• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      西拉葡萄漿果代謝物對低海拔和高海拔氣象因子的響應(yīng)

      2015-12-31 08:56:04毛如志張國濤王家逵杜飛鄧維萍邵建輝趙新節(jié)朱書生何霞紅
      現(xiàn)代農(nóng)業(yè)科技 2015年20期
      關(guān)鍵詞:西拉

      毛如志++張國濤++王家逵++杜飛++鄧維萍++邵建輝++趙新節(jié)++朱書生++何霞紅

      摘要 以釀酒葡萄西拉為材料,采用GC-TOF-MS技術(shù)解析低海拔(41 m)和高海拔(2 278 m)產(chǎn)區(qū)氣象因子對西拉漿果代謝組的影響。結(jié)果表明:2 278 m產(chǎn)區(qū)的品質(zhì)高于41 m產(chǎn)區(qū),代謝組分析表明2 278 m產(chǎn)區(qū)西拉漿果上調(diào)22種代謝物,下調(diào)11種代謝物;代謝通路表明:2 278 m產(chǎn)區(qū)西拉積累更多的風(fēng)味物質(zhì)、增強營養(yǎng)價值和人類保健物質(zhì);通路富集發(fā)現(xiàn)西拉葡萄漿果通過調(diào)整氨基酸、碳水化合物、脂質(zhì)、氮代謝通路來適應(yīng)2 278 m產(chǎn)區(qū)下的逆境;DCCA分析表明環(huán)境因子中的日均紫外輻射、生長時期總輻射和日均輻射是調(diào)控西拉果實代謝物的主要因子,因此西拉通過代謝物和代謝通路的多樣性策略來適應(yīng)高海拔環(huán)境,提高果實品質(zhì)。

      關(guān)鍵詞 西拉;海拔梯度;代謝組;代謝通路;通路富集

      中圖分類號 S663.1 文獻標(biāo)識碼 A 文章編號 1007-5739(2015)20-0240-07

      Shiraz/Syrah Grape Metabolites Response to Low/High Altitudes

      MAO Ru-zhi 1 ZHANG Guo-tao 1 WANG Jia-kui 2 DU Fei 1 DENG Wei-ping 1 SHAO Jian-hui 1 ZHAO Xin-jie 3

      ZHU Shu-sheng 1 HE Xia-hong 1 *

      (1 The National Center for Agricultural Biodiversity,Yunnan Plateau Characteristic Agricultural Industry Research Institute,Yunnan Agricultural University,Kunming Yunnan 650201; 2 VATS Group Yunnan Shangri-La Wine Limited by Share Ltd; 3 Qilu University of Technology)

      Abstract Shiraz/Syrah grape as experiment material in this study,GC-TOF- MS based technique employed for analytical low altitude(41 m)and high altitude(2 278 m) metabolism. The results showed that Shiraz/Syrah qualities in 2 278 m region were higher than that in 41 m region,the metabolism analysis showed that 2 278 m region up-regulated 22 kinds of metabolites of Syrah berries,down-regulated 11 kinds of metabolites. The metabolic pathways:2 278 m region accumulation of flavor substances,enhanced nutritional value and human health care materials;pathway enrichment under the 2 278 m region grape berries by adjusted amino acids,carbohydrate,lipids,nitrogen metabolism pathway to adapt to the 2 278 m region abiotic stress;DCCA analysis showed that the environmental factors such as daily UV radiation,growth period total radiation and daily radiation were main factors controlling Shiraz/Syrah fruit metabolites acccumulation,therefore Shiraz/Syrah through metabolites and metabolic pathways diversity strategies to adapt to high altitude physical environment,enhenced the fruit quality.

      Key words Shiraz/Syrah;altitude gradient;metabolism;metabolic pathway;pathway enrichment

      葡萄是世界性的重要作物,西拉(Vitis Vinifera L.cv.shiraz/syrah)是用于生產(chǎn)優(yōu)質(zhì)葡萄酒的重要品種,原產(chǎn)地法國,具有相對高產(chǎn)、抗病能力強、發(fā)芽時間較晚、成熟時間較長等優(yōu)良特性,種植面積排名世界第五,達13.7萬hm2(OIV),西拉在舊世界和新世界葡萄酒產(chǎn)區(qū)都有種植,其中以法國和澳大利亞種植面積最大,西拉葡萄是目前最高貴、最時尚的紅葡萄品種之一,能夠生產(chǎn)出品質(zhì)優(yōu)異并且具有非凡陳年能力、多樣化風(fēng)格的的葡萄酒[1-2]。

      作為釀酒葡萄,西拉在中國的種植海拔不斷攀升,從海拔41 m的沿海地區(qū)到西北賀蘭山山脈(海拔1 200 m)[3-4],從海拔1 200 m西昌市大營西南干熱河谷區(qū)到香格里拉區(qū)域海拔2 278 m瀾滄江干冷河谷區(qū)德欽魯瓦都有種植,然而對于高海拔區(qū)域2 278 m西拉的品質(zhì)和代謝物的積累規(guī)律缺少研究,因此有必要對低海拔和高海拔區(qū)域2 278 m漿果的代謝物進行定量或定性研究。葡萄漿果代謝物的種類與生育期和環(huán)境有關(guān)[5-6],外界環(huán)境極易影響代謝物,如水分脅迫、紫外輻射、病原侵染、海拔梯度、氧氣含量、負(fù)載量等[7-16]。研究認(rèn)為葡萄通過調(diào)整代謝物的種類和代謝通路來適應(yīng)逆境[11,17-18],代謝物如氨基酸、有機酸、高級醇和酚類、糖類是人類保健品,具有抗氧化、抑制癌細(xì)胞的生長、抗肝性腦病腫瘤、抗細(xì)胞凋亡等生物學(xué)功能;與單寧結(jié)構(gòu)、濃縮度、風(fēng)味物質(zhì)和果實耐儲性、多酚活性、果實后熟、抗病性、營養(yǎng)物質(zhì)積累、葡萄酒中色素的形成和維持、抗氧化活性、多胺的生物合成、脂肪和生物合成等功能有關(guān)[18-43]。endprint

