify the accuracy and ef?cient of the present method.The non-dimensional frequency parametersobtained using the DPH20 element are compared with HSDT solutions[Thai,Park and Choi(2013);Hosseini-Hashemi,Fadaee and Atashipour(2011a);Matsunaga(2008)],FSDT solutions[Hosseini-Hashemi,Fadaee

    and Atashipour(2011b);Zuo,Yang,Chen,Xie and Zhang(2014)]and CPT solutions[Thai,Park and Choi(2013)]in Table 4.Obviously,the solutions given by the proposed DPH20 element are in excellent agreement with the HSDT solutions[Thai,Park and Choi(2013);Hosseini-Hashemi,Fadaee and Atashipour(2011a);Matsunaga(2008)]and FSDT solutions[Hosseini-Hashemi,Fadaee and Atashipour(2011b);Zuo,Yang,Chen,Xie and Zhang(2014)].The results also indicate that the CPT over-predicts the natural frequency of FG plates,especially for the thick plate at higher modes of vibration.Moreover,it is found that the nondimensional frequency parameter decreases as the gradient index increases.This is because larger gradient index leads to decrease of stiffness.The mode shapes of simply-supported Al/Al2O3square FG plates witha/h=5 and 10 are depicted in Figs.14 and 15,respectively.

    Table 2:The non-dimensional frequency parametersof the simply-supported Al/Al2O3 square FG plates with a/h=10.

    Table 2:The non-dimensional frequency parametersof the simply-supported Al/Al2O3 square FG plates with a/h=10.

    p Method ωn 1 2 3 4 5 Jin et al.(2014)5.779 13.810 13.810 19.480 19.480 0 Huang et al.(2013)5.777 13.810 13.810 19.480 19.480 DPH20 5.795 13.898 13.898 19.483 19.483 Jin et al.(2014)4.428 10.630 10.630 16.200 16.200 1 Huang et al.(2013)4.426 10.630 10.630 16.200 16.200 DPH20 4.434 10.668 10.668 16.202 16.202 Jin et al.(2014)3.774 8.931 8.931 12.640 12.640 5 Huang et al.(2013)3.772 8.927 8.927 12.640 12.640 DPH20 3.795 9.047 9.047 12.642 12.642

    Table 3:The non-dimensional frequency parameters of simply-supported Al/Al2O3 square FG plates with a/h=5.

    Table 3:The non-dimensional frequency parameters of simply-supported Al/Al2O3 square FG plates with a/h=5.

    p Method ωn 1 2 3 4 5 Jin et al.(2014)5.304 9.742 9.742 11.650 11.650 Huang et al.(2013)5.304 9.742 9.742 11.650 11.650 0 20×20×1 elements 5.356 9.742 9.742 11.849 11.849 20×20×2 elements 5.307 9.742 9.742 11.664 11.664 Jin et al.(2014)4.100 8.089 8.089 9.108 9.108 Huang et al.(2013)4.099 8.089 8.089 9.107 1 9.107 20×20×1 elements 4.123 8.090 8.090 9.201 9.201 20×20×2 elements 4.101 8.089 8.089 9.118 9.118 Jin et al.(2014)3.405 6.296 6.296 7.344 7.344 Huang et al.(2013)3.405 6.296 6.296 7.343 5 7.343 20×20×1 elements 3.470 6.304 6.304 7.589 7.589 20×20×2 elements 3.406 6.296 6.296 7.352 7.352

    Figure 14:Mode shapes of simply-supported Al/Al2O3 square FG plates with a/h=5 and p=1.

    Figure 15:Mode shapes of simply-supported Al/Al2O3 square FG plates with a/h=10 and p=1.

    ?

    Figure 16:First six mode shapes of a SSSS Al/ZrO2 square FG plates with a/h=10 and p=1.

    Figure 17:First six mode shapes of a SCSC Al/ZrO2 square FG plates with a/h=10 and p=1.

    Figure 18:First six mode shapes of a SCSF Al/ZrO2 square FG plates with a/h=10 and p=1.