      環(huán)境代謝組是新發(fā)展起來研究環(huán)境與代謝物關(guān)系的研究技術(shù),研究技術(shù)如NMR(Nuclear Magnetic Resonance)、GC-TOF-MS(Gas chromatography time-of-flight-Mass)、GC-GC-TOF-MS(Gas chromatography Gas chromatography time-of-flight Mass)、UPLC-MS(Ultra high liquid chromatography Mass)等對不同環(huán)境條件下果實代謝物進行定性及定量[44-49],其中GC-TOF-MS技術(shù)對應(yīng)用較為廣泛。代謝物是釀酒葡萄品質(zhì)構(gòu)成的重要因子,代謝物的代謝通路及代謝網(wǎng)絡(luò)對次生代謝產(chǎn)物的形成與積累具有決定作用[50-55],環(huán)境因子如何影響代謝通路及高海拔區(qū)域?qū)Υx通路及其網(wǎng)絡(luò)的調(diào)控少見報道,因此有必要對高海拔區(qū)域與其他低海拔區(qū)域的代謝物進行比較研究,以明確區(qū)域的關(guān)系,因此研究比較高海拔與低海拔之間代謝的差異對了解果實品質(zhì)的形成及環(huán)境對代謝物的調(diào)控規(guī)律具有重要意義,明確高海拔區(qū)域的葡萄漿果代謝通路及代謝通路的多樣性與環(huán)境的關(guān)系。

      1 材料與方法

      1.1 試驗地概況

      試驗選擇了分布于海拔41、2 278 m的2個西拉葡萄園,具體信息如表1所示。

      1.2 試驗材料

      試驗葡萄品種為西拉。2013—2014連續(xù)2年監(jiān)測花后120 d的內(nèi)含物,2013年葡萄園中種植的葡萄樹齡均為6年。主要儀器有葡萄果粒用榨漿機(JYDZ-16S,九陽股份有限公司)、溫度補償數(shù)字折射儀(Antago,PAL-1,東京,日本)、Ti-touch(瑞士,萬通)、GC色譜儀(Agilent7890A,USA),質(zhì)譜儀(LECO Chroma TOF PEGASUS 4D,USA),離心管、離心機、打孔器、研磨儀(eppendorf)、真空濃縮器、烘箱。

      1.3 氣象數(shù)據(jù)監(jiān)測

      試驗采用GPRS-Base系統(tǒng)氣象站采集上述4個不同海拔梯度葡萄園的氣象數(shù)據(jù)。氣象站安置在離葡萄園20 m以內(nèi)的區(qū)域,離地表1.5 m。2013—2014年連續(xù)監(jiān)測大氣環(huán)境中光輻射溫度、日照時長、紫外輻射和總輻射、降雨量及相對濕度,數(shù)據(jù)記錄15 min/次。

      1.4 漿果樣品采集及后續(xù)處理

      每個葡萄園隨機選擇60株,每株留枝量控制在16個結(jié)果枝的葡萄作為采樣植株,采收花后120 d的1 kg成熟果粒,4 ℃保存,帶回實驗室做后續(xù)處理,先將葡萄果粒用榨漿機榨漿后,1 349 g離心10 min,濾液儲存在-20 ℃?zhèn)溆?。用于代謝組學(xué)分析的樣品,于2013年每個葡萄園隨機選擇40株,每株留枝量控制在16個結(jié)果枝的葡萄作為采樣植株,隨機采摘收花后120 d,1 kg成熟果粒分裝在18個50 mL的離心管中,-80 ℃液氮保存。

      1.5 漿果品質(zhì)分析

      利用溫度補償數(shù)字折射儀測定可溶性固形物的含量,測定溫度控制在25 ℃,含量以Brix表示,3次重復(fù)。利用Ti-touch測定果實pH值和總酸,3次重復(fù);總酸測定:滴定標(biāo)準(zhǔn)液為0.1 mol/L NaOH溶液,鄰苯二甲酸氫鉀作為基準(zhǔn)物質(zhì)標(biāo)定NaOH溶液,pH值8.2作為滴定終點OIV(OIV 1990),結(jié)果表示為酒石酸當(dāng)量為g/L,3次重復(fù)。參照Iland等[21]方法測定還原糖含量,采用DNS(3,5-二硝基水楊酸試劑)法,采用標(biāo)準(zhǔn)葡萄糖濃度梯度作標(biāo)準(zhǔn)曲線,在540 nm波長下吸光度,單位為g/L,3次重復(fù)。參照Iland等[21]方法測定原花青素含量,采用改進的甲醇-鹽酸法浸提,測定紫外可見光520 nm波長的吸光度,單位為mg/g,3次重復(fù)。參照Iland等[21]方法,利用方福林-肖卡法測定葡萄漿果總酚含量測定760 nm波長的吸光度,單位為mg/g,3次重復(fù)。參照Iland等[21]方法,利用福林-丹尼斯法測定葡萄漿果單寧含量,于710 nm波長的吸光度,單位為mg/g,3次重復(fù)。參照Iland等[21]方法測定葡萄漿果黃銅酮和黃酮類化合物的含量,分別測定510、502 nm波長的吸光度,單位為mg/g,3次重復(fù)。采用Braford法測定可溶性蛋白質(zhì)[21],考馬斯亮藍(lán)G-250顯色后,測定595 nm波長的吸光度,單位為g/L,3次重復(fù)。

      1.6 漿果代謝組的分析

      每個試驗點采用打孔器收集葡萄漿果的果肉、果皮和種子,收集3個100 g樣品于50 mL離心管中,混勻后從中取100 mg葡萄樣品于2 mL離心管里,每個試驗點重復(fù)數(shù)為3次;然后加入60 μL 0.2 mg/mL核糖醇(sigma,Inc. USA),加入0.5 mL甲醇氯仿混合液(體積比3∶1),70 Hz 5 min研磨儀處理,70 ℃烘箱10 min,緊接著將樣本4 ℃,12 000 r/min離心15 min,小心地取出0.4 mL上清液于2 mL進樣瓶(甲烷硅基化)中,在真空濃縮器中干燥提取物,向干燥后的代謝物加入80 μL甲氧胺鹽試劑(甲氧胺鹽酸鹽,溶于吡啶20 mg/mL),輕輕混勻后,放入烘箱中37 ℃孵育2 h,向每個樣品中迅速加入100 μL BSTFA(含1% TMCS,v/v,REGIS Tec-hnologies.Inc. USA),將混合物70 ℃孵育1 h,冷卻至室溫,上機檢測。用氣相色譜/質(zhì)譜分析采用Agilent 7890氣相色譜儀系統(tǒng)加上HT飛行時間質(zhì)譜儀進行,毛細(xì)管色譜柱(30 m×250 μm內(nèi)徑,0.25 μm膜厚度(CA,USA)由5%聯(lián)苯和95%甲基硅油交聯(lián)DB-5MS填充,1 μL分析物注入不分流進樣模式,使用氦氣作為載氣,入口吹掃流量為3 mL /min,氣體流量通過柱為20 mL/min,初始溫度保持在50 ℃,1 min,然后提高到330 ℃的速度在10 min/℃,然后保持10 min,330 ℃,注射、傳輸線、離子源溫度分別為280、280、250 ℃,電子沖擊能量為70 eV,質(zhì)譜數(shù)據(jù)的獲得采用全掃描模式,掃描速度85~600 m/z,20次/s,光譜溶劑延遲360 s。endprint

      1.7 數(shù)據(jù)分析

      合并2013—2014年品質(zhì)數(shù)據(jù),利用單因素方差分析(選擇Post-doctor法和Fisher-LSD法)比較西拉漿果不同品質(zhì)指標(biāo)在不同海拔區(qū)域的差異;利用PLS-DA(最小二乘法判別分析法)分析不同區(qū)域葡萄品質(zhì)差異分布;選取2013年、2014年葡萄從萌發(fā)到收獲時間段的氣象數(shù)據(jù),采用SQL數(shù)據(jù)庫軟件統(tǒng)計平均溫差、最大溫差、平均溫度、有效積溫、平均相對濕度、降雨量、平均日照時長、平均日光輻射強度、總光輻射強度、平均紫外輻射強度、總紫外輻射強度。Chroma TOF4.3X software of LECO Corporation and LECO-Fiehn Rtx5數(shù)據(jù)庫被用于代謝物數(shù)據(jù)處理,原峰通過嚴(yán)格的數(shù)據(jù)過濾、基線校正、峰對齊和卷積積分析、峰面積的峰識別和整合處理,RI(保留時間指標(biāo))方法用于峰識別,RI公差為5000[56]。PLS-DA分析不同區(qū)域葡萄代謝物差異,選取低海拔區(qū)域的葡萄品種代謝物作為參考基準(zhǔn),對數(shù)據(jù)進行Log(fold change)轉(zhuǎn)換。Fisher檢驗用于判定整合通路分析(IPA)中環(huán)境改變代謝通路,采用MESA(代謝通路富集分析)方法對不同環(huán)境下葡萄代謝物的代謝通路進行富集[56],若無法在數(shù)據(jù)庫中找到的物質(zhì),不進行代謝通路和富集分析。采用軟件Concoco5.0中的DCCA(Detrended canonical correspondence analysis)方法進行代謝物與不同環(huán)境下氣象因子的關(guān)聯(lián)分析。

      2 結(jié)果與分析

      2.1 氣象數(shù)據(jù)分析

      如表2所示,高海拔2 278 m的葡萄園溫差、日均溫、生長時期有效積溫、降雨量、日均日照、日照輻射和紫外輻射高于低海拔41 m,高海拔區(qū)域2 278 m的葡萄園相對濕度、氧氣含量數(shù)值高于低海拔41 m的葡萄園。

      2.2 品質(zhì)和代謝物數(shù)據(jù)分析

      如表3所示,高海拔區(qū)域2 278 m葡萄園中花青素、還原糖量高于低海拔41 m,可溶性蛋白質(zhì)、總酚低于低海拔41 m,丹寧、總酸、總黃酮、pH值、可溶性固形物、類黃酮無差別。

      如圖1A所示,表明高海拔與低海拔品質(zhì)差異極顯著,PC1為99.65%,能代表所有的品質(zhì)因子,高海拔環(huán)境與pH值、總酸、可溶性固形物、丹寧、還原糖、花青素正相關(guān),與可溶性蛋白質(zhì)、總酚、總黃酮負(fù)相關(guān)。如圖1B、1C、1D所示,PC1、PC2、PC3能代表高海拔與低海拔差異對代謝物的影響,代謝物中5-甲氧色胺、半胱胺代謝、半胱氨酰甘氨酸、D-丙氨酰丙氨酸、L-正亮氨酸、尿苷、甘油酸、二十四烷酸、葡糖酸、酒石酸、檸康酸、L-蘋果酸、粘酸、DL-3-氨基丁酸、亞油酸、油酸、甘油、甘露醇、白皮杉醇、1-4β半乳糖甙-果糖、D-葡萄糖與海拔梯度正相關(guān);谷氨酰胺、腐胺、脫氧鳥苷、胸苷、葡糖酸、半乳糖酸、丙二酸、麥胚酚、松柏醛、beta-谷甾醇、D-甘露糖與海拔梯度負(fù)相關(guān)。

      2.3 代謝物通路分析

      氨基酸是葡萄果實中重要的物質(zhì),高海拔環(huán)境增強西拉漿果絲氨酸到甘氨酸代謝、半胱胺代謝和半胱氨酰甘氨酸通路代謝、丙酮酸鹽到5-甲氧色胺通路代謝、丙酮酸到D-丙氨酰丙氨酸代謝、TCA循環(huán)中的草酰乙酸到L-正亮氨酸代謝、尿苷代謝;減弱TCA循環(huán)中的2-酮戊二酸到谷氨酰胺代謝、TCA循環(huán)中的2-酮戊二酸到腐胺代謝、鳥嘌呤到脫氧鳥苷代謝、脫氧鳥苷到胸苷代謝,代謝通路中dUMP受到脫氧鳥苷代謝dGTP代謝的反饋調(diào)節(jié),代謝通路如圖2所示。