    In Table 5, the non-dimensional fundamental frequency parametersof Al/ZrO2rectangular FG plates with different boundary conditions are presented.There are five different sets of boundary conditions,namely,SSSS(simply supported at all edges),SCSC(clamped atx=0,aand simply supported aty=0,b),SCSF(clamped atx=0,simply supported aty=0,band free atx=a),SSSC(clamped atx=0 and simply supported atx=a,y=0,b)and SSSF(simply supported atx=0,y=0,band free atx=a).The results obtained by the present method with various values of aspect ratio(b/a=1 and 2),span-to-thickness ratio(a/h=5a rev c)ompared with exact solutions reported in[Jin,Su,Shi,Ye and Gao(2014)].Very good agreement is observed for all the computations,and the difference of the frequency parameters does not exceed 0.91%for the worst case.The first six 3D mode shapes of SSSS,SCSC and SCSF Al/ZrO2square FG plates are shown in Figs.16–18.

    3.2.2Modal analysis of functionally graded shells

    In this subsection,a clamped FG cylindrical shell is studied with geometric parametersa/h=10,a/R=0.1,a=band with different gradient indexes from 0 to∞.The constituents of the FG shell considered in this example are Si3N4and SUS304,whose material properties are given in Table 1.The non-dimensional frequency parameter adopted for comparison isin whichDm=Emh3/12(1?v2m).We solve these problems using a uniform 20×20×1 mesh with DPH20 elements.The first four non-dimensional frequency parameters are presented in Table 6 along with HSDT solutions[Neves,Ferreira,Carrera,Cinefra,Roque,Jorge and Soares(2013);Pradyumna and Bandyopadhyay(2008);Yang and Shen(2003)].From Table 6,it is found that the solutions given by the proposed DPH20 element are in excellent agreement with the HSDT solutions.

    Figure 19:Finite element model for the FG cylindrical shell by(a)NASTRAN and(b)the present DPH20 elements.

    We also consider FG cylindrical shells with different boundary conditions.The constituents of the FG shell are Si3N4and SUS304,whose material properties are given in Table 1.The gradient indexp=2 is used in this example.The inner radius and outer radius of the cylindrical shell arerin=60mmandrout=70mmrespectively.The spans of the cylindrical shell in z direction and in θ direction arel=100mmand φ = π/2 respectively.

    Figure 20:First six non-dimensional frequency parameters and their corresponding mode shapes of a CFFF FG cylindrical shell by(a)NASTRAN and(b)the present DPH20 elements.

    Figure 21:First six non-dimensional frequency parameters and their corresponding mode shapes of a SSSS FG cylindrical shell by(a)NASTRAN and(b)the present DPH20 elements.

    Figure 22:First six non-dimensional frequency parameters and their corresponding mode shapes of a CFFF FG cylindrical shell by(a)NASTRAN and(b)the present DPH20 elements.

    Table 6:The non-dimensional frequency parameterclamped FG cylindrical shells.

    Table 6:The non-dimensional frequency parameterclamped FG cylindrical shells.

    Mode Method p=0 p=0.2 p=2 p=10 p=∞Pradyumna et al.(2008)72.9613 60.0269 39.1457 33.3666 32.0274 Yang et al.(2003)74.5180 57.4790 40.7500 35.8520 32.7610 1 Neves et al.(2013)a 74.2634 60.0061 40.5259 35.1663 32.6108 Neves et al.(2013)b 74.5821 60.3431 40.8262 35.4229 32.8593 present 75.5192 61.7080 41.3946 35.8943 33.4029 Pradyumna et al.(2008)138.5552 113.8806 74.2915 63.2869 60.5546 Yang et al.(2003)144.6630 111.7170 78.8170 69.0750 63.3140 2 Neves et al.(2013)a 141.6779 114.3788 76.9725 66.6482 61.9329 Neves et al.(2013)b 142.4281 115.2134 77.6639 67.1883 62.4886 present 144.9942 118.3963 79.1736 68.5137 63.8204 Pradyumna et al.(2008)138.5552 114.0266 74.3868 63.3668 60.6302 Yang et al.(2003)145.7400 112.5310 79.4070 69.6090 63.8060 3 Neves et al.(2013)a 141.8485 114.5495 77.0818 66.7332 62.0082 Neves et al.(2013)b 142.6024 115.3665 77.7541 67.2689 62.5668 present 145.1461 118.5338 79.2588 68.5822 63.8848 Pradyumna et al.(2008)195.5366 160.6235 104.7687 89.1970 85.1788 Yang et al.(2003)206.9920 159.8550 112.4570 98.3860 90.3700 4 Neves et al.(2013)a 199.1566 160.7355 107.9484 93.3350 86.8160 Neves et al.(2013)b 200.3158 162.0337 108.9677 94.0923 87.6341 present 204.4336 166.8808 111.3657 96.2167 89.6707