      有機酸是葡萄漿果中重要的物質(zhì),高海拔環(huán)境增強丙酮酸鹽到甘油酸代謝、二十四烷酰到二十四烷酸代謝、葡糖酸代謝、谷氨酸到酒石酸代謝、蘋果酸到檸康酸代謝、meleamate到L-蘋果酸代謝、半乳糖酸到粘酸的代謝、ureidoiisobutyric到DL-3-氨基丁酸代謝、乙酰CoA到亞油酸代謝、乙酰CoA到油酸代謝;高海拔環(huán)境減弱TCA循環(huán)中的檸檬酸鹽到葡糖酸、半乳糖醇到半乳糖酸到代謝、乙酰CoA到丙二酸代謝通路,代謝通路如圖3所示。

      高級醇和酚類物質(zhì)是葡萄漿果中重要的物質(zhì),高海拔環(huán)境增強西拉漿果甘油代謝、甘露醇代謝、白藜蘆醇到白皮杉醇代謝;減弱TCA循環(huán)中的meleamate到麥胚酚代謝、松脂醇到松柏醛代謝、5-燕麥甾-烯醇到beta-谷甾醇,代謝通路如圖4所示。

      糖類是葡萄漿果中重要的物質(zhì),高海拔環(huán)境增強西拉漿果1-4β半乳糖甙-果糖代謝、D-葡萄糖代謝;降低D-甘露糖代謝降低,代謝通路如圖5所示。

      2.4 代謝物的通路富集分析

      代謝物的通路富集發(fā)現(xiàn)7條氨基酸代謝、4條碳水化合物、3條脂質(zhì)代謝、3條氮代謝;氨基酸代謝是氨基酸生物合成、降解、蛋白質(zhì)生物合成重要通路,在本研究中高海拔區(qū)域增強西拉漿果纈氨酸、亮氨酸和異亮氨酸的生物合成代謝,甘氨酸、絲氨酸和蘇氨酸代謝、氰基氨基酸代謝;減弱西β-丙氨酸代代謝、精氨酸和脯氨酸代謝;碳水化合物代謝包括糖、酸、高級醇代謝:在本研究中高海拔區(qū)域增強西拉漿果中的半乳糖代謝代謝、果糖和甘露糖代謝、淀粉和蔗糖代謝;減弱西拉漿果中的光合生物固碳代謝。酯類代謝:增強不飽和脂肪酸的生物合成代謝;減弱類固醇的生物合成代謝、萜類化合物骨架生物合成代謝。氮代謝:增強西拉漿果中的嘧啶代謝、氨基糖和核苷酸糖代謝;減弱嘌呤代謝,代謝通路富集如圖6所示。

      2.5 環(huán)境氣象因子與代謝物的關(guān)系分析

      采用Concoco5.0 中的DCCA方法分析海拔梯度下氣象因子與代謝物的關(guān)系發(fā)現(xiàn)光輻射因子中日均紫外輻射、生長時期總輻射和日均輻射與西拉內(nèi)含物含量、高海拔環(huán)境減弱代謝物和高海拔環(huán)境增強代謝物密切相關(guān),其他因子如空氣中的氧氣含量、降雨量、濕度和溫度參數(shù)與西拉內(nèi)含物含量、高海拔環(huán)境減弱代謝物和高海拔環(huán)境增強代謝物相關(guān)性弱,如圖7A、7B、7C所示,因此,可以推斷高低海拔西拉代謝物差異引起的主要因子是日均紫外輻射、生長時期總輻射和日均輻射。endprint

      3 結(jié)論與討論

      3.1 不同海拔西拉品質(zhì)因子和代謝物的差異

      研究認(rèn)為海拔梯度影響釀酒葡萄漿果的內(nèi)含物,高海拔產(chǎn)區(qū)域限制高質(zhì)量的葡萄原料及葡萄酒,如可溶性固形物、酒石酸、花色素等指標(biāo),海拔高品質(zhì)下降[16,57],與前人報道不同的是云南德欽高海拔產(chǎn)區(qū)的西拉漿果仍然正常成熟,品質(zhì)優(yōu)于低海拔區(qū)域,目前大多數(shù)西拉葡萄產(chǎn)區(qū)海拔沒有超過1 200 m,云南德欽高海拔產(chǎn)區(qū)海拔高達2 235 m,產(chǎn)區(qū)內(nèi)的光、溫、水、土壤條件更適合西拉葡萄內(nèi)含物的積累。

      3.2 不同海拔對代謝物通路影響

      研究表明,高海拔環(huán)境西拉漿果增強絲氨酸到甘氨酸代謝、半胱胺代謝、半胱氨酰甘氨酸通路代謝、丙酮酸到D-丙氨酰丙氨酸代謝、TCA循環(huán)中的草酰乙酸到L-正亮氨酸代謝、尿苷增強;減弱TCA循環(huán)中的2-酮戊二酸到谷氨酰胺代謝、鳥嘌呤到脫氧鳥苷代謝、TCA循環(huán)中的2-酮戊二酸到腐胺代謝、TCA循環(huán)中的2-酮戊二酸到谷氨酰胺代謝,研究認(rèn)為氨基酸在果實成熟過程中扮演著重要作用,是調(diào)控漿果耐儲性、參與光周期過程的重要物質(zhì),具有增強抗病毒、碳和氮代謝,降低氧化酶活性、參與葡萄的多酚活性、參與阻斷白蘆藜醇的抗癌作用、參與葡萄發(fā)育和漿果后熟的調(diào)控、抗輻射和抗氧化、影響漿果的滲透壓等功能[57-61]。通過對比,高海拔環(huán)境可加速西拉果實成熟和調(diào)控采后生理,利于漿果儲存和延遲采收、增強抗性,對氣象因子更加敏感。

      高海拔環(huán)境增強丙酮酸鹽到甘油酸代謝、二十四烷酰到二十四烷酸代謝、谷氨酸到酒石酸代謝、蘋果酸到檸康酸代謝、meleamate到L-蘋果酸代謝、半乳糖酸到粘酸的代謝、3-dehydroshikimate到?jīng)]食子酸代謝、ureidoiisobutyric到DL-3-氨基丁酸代謝、乙酰CoA到亞油酸代謝、乙酰CoA到油酸代謝。高海拔環(huán)境降低半乳糖醇到半乳糖酸到代謝、乙酰CoA到丙二酸,研究認(rèn)為有機酸與單寧的濃縮度有關(guān)、調(diào)控脂肪代謝、抗癌物質(zhì)、脂肪、調(diào)節(jié)葡萄的成熟度和酒的口感、影響葡萄酒的風(fēng)格和品質(zhì)、抗氧化活力、調(diào)節(jié)透壓、抗凋亡等生物學(xué)功能、調(diào)控動物免疫反應(yīng)、作為營養(yǎng)物質(zhì)[18-19,21,25,27,34,40,62-69]。因此,高海拔環(huán)境利于提高西拉葡萄的營養(yǎng)價值、保健價值和葡萄酒潛在的風(fēng)格和品質(zhì)。

      高海拔環(huán)境增強甘油代謝、甘露醇代謝、松脂醇到松柏醛代謝、白藜蘆醇到白皮杉醇代謝;高海拔環(huán)境減弱TCA循環(huán)中的meleamate到麥胚酚代謝和β-谷甾醇代謝。研究認(rèn)為高級醇和酚類物質(zhì)與葡萄酒的口感、抗真菌侵染、非生物逆境如干旱和高鹽抗性,參與調(diào)節(jié)滲透壓和細(xì)胞的保護作用,提高氧氣利用率,是葡萄成熟晚期的重要物質(zhì)[27,30-31,67,70-75]。因此,高海拔環(huán)境可增強葡萄口感、抗逆性、氧氣利用率。

      高海拔環(huán)境下增強D-葡萄糖代謝、1-4β半乳糖甙-果糖代謝,降低D-甘露糖代謝。研究認(rèn)為糖類參與類黃酮和白蘆藜醇的合成、調(diào)控黃酮通路、參與細(xì)胞壁、糖、酒石酸的生物合成、提供營養(yǎng)的纖維[76]。因此,高海拔環(huán)境增強葡萄品質(zhì)高于低海拔、積累更多的風(fēng)味物質(zhì)、增強營養(yǎng)價值。

      3.3 不同海拔代謝物富集

      代謝通路的富集對了解代謝物的生物學(xué)功能和代謝通路的多樣性有一定的意義[77-78],高海拔環(huán)境下的西拉漿果通過調(diào)整氨基酸、碳水化合物、脂質(zhì)、氮代謝通路來適應(yīng)高海拔下逆境,如高海拔環(huán)境下強光輻射、紫外輻射、低含氧量和較大的溫差。

      3.4 不同海拔環(huán)境氣象因子導(dǎo)致代謝物的變化

      日照時長、溫差大小、紫外輻射、水分管理等因子影響果實品質(zhì)、代謝物組和轉(zhuǎn)錄組[18,25,55,79-86]。本研究發(fā)現(xiàn)高海拔和低海拔西拉代謝物差異引起的主要因子是日均紫外輻射、生長時期總輻射和日均輻射,這些氣象因子調(diào)控不同海拔環(huán)境的西拉漿果中代謝物的種類和含量,高海拔環(huán)境上調(diào)的代謝物種類多于下調(diào),因此高海拔西拉品質(zhì)高于低海拔。

      綜上所述,不同海拔微氣候環(huán)境顯著影響西拉漿果的品質(zhì),氣象因子中的日均紫外輻射、生長時期總輻射和日均輻射是調(diào)控西拉漿果代謝物的主要因子[8],因此西拉通過代謝物和代謝通路的多樣性策略來適應(yīng)高海拔環(huán)境。

      4 參考文獻

      [1] RISTIC R,DOWNEY M O,ILAND P G,et al.Exclusion of sunlight from Shiraz grapes alterns wine colour,tannin and sensory properties[J].Australian Journal of Grape & Wine Research,2007,13(2):53-65.

      [2] MCCARTHY,MICHAEL G.Developmental variation in sensitivity of Vitis vinifera L.(Shiraz)berries to soil water deficit[J].Australian Journal of Grape & Wine Research,2000,6(2):136–140.

      [3] 陳衛(wèi)平,尚紅鶯,周軍,等.賀蘭山東麓釀酒葡萄的生態(tài)適應(yīng)性[J].西北植物學(xué)報,2007,27(9):1855-1860.

      [4] 王藝.釀酒葡萄品種:西拉[J].山西果樹,2005(3):53.

      [5] 姜壽梅,金贊敏,梁娜娜,等.西拉葡萄果實成熟過程中果皮內(nèi)非花色苷酚類物質(zhì)的變化[J].中外葡萄與葡萄酒,2008(6):20-24.

      [6] 張小轉(zhuǎn),張振文,蔣寶.地形對釀酒葡萄果實品質(zhì)的影響[J].西北農(nóng)業(yè)學(xué)報,2011,20(11):133-137.

      [7] SCHLOSSER J W.The effect of viticultural and oenological treatments on fruit and wine composition of Chardonnay musqué[D].Brock:Brock University,2003.endprint

      [8] NOORDWYK V,MARELIZE.Interaction of water deficit,canopy modif-ication and ripening:effect on the phenolic and colour composition of Shiraz grapes & subsequent wine[D].Stellenbosch:Stellenbosch University,2012.

      [9] TREEBY M T,HOLZAPFEL B P,PICKERING G J,et al.Vineyard nitrogen supply and Shiraz grape and wine quality[C]//Proceedings of the XXV International Horticultural Congress.Part 2.Mineral nutrition and grape and wine quality;Nutrition management to optimize fruit quality,Brussels,Belgium,2-7 August,2000.