    Three different boundary conditions are studied which are CFFF,SSSS and CSSF.We solve these problems using a uniform 20×20×1 mesh with DPH20 elements,as well as using NASTRAN.The comparison between the meshes by NASTRAN(with 0.33 million DOFs)and the present method is shown in Fig.19.The nondimensional frequency parameter used for comparison iswhichDm=Emh3/12(1?v2m).The first six mode shapes along with the corresponding non-dimensional frequency parameters are shown in Figs.20–22.Very good agreement is obtained for each of the different cases.

    4 Conclusion

    Through extensive numerical results of static and dynamic analyses of functionallygraded plates and shells,it is demonstrated that the proposed DPH20 and DPH27 elements are entirely capable of accurately and ef?ciently predicting the static and dynamical behaviors of FG structures in a very simple and cost-effective manner.Because higher-order and layer-wise plate and shell theories involve(1)postulating very complex assumptions of plate/shell kinematics in the thickness direction,(2)defining generalized variables of displacements,strains,and stresses,and(3)developing very complex governing equilibrium,compatibility,and constitutive equations in terms of newly-defined generalized variables,while the currently proposed DPH20 and DPH27 elements merely involve displacement DOFs at each node,and rely only on the simple theory of solid mechanics,it is thus concluded by the authors that the development of higher-order or layer-wise theories are not entirely necessary for analyses of FG structures.

    Acknowledgement:This research is supported by the Mechanics Section,Vehicle Technology Division,of the US Army Research Labs.The support of National Natural Science Foundation of China(grant No.11502069)and Natural Science Foundation of Jiangsu Province(grant No.BK20140838)is also thankfully acknowledged.

    在GeoIPAS軟件平臺(tái)支持下,以地球化學(xué)圖為依據(jù),結(jié)合區(qū)內(nèi)各元素分布分配特征和地質(zhì)構(gòu)造條件,確定單元素異常下限并圈定單元素異常。異常下限計(jì)算采用對(duì)數(shù)計(jì)算公式:

    Atluri,S.N.(2005):Methods of Computer Modeling in Engineering and the Sciences,Tech Science Press.

    Batra,R.C.;Jin,J.(2005):Natural frequencies of a functionally graded anisotropicrectangular plate.Journal of Soundand Vibration,vol.282,issue1,pp.509-516.

    Carrera,E.;Brischetto,S.;Robaldo,A.(2008):Variable kinematic model for the analysis of functionally graded material plates.AIAA Journal,vol.46,issue 1,pp.194-203.

    Carrera,E.;Brischetto,S;Cinefra,M.;Soave,M.(2011):Effects of thickness stretching in functionally graded plates and shells.Composites Part B:Engineering,vol.42,issue 2,pp.123-133.

    Cheng,Z.Q.;Batra,R.C.(2000):Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories.Archives of Mechanics,vol.52,issue 1,pp.143-158.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014a):A simple locking-alleviated 4-node mixed-collocation finite element with over-integration,for homogeneous or functionally-graded or thick-section laminated composite beams.CMC:Computers,Materials&Continua,vol.40,issue 1,pp.49-77.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014b):A simple locking-alleviated 3D 8-Node mixed-collocation C0finite element with overintegration,for functionally-graded and laminated thick-section plates and shells,with&without z-pins.CMC:Computers,Materials&Continua,vol.41,issue 3,pp.163-192.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014c):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,no.1,pp.1-85.

    Ferreira,A.J.M.;Batra,R.C.;Roque,C.M.C.;Qian,L.F.;Martins,P.A.L.S.(2005):Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method.Composite Structures,vol.69,issue 4,pp.449-457.

    Hosseini-Hashemi,S.;Fadaee,M.;Atashipour,S.R.(2011a):Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure.Composite Structures,vol.93,issue 2,pp.722-735.