      [10] RISTIC R,DOWNEY M O,ILAND P G,et al.Exclusion of sunlight from Shiraz grapes alters wine colour,tannin and sensory properties[J].Australian Journal of Grape & Wine Research,2007,13(2):53-65.

      [11] GONG H,BLACKMORE D H,WALKER R R.Organic And Inorganic Anions In Shiraz And Chardonnay Grape Berries And Wine As Affected By Rootstock Under Saline Conditions[J].Australian Journal of Grape & Wine Research,2009,16(1):227-236.

      [12] SADRAS V O,PETRIE P R,MORAN M A.Effects of elevated tempera-ture in grapevine.II juice pH,titratable acidity and wine sensory attributes[J].Australian Journal of Grape & Wine Research,2013,19(1):107-115.

      [13] HARVEY J S,DOWNEY M O,ROBINSON S P.The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes[J].Australian Journal of Grape & Wine Research,2008,10(1):55-73.

      [14] CLINGELEFFER P R,PETRIE P R,COOLEY N M.The effect of post-veraison water deficit on yield components and maturation of irrigated Shiraz(Vitis vinifera L.)in the current and following season[J].Austra-lian Journal of Grape & Wine Research,2004,10(3):203-215.

      [15] JONES G V,DAVIS R E.Climate influences on grapevine phenology,grape composition,and wine production and quality for Bordeaux,F(xiàn)rance.[J].American Journal of Enology & Viticulture,2000,51(3):249-260.

      [16] ZS?譫FI Z,T?譫TH E,RUSJAN D,et al.Terroir aspects of grape quality in a cool climate wine region:Relationship between water deficit,vegetative growth and berry sugar concentration[J].Scientia Horticulturae,2011,127(4):494-499.

      [17] PEREIRA G E,GAUDILLERE J P,LEEUWEN C V,et al.1 H NMR metabolite fingerprints of grape berry:Comparison of vintage and soil effects in Bordeaux grapevine growing areas[J].Analytica Chimica Acta,2006,563:346–352.

      [18] HOCHBERG U,DEGU A,TOUBIANA D,et al.Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response[J].Bmc Plant Biology,2013,13(2):775-779.endprint

      [19] BERLI F J,MORENO D,PICCOLI P,et al.Abscisic acid is involved in the response of grape(Vitis vinifera L.) cv.Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds,antioxidant enzymes and membrane sterols[J].Plant Cell & Environment,2010,33(1):1–10.

      [20] HERBST R M,SHEMIN D.Phenylpyruvic Acid[M]//Organic Syntheses.John Wiley & Sons,Inc.,2003:1449-1450.

      [21] CED?譫 L,CASTELL-AUV?魱 A,PALLAR?魪S V,et al.Gallic Acid Is an Active Component for the Anticarcinogenic Action of Grape Seed Procyanidins in Pancreatic Cancer Cells[J].Nutrition & Cancer,2014,66(1):88-96.

      [22] EYDURAN E.Phytochemical profiles and antioxidant activity of some grape accessions(Vitis spp.)native to Eastern Anatolia of Turkey[J].Journal of Applied Botany and Food Quality,2015,88:5-9.

      [23] FIEHN O,KOPKA J,DRMANN P,et al.Metabolite profiling for plant functional genomics[J].Nature Biotechnology,2000,18(11):1157-1161.

      [24] GANJALI Z,JAVADIAN F,ESTAKHR J,et al.The Effect of Hydro-Alcoholic Extract of Grape Seed(Vitis vinifera)on Sugar and Lipids in Serum of Diabetic Rats[J].International Journal of Animal & Veterinary Advances,2012,4(3):173-175.

      [25] Garssen J.The role of urocanic acid in UVB-induced suppression of immunity to Trichinella spiralis infection in the rat[J].Immunology,1999,96:298-306.

      [26] GOMPERTZ D,JONES J H,KNOWLES J P.Metabolic precursors of methylmalonic acid in vitamin B12 deficiency[J].Clinica Chimica Acta,1967,18(67):197–204.

      [27] GRIS E F,F(xiàn)ERREIRA E A,F(xiàn)ALC00O L D,et al.Caffeic acid copigme-ntation of anthocyanins from Cabernet Sauvignon grape extracts in model systems[J].Food Chemistry,2007,100(3):1289-1296.

      [28] TARR H L.Metabolism of 6-phosphogluconic acid and gluconic acid in Salmo gairdnerii[J].Canadian Journal of Biochemistry & Physiology,1963,41:313-325.

      [29] HOCHSTEIN L I,DALTON B P,POLLOCK G.The metabolism of carb-ohydrates by extremely halophilic bacteria:identification of galactonic acid as a product of galactose metabolism[J].Canadian Journal of Micro-biology,2011,22(8):1191-1196.

      [30] IACOPINI P,BALDI M S P,SEBASTIANI L.Catechin,epicatechin,quercetin,rutin and resveratrol in red grape:content,in vitro antioxidant activity and interactions(Wine:nutrients,bioactive non-nutrients and more.)[J].Journal of Food Composition & Analysis,2008,21(8):589-598.

      [31] LIU Y,PUKALA T L,MUSGRAVE I F,et al.Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation[J].Bioorganic & Medicinal Chemistry Letters,2013,23(23):6336-6340.endprint

      [32] WANG LIXUE,MA LANQING,LI YAJUAN,et al.Changes of Starch,Reducing Sugar and Lipids in Grape Shoots,and Their Relationships to Cold Resistance[J].Journal of Inner Mongola Institute of Agriculture & Animal Husbandry,1994(4):1-7.

      [33] FRANK A L A,PUSHPALATHA P N M B.Review myo-Inositol metab-olism in plants[J].Plantence,1999,150(1):1-19.

      [34] LUTTERODT H,SLAVIN M,WHENT M,et al.Fatty acid composition,oxidative stability,antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours[J].Food Chemistry,2011,128(2):391-399.

      [35] NATORI T,UI S,MATSUBARA T,et al.L-Serine inhibits cell division of grape protoplasts[C]//日本生物工學(xué)會大會講演要旨集,1999:11.

      [36] OLIVEIRA J,F(xiàn)ERNANDES V,MIRANDA C,et al.Color properties of four cyanidin-pyruvic acid adducts[J].Journal of Agricultural & Food Chemistry,2006,54(18):6894-6903.

      [37] IRITI M,ROSSONI M,F(xiàn)AORO F.Melatonin content in grape:myth or panacea?[J].Journal of the Science of Food & Agriculture,2006,86(10):1432-1438.

      [38] SALGUES M,CHEYNIER V,GUNATA Z,et al.Oxidation of Grape Juice 2-S-Glutathionyl Caffeoyl Tartaric Acid by Botrytis cinerea Laccase and Characterization of a New Substance:2,5-di-S-Glutathio-nyl Caffeoyl Tartaric Acid[J].Journal of Food Science,1986,51(5):1191-1194.

      [39] SKENE K G M,HALE C R.Organic acid synthesis by grape berries cultured in vitro[J].Phytochemistry,1971,10(8):1779-1781.

      [40] KRMER M,BONGAERTS J,BOVENBERG R,et al.Metabolic enginee-ring for microbial production of shikimic acid[J].Metabolic Engineering,2003,5(4):277-283.

      [41] EMANUELSSON C.Carbohydrate storage in buds of Kerner,Solaris,Regent and Rondo grapevines[D].SLU Horticulture,2009.

      [42] VOL.N.Glutathione increases in grape berries at the onset of ripening[J].American Journal of Enology & Viticulture,1993,44(3):333-338.

      [43] VOL.N.Sugars,Alcohols,and Hydroxymethylfurfural in Authentic Vari-etal and Commercial Grape Juices[J].Journal of Aoac International,1993,76(1):59-66.

      [44] SUN Q,GATES M J,LAVIN E H,et al.Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species[J].Journal of Agricultural & Food Chemistry,2011,59(19):10657-10664.

      [45] CONDE A,REGALADO A,RODRIGUES D,et al.Polyols in grape berry:transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine[J].Journal of Experimental Botany,2015,66(3):889-906.endprint

      [46] ALI K,MALTESE F,F(xiàn)ORTES A M,et al.Pre-analytical method for NMR-based grape metabolic fingerprinting and chemometrics[J].Analy-tica Chimica Acta,2011,703(2):179-186.

      [47] MULAS G,GALAFFU M G,PRETTI L,et al.NMR analysis of seven selections of vermentino grape berry:metabolites composition and development[J].Journal Agricuture Food Chemistry,2011,59(3):793-802.

      [48] FOTAKIS C,KOKKOTOU K,ZOUMPOULAKIS P,et al.NMR metabolite fingerprinting in grape derived products:An overview[J].Food Research International,2013,54(1):1184-1194.

      [49] MOULS L,F(xiàn)ULCRAND H.Identification of new oxidation markers of grape-condensed tannins by UPLC-MS analysis after chemical depoly-merization[J].Tetrahedron,2015,71:3012-3019.

      [50] VINCENT D,ERG?L A,BOHLMAN M C,et al.Proteomic analysis reveals differences between Vitis vinifera L.cv.Chardonnay and cv.Cabernet Sauvignon and their responses to water deficit and salinity[J].Journal of Experimental Botany,2007,58(7):1873-1892.

      [51] LING-HUI Q U,CHE Y M,HOU L X,et al.Effects on ROS Metabolism of Merlot and Beta in Two Grape Varieties Under Low Tempeature Stress[J].Journal of Qingdao Agricultural University,2010.

      [52] COHEN S D.Investigating the effects of temperature on secondary meta-bolism in Vitis vinifera L.cv.merlot berries[D].Dissertations & Theses- Gradworks,2009.

      [53] COHEN S D,TARARA J M,Kennedy JA.Assessing the impact of temp-erature on grape phenolic metabolism[J].Analytica Chimica Acta,2008, 621(1):57-67.

      [54] PINU F R,EDWARDS P J B,JOUANNEAU S,et al.Sauvignon blanc metabolomics:grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines[J].Metabolomics,2014,10(4):556-573.

      [55] GRIMPLET J,CRAMER G R,DICKERSON J A,et al.VitisNet:"Omics" integration through grapevine molecular networks[J].Plos One,2009,4(12):8365.

      [56] FIEHN O,KIND T,BARUPAL D K.Data Processing,Metabolomic Dat-abases and Pathway Analysis[M]//Annual Plant Reviews Volume 43:Biology of Plant Metabolomics.Wiley-Blackwell,2011.

      [57] REGINA M D A,CARMO E L D,F(xiàn)ONSECA A R,et al.Altitude influe-nce on the quality of ′Chardonnay′ and ′Pinot Noir′ grapes in the state of Minas Gerais[J].Revista Brasileira De Fruticultura,2010,32(1):143-150.

      [58] KALAMKAR N B,KASTURE V M,DHAVALE D D.Total synthesis of natural cis-3-hydroxy-L-proline from D-glucose[J].Tetrahedron Letters,2010,51(51):6745-6747.

      [59] LAMIKANRA O,KASSA A K.Changes in the free amino acid composition with maturity of the noble cultivar of Vitis rotundifolia Michx.grape[J].Journal Agricuture Food Chemistry,1999,47(12):4837-4841.endprint

      [60] AZIZ,MARTIN TANGUY,JOSETTE LARHER FRAN?OIS.Stress-ind-uced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride[J].Physiologia Plantarum,1998,104(2):195-202.

      [61] SIVASUBRAMANIAN B,TURANO F J.Glutamate receptors in nutrient sensing,metabolism,Growth and Development:US,US20090265805 A1[P].2007.

      [62] IKEGUCHI M,MAKINO M,KAIBARA N.Thymidine phosphorylase and dihydropyrimidine dehydrogenase activity in colorectal carcinoma and patients prognosis[J].Langenbecks Archives of Surgery,2002,387(5/6):240-245.