    Hosseini-Hashemi,S.;Fadaee,M.;Atashipour,S.R.(2011b):A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates.International Journal of Mechanical Sciences,vol.53,issue 1,pp.11-22.

    Huang,C.S.;McGee,O.G.;Wang,K.P.(2013):Three-dimensional vibrations of cracked rectangular parallelepipeds of functionally graded material.International Journal of Mechanical Sciences,vol.70,pp.1-25.

    Jin,G.;Su,Z.;Shi,S.;Ye,T.;Gao,S.(2014):Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions.Composite Structures,vol.108,pp.565-577.

    Lo,K.H.;Christensen,R.M.;Wu,E.M.(1977):A high-order theory of plate deformation—part 2:laminated plates.Journal of Applied Mechanics,vol.44,issue 4,pp.669-676.

    Matsunaga,H.(2008):Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory.Composite structures,vol.82,pp.499-512.

    Mindlin,R.D.(1951):Influence of rotatory inertia and shear on flexural motions ofisotropic,elastic plates.Journal of Applied Mechanics,vol.18,pp.31–38.

    Neves,A.M.A.;Ferreira,A.J.M.;Carrera,E.;Cinefra,M.;Roque,C.M.C.;Jorge,R.M.N.;Soares,C.M.M.(2013):Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation,accounting for through-the-thickness deformations.European Journal of Mechanics-A/Solids,vol.37,pp.24-34.

    Pradyumna,S.;Bandyopadhyay,J.N.(2008):Free vibration analysis of functionallygraded shells by a higher-order finite element formulation.Journal of Sound and Vibration,vol.318,no.1,pp.176-192.

    Qian,L.F.:Batra,R.C.:Chen,L.M.(2004):Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method.Composites Part B:Engineering,vol.35,issue 6,pp.685-697.

    Ramirez,F.:Heyliger,P.R.;Pan,E.(2006):Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach.Composites Part B:Engineering,vol.37,issue 1,pp.10-20.

    Reddy,J.N.(1984):A simple higher-order theory for laminated composite plates.Journal of Applied Mechanics,vol.51,issue 4,pp.745-752.

    Reddy,J.N.(2000):Analysis of functionally graded plates.International Journal for Numerical Methods in Engineering,vol.47,issue 1-3,pp.663-684.

    Reddy,J.N.(2004):Mechanics of laminated composite plates and shells:theory and analysis,CRC press.

    Reissner,E.(1945):The effect of transverse shear deformation on the bending of elastic plates.Journal of Applied Mechanics,vol.12,pp.69-77.

    Thai,H.T.;Park,T.;Choi,D.H.(2013):An efficient shear deformation theory for vibration of functionally graded plates.Archive of Applied Mechanics,vol.83(1),pp.137-149.

    Timoshenko,S.;Woinowsky-Krieger,S.(1959):Theory of Plates and Shells.McGraw hill,New York.

    Yang,J.;Shen,H.S.(2003):Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels.Journal of Sound and Vibration,vol.261,no.5,pp.871-893.

    Zenkour,A.M.(2006):Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Plates.Applied Mathematical Modelling,vol.30,no.1,pp.67–84.

    Zienkiewicz,O.C.;Taylor,R.L.(1977):The finite element method(Vol.3).London:McGraw-hill.

    Zuo,H.;Yang,Z.;Chen,X.;Xie,Y.;Zhang,X.(2014):Bending,Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method.CMC:Computers,Materials&Continua,vol.44,no.3,pp.167-204.

    1Taizhou Polytechnic College,China.

    2School of Aeronautic Science and Engineering,Beihang University,China.

    3Corresponding Author,Email:dong.leiting@gmail.com

    4Department of Mechanical Engineering,Texas Tech University,USA.