      [63] BERHOW M A,BENNETT R D,KANES K,et al.A malonic acid ester derivative of naringin in grapefruit[J].Phytochemistry,1991,30(91):4198-4200.

      [64] EYDURAN S,AKIN.Sugars,organic acids,and phenolic compounds of ancient grape cultivars(Vitis vinifera L.)from Igdir province of Eastern Turkey[J].Biological Research,2015,48(2):1-8.

      [65] FAMIANI F,CASULLI V,PROIETTI P,et al.Organic Acid Metabolism in Grape:Role of Phosphoenolpyruvate Carboxykinase[J].Acta Horticul-turae,2007,754:58.

      [66] FU X,YU S,LI P.Effects of 6-BA on the Chlorogenic Acid Content in Red Globe Grape during Development Process[J].Chinese Agricultural Science Bulletin,2010,10:87.

      [67] ROY,GLENN,LETOURNEAU,STEPHEN,CULVER,CATHY,et al.Un-saturated acids for fading protection of colors derived from natural sources used in beverage products:US,US8158183 B2[P].2008.

      [68] SABIR A,UNVER A,KARA Z.The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties(Vitis spp.)[J].Journal of the Science of Food & Agriculture,2012,92(9):1982-1987.

      [69] TUKEY L D.Relation of temperature and succinic acid 2,2-dimethylh-ydrazide on berry fruit set in the′Concord′grape[J].Horticultural Science,1970,5(6):481.

      [70] ZHOU X,HAN L,GUO C,et al.Study on Changes of Weight and Fruit Shape in Different Grape Varieties Before and After Drying in Xinjiang[J].Chinese Agricultural Science Bulletin,2013,29(18):187-192.

      [71] GOMIS J G I,MARSAL J,MATA M,et al.Phenological sensitivity of berry growth and composition of Tempranillo grapevines(Vitis vinifera L.)to water stress[J].Australian Journal of Grape & Wine Research,2009,15(3):268-277.

      [72] KESER S,CELIK S,TURKOGLU S.Total phenolic contents and free-radical scavenging activities of grape(Vitis vinifera L.)and grape products[J].International Journal of Food Sciences & Nutrition,2013,64(2):210-216.endprint

      [73] PRASAIN J K,CARLSON S H,WYSS J M.Flavonoids and age-related disease:risk,benefits and critical windows[J].Maturitas,2010,66(2):163-171.

      [74] SHI J,YU J,POHORLY J E,et al.Polyphenolics in grape seeds-bioch-emistry and functionality[J].Journal of Medicinal Food,2003,6(4):291-299.

      [75] TOLEDO R T,YILMAZ Y.Major Flavonoids in Grape Seeds and Skins:Antioxidant Capacity of Catechin,Epicatechin,and Gallic Acid[J].Journal of Agricultural & Food Chemistry,2004,52(2):255-260.

      [76] Effect of postharvest putrescine application and chitosan coating on ma-intaining quality of table grape cv 09shahroudi during longterm storage.Effect Of Postharvest Putrescine Application And Chitosan Coating On Maintaining Quality Of Table Grape Cv.“Shahroudi” During Long-Term Storage[J].Journal of Food Processing & Preservation,2013,37(5):999-1007.

      [77] LANTHIER P L,MORGAN M Y.Lactitol in the treatment of chronic he-patic encephalopathy:an open comparison with lactulose[J].Gut,1985,26(4):415-420.

      [78] KANKAINEN M,GOPALACHARYULU P,HOLM L,et al.MPEA met-abolite pathway enrichment analysis[J].Bioinformatics,2011,27(13):1878-1879.

      [79] YAMAMOTO H,F(xiàn)UJIMORI T,SATO H,et al.Statistical hypothesis tes-ting of factor loading in principal component analysis and its application to metabolite set enrichment analysis[J].Bmc Bioinformatics,2014,15(2):51.

      [80] CEtIN E S.Enhancement of phenolic compounds and α-tocopherol pro-duction in callus culture of Gamay grape cultivar:UV-C as a potential elicitor[D].Ziraat Fakültesi Dergisi-Süleyman Demirel Universitesi,2012.

      [81] CARBONELL-BEJERANO P.Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses[J].Bmc Plant Biology,2014,14(1):183.

      [82] CASTELLARIN S D,MATTHEWS M A,GASPERO G D,et al.Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries[J].Planta,2007,227(1):101-112.

      [83] DOWNEY M O,DOKOOZLIAN N K,KRSTIC M P.Cultural Practice and Environmental Impacts on the Flavonoid Composition of Grapes and Wine:A Review of Recent Research[J].American Journal of Enology & Viticulture,2006,57:257-268.

      [84] GUILLAUMIE S,F(xiàn)OUQUET R,KAPPEL C,et al.Transcriptional anal-ysis of late ripening stages of grapevine berry[J].Bmc Plant Biology,2011,11:165.

      [85] LIU L,GREGAN S,WINEFIELD C,et al.From UVR8 to flavonol synth-ase:UV-B-induced gene expression in Sauvignon blanc grape berry[J].Plant Cell & Environment,2014,38(5):905-919.

      [86] LIVENGOOD P,MACIEJEWSKI R,WEI C,et al.OmicsVis:an interac-tive tool for visually analyzing metabolomics data[J].Bmc Bioinformatics,2012,13:S6.

      [87] MART?魱NEZ-L?譈SCHER J,TORRES N,HILBERT G,et al.Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries[J].Phytochemistry,2014,102(6):106-114.endprint

      猜你喜歡
      西拉
      黨的二十大代表熱西拉·熱哈提:練就大國工匠,為熱愛更為傳承
      伴侶(2023年8期)2023-09-11 14:47:20
      一生做一事,愛一人
      莫愁(2020年14期)2020-05-30 09:29:30
      塔克西拉佛教遺址發(fā)掘歷程述論
      東臺子水庫建設(shè)對西拉木倫河流域下游用水影響分析
      廣西南部釀酒葡萄西拉延后栽培模式及栽培技術(shù)
      陳惠