    猜你喜歡
    分配特征
    抓住特征巧觀察
    基于可行方向法的水下機(jī)器人推力分配
    新型冠狀病毒及其流行病學(xué)特征認(rèn)識(shí)
    應(yīng)答器THR和TFFR分配及SIL等級(jí)探討
    如何表達(dá)“特征”
    遺產(chǎn)的分配
    不忠誠(chéng)的四個(gè)特征
    一種分配十分不均的財(cái)富
    績(jī)效考核分配的實(shí)踐與思考
    抓住特征巧觀察
    最近最新中文字幕免费大全7| av一本久久久久| av国产精品久久久久影院| 一级a爱视频在线免费观看| 国产乱人偷精品视频| 日本黄色日本黄色录像| 在线观看免费日韩欧美大片| 制服人妻中文乱码| 老司机在亚洲福利影院| 在线观看一区二区三区激情| 美女脱内裤让男人舔精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品久久精品一区二区三区| 蜜桃国产av成人99| 捣出白浆h1v1| 国产极品粉嫩免费观看在线| 国产成人a∨麻豆精品| 丰满饥渴人妻一区二区三| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| av天堂久久9| av女优亚洲男人天堂| 搡老岳熟女国产| 天天添夜夜摸| 亚洲精品乱久久久久久| 在现免费观看毛片| 精品亚洲成国产av| 99国产综合亚洲精品| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 国产日韩欧美视频二区| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 热re99久久精品国产66热6| 亚洲视频免费观看视频| 在线观看免费日韩欧美大片| 久久人人爽av亚洲精品天堂| 悠悠久久av| 亚洲男人天堂网一区| a级毛片在线看网站| 亚洲精品国产一区二区精华液| 2021少妇久久久久久久久久久| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 欧美av亚洲av综合av国产av | 中文字幕最新亚洲高清| 啦啦啦啦在线视频资源| 国产在线免费精品| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 久久久久久久大尺度免费视频| 一级爰片在线观看| 国产一区有黄有色的免费视频| 精品一区二区三卡| 另类亚洲欧美激情| 男女无遮挡免费网站观看| 国产免费又黄又爽又色| 一级爰片在线观看| 亚洲国产精品999| 美女高潮到喷水免费观看| av有码第一页| 午夜福利在线免费观看网站| av.在线天堂| 18在线观看网站| 国产精品一国产av| 国产一区二区三区av在线| 操美女的视频在线观看| 亚洲精品国产av成人精品| 国产日韩欧美亚洲二区| 大陆偷拍与自拍| 亚洲免费av在线视频| 一本大道久久a久久精品| 免费黄频网站在线观看国产| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 久久天躁狠狠躁夜夜2o2o | 老司机亚洲免费影院| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 性色av一级| 不卡视频在线观看欧美| 99久久精品国产亚洲精品| 天天躁日日躁夜夜躁夜夜| videos熟女内射| 你懂的网址亚洲精品在线观看| 可以免费在线观看a视频的电影网站 | 亚洲美女搞黄在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 51午夜福利影视在线观看| 国产精品人妻久久久影院| av电影中文网址| 久久国产精品男人的天堂亚洲| 天天操日日干夜夜撸| 国产精品三级大全| 国产精品蜜桃在线观看| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 91精品三级在线观看| 免费观看a级毛片全部| 久久97久久精品| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 国产精品亚洲av一区麻豆 | 青草久久国产| 午夜91福利影院| 国产精品麻豆人妻色哟哟久久| 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 成人影院久久| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区四区激情视频| 一个人免费看片子| 国产极品天堂在线| 亚洲色图综合在线观看| 丝瓜视频免费看黄片| 丝袜美腿诱惑在线| 亚洲国产精品一区三区| 新久久久久国产一级毛片| av.在线天堂| 男女边吃奶边做爰视频| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 国产片内射在线| 亚洲精品在线美女| av.在线天堂| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 国产免费福利视频在线观看| 校园人妻丝袜中文字幕| 韩国精品一区二区三区| 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| 欧美av亚洲av综合av国产av | 狠狠精品人妻久久久久久综合| 天天添夜夜摸| 久久影院123| 性色av一级| 亚洲av日韩精品久久久久久密 | 伦理电影免费视频| 国产深夜福利视频在线观看| 肉色欧美久久久久久久蜜桃| 久久人人爽av亚洲精品天堂| 国产精品久久久av美女十八| 成人黄色视频免费在线看| 亚洲婷婷狠狠爱综合网| 久久精品aⅴ一区二区三区四区| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 一区二区三区精品91| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 99精品久久久久人妻精品| av电影中文网址| 考比视频在线观看| 亚洲天堂av无毛| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 国产欧美日韩综合在线一区二区| 欧美日韩精品网址| 午夜福利在线免费观看网站| 久久热在线av| 搡老岳熟女国产| 一区二区三区精品91| 午夜日韩欧美国产| 亚洲第一青青草原| 国产成人欧美在线观看 | 免费在线观看完整版高清| 亚洲av成人精品一二三区| 欧美国产精品va在线观看不卡| 亚洲精品一二三| 电影成人av| 久久久久国产一级毛片高清牌| 成人18禁高潮啪啪吃奶动态图| 亚洲成人手机| 亚洲熟女毛片儿| 国产色婷婷99| 黄色一级大片看看| 日韩大码丰满熟妇| 中文字幕色久视频| 我的亚洲天堂| 老司机亚洲免费影院| 国产精品麻豆人妻色哟哟久久| 捣出白浆h1v1| 色精品久久人妻99蜜桃| 性少妇av在线| 91精品国产国语对白视频| 男女午夜视频在线观看| 国产精品成人在线| 欧美日韩av久久| 亚洲精品美女久久av网站| 可以免费在线观看a视频的电影网站 | 欧美激情高清一区二区三区 | 久久国产精品大桥未久av| 2018国产大陆天天弄谢| 亚洲精品一区蜜桃| 中文欧美无线码| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 丰满乱子伦码专区| 国产亚洲精品第一综合不卡| 亚洲天堂av无毛| 99久国产av精品国产电影| 国产伦理片在线播放av一区| 自拍欧美九色日韩亚洲蝌蚪91| 妹子高潮喷水视频| 伊人亚洲综合成人网| 亚洲色图综合在线观看| 亚洲欧美成人精品一区二区| 高清av免费在线| 中文字幕制服av| 亚洲一码二码三码区别大吗| 亚洲国产欧美网| 国产又色又爽无遮挡免| 大码成人一级视频| 伊人久久国产一区二区| 成人黄色视频免费在线看| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 精品久久蜜臀av无| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o | 国产日韩欧美亚洲二区| 少妇被粗大猛烈的视频| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| 午夜福利视频精品| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 黄片播放在线免费| 国产在线一区二区三区精| 亚洲成色77777| 国产精品 欧美亚洲| 韩国精品一区二区三区| 亚洲天堂av无毛| 亚洲国产精品成人久久小说| 在线天堂最新版资源| 观看美女的网站| 亚洲第一av免费看| 亚洲国产av新网站| 美女视频免费永久观看网站| 午夜日本视频在线| 欧美日韩av久久| 黑丝袜美女国产一区| 久久综合国产亚洲精品| 国产精品国产av在线观看| 色吧在线观看| 丝瓜视频免费看黄片| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 欧美日韩一区二区视频在线观看视频在线| 天天影视国产精品| 国产黄频视频在线观看| 水蜜桃什么品种好| 国产成人精品无人区| 少妇猛男粗大的猛烈进出视频| 成人午夜精彩视频在线观看| 在线观看三级黄色| 国产日韩欧美亚洲二区| 欧美日韩成人在线一区二区| a 毛片基地| 天天添夜夜摸| 中文字幕高清在线视频| 九草在线视频观看| 我的亚洲天堂| 久久av网站| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 亚洲av综合色区一区| 国产精品一区二区在线观看99| 精品一区在线观看国产| 久久精品熟女亚洲av麻豆精品| 视频区图区小说| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 精品国产国语对白av| 高清视频免费观看一区二区| 一级毛片电影观看| 国产xxxxx性猛交| 日韩不卡一区二区三区视频在线| 亚洲成人一二三区av| 老鸭窝网址在线观看| 午夜福利影视在线免费观看| 19禁男女啪啪无遮挡网站| 久久久久精品国产欧美久久久 | av国产久精品久网站免费入址| 国产成人一区二区在线| 黑人猛操日本美女一级片| 伊人久久国产一区二区| 日韩不卡一区二区三区视频在线| 国产欧美日韩一区二区三区在线| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 国产极品天堂在线| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 老司机影院成人| 国产男女超爽视频在线观看| 国产1区2区3区精品| 尾随美女入室| 欧美久久黑人一区二区| 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| 中国三级夫妇交换| 精品亚洲成国产av| 中国三级夫妇交换| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 亚洲三区欧美一区| 久久99精品国语久久久| 久久人人爽人人片av| 满18在线观看网站| 亚洲国产精品成人久久小说| 精品福利永久在线观看| 2021少妇久久久久久久久久久| 成人亚洲欧美一区二区av| 亚洲精品av麻豆狂野| 久久av网站| 国产视频首页在线观看| 亚洲精品一二三| 黑人猛操日本美女一级片| 亚洲国产看品久久| 国产成人啪精品午夜网站| 亚洲欧美色中文字幕在线| e午夜精品久久久久久久| www.自偷自拍.com| 免费在线观看黄色视频的| 免费看av在线观看网站| 亚洲天堂av无毛| 性色av一级| 欧美日韩成人在线一区二区| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 两个人看的免费小视频| 久久精品久久久久久久性| 性高湖久久久久久久久免费观看| 视频区图区小说| 老司机在亚洲福利影院| 国产精品二区激情视频| 成人免费观看视频高清| 精品一区二区三区四区五区乱码 | 久久午夜综合久久蜜桃| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 大香蕉久久成人网| 久久韩国三级中文字幕| 国产野战对白在线观看| 国产有黄有色有爽视频| 最新在线观看一区二区三区 | 午夜免费鲁丝| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 久久97久久精品| 黄色视频不卡| 亚洲一区中文字幕在线| 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 成人黄色视频免费在线看| 亚洲五月色婷婷综合| 亚洲国产欧美一区二区综合| 精品少妇一区二区三区视频日本电影 | 视频区图区小说| 亚洲专区中文字幕在线 | 欧美在线黄色| 国产精品免费大片| 亚洲视频免费观看视频| 一级毛片电影观看| 欧美黄色片欧美黄色片| 亚洲精品美女久久久久99蜜臀 | 777久久人妻少妇嫩草av网站| 亚洲国产精品一区二区三区在线| 国产片特级美女逼逼视频| 天天操日日干夜夜撸| a 毛片基地| 满18在线观看网站| 9热在线视频观看99| 欧美精品人与动牲交sv欧美| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 亚洲精品在线美女| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 中文字幕色久视频| 日韩欧美一区视频在线观看| 国产亚洲午夜精品一区二区久久| 亚洲成人国产一区在线观看 | 欧美亚洲日本最大视频资源| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 精品午夜福利在线看| avwww免费| 男女边吃奶边做爰视频| 欧美黄色片欧美黄色片| 国产1区2区3区精品| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频| 精品国产乱码久久久久久男人| av不卡在线播放| 男女下面插进去视频免费观看| 水蜜桃什么品种好| 91aial.com中文字幕在线观看| 亚洲国产欧美日韩在线播放| 成人国产麻豆网| 亚洲伊人色综图| 国产97色在线日韩免费| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 国产探花极品一区二区| 热re99久久国产66热| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 在线观看免费午夜福利视频| 伊人久久国产一区二区| 国产亚洲欧美精品永久| 久久天堂一区二区三区四区| 久久精品久久精品一区二区三区| 99国产综合亚洲精品| 国产精品嫩草影院av在线观看| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| 欧美激情 高清一区二区三区| 亚洲精品久久午夜乱码| videosex国产| 亚洲国产最新在线播放| 免费观看av网站的网址| 一二三四在线观看免费中文在| 日韩大码丰满熟妇| 国产精品久久久久久久久免| 一级毛片 在线播放| 精品国产一区二区三区四区第35| 亚洲国产精品一区三区| 大香蕉久久网| 咕卡用的链子| 纵有疾风起免费观看全集完整版| 最近的中文字幕免费完整| 欧美亚洲 丝袜 人妻 在线| 女的被弄到高潮叫床怎么办| 欧美日韩视频精品一区| 飞空精品影院首页| 99热网站在线观看| 一区二区日韩欧美中文字幕| 天堂8中文在线网| 人人妻人人澡人人爽人人夜夜| 亚洲欧美清纯卡通| 亚洲国产欧美一区二区综合| 国产精品久久久久久久久免| 国产精品亚洲av一区麻豆 | 久久青草综合色| 黄片小视频在线播放| 久久久久精品国产欧美久久久 | 电影成人av| 久久精品亚洲熟妇少妇任你| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 最新在线观看一区二区三区 | 欧美国产精品va在线观看不卡| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 青春草视频在线免费观看| 看非洲黑人一级黄片| 999精品在线视频| 国产极品天堂在线| 最近手机中文字幕大全| 国产伦理片在线播放av一区| 欧美另类一区| 涩涩av久久男人的天堂| 成人国产麻豆网| 纯流量卡能插随身wifi吗| 婷婷色综合大香蕉| 亚洲国产毛片av蜜桃av| 制服人妻中文乱码| 国产精品一区二区在线观看99| 国产老妇伦熟女老妇高清| 只有这里有精品99| 日日啪夜夜爽| 精品一区在线观看国产| 国产免费现黄频在线看| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 国产日韩欧美在线精品| 精品一区二区三区av网在线观看 | 午夜免费鲁丝| 中文字幕人妻丝袜制服| 天堂俺去俺来也www色官网| 亚洲国产av新网站| av视频免费观看在线观看| 最近中文字幕高清免费大全6| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 操出白浆在线播放| 午夜影院在线不卡| 人人澡人人妻人| 欧美日韩亚洲综合一区二区三区_| 久久久久国产精品人妻一区二区| 哪个播放器可以免费观看大片| 少妇精品久久久久久久| 精品第一国产精品| 国产av码专区亚洲av| 秋霞在线观看毛片| 少妇人妻久久综合中文| 国产成人午夜福利电影在线观看| 色播在线永久视频| 亚洲av中文av极速乱| 国产爽快片一区二区三区| 啦啦啦在线观看免费高清www| 99re6热这里在线精品视频| 欧美乱码精品一区二区三区| 亚洲人成电影观看| www.自偷自拍.com| www.熟女人妻精品国产| 性高湖久久久久久久久免费观看| 午夜激情av网站| 日韩精品有码人妻一区| 精品一区二区三卡| 亚洲色图综合在线观看| 天天操日日干夜夜撸| 久久久久久人人人人人| 2018国产大陆天天弄谢| 亚洲中文av在线| 丝袜脚勾引网站| 国产极品粉嫩免费观看在线| 欧美黑人精品巨大| 人人澡人人妻人| 久久国产精品大桥未久av| 一级黄片播放器| 免费在线观看黄色视频的| h视频一区二区三区| 黄色毛片三级朝国网站| 久久免费观看电影| 午夜精品国产一区二区电影| 亚洲国产中文字幕在线视频| 久久精品人人爽人人爽视色| 日韩 亚洲 欧美在线| 操出白浆在线播放| 国产xxxxx性猛交| 日韩成人av中文字幕在线观看| 久久久久久久久久久免费av| 久久精品亚洲熟妇少妇任你| 中文字幕人妻熟女乱码| 一区二区日韩欧美中文字幕| 王馨瑶露胸无遮挡在线观看| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 两个人看的免费小视频| 精品免费久久久久久久清纯 | 另类亚洲欧美激情| 欧美乱码精品一区二区三区| 中文欧美无线码| 国产日韩欧美亚洲二区| 亚洲精品国产色婷婷电影| 午夜福利在线免费观看网站| 麻豆精品久久久久久蜜桃| 99热网站在线观看| 欧美黑人欧美精品刺激| 日本欧美国产在线视频| 精品国产乱码久久久久久小说| 日韩欧美一区视频在线观看| 久久精品国产综合久久久| 丝袜人妻中文字幕| 国产亚洲精品第一综合不卡| 成人漫画全彩无遮挡| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| 建设人人有责人人尽责人人享有的| 一级毛片 在线播放| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品自拍成人| 国产亚洲精品第一综合不卡| 黄色怎么调成土黄色| 欧美精品一区二区大全| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产一区二区精华液| 色94色欧美一区二区| 国产精品一二三区在线看| xxx大片免费视频| 久久鲁丝午夜福利片| 777久久人妻少妇嫩草av网站| 99久久精品国产亚洲精品| 男女床上黄色一级片免费看| 曰老女人黄片| 日本vs欧美在线观看视频| 亚洲在久久综合| 国产精品99久久99久久久不卡 | 在线观看免费视频网站a站| 精品国产国语对白av| 亚洲色图 男人天堂 中文字幕| 午夜福利乱码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 免费观看a级毛片全部| 赤兔流量卡办理| 国产精品久久久久成人av| 日韩精品有码人妻一区| 欧美激情 高清一区二区三区| 亚洲精品日本国产第一区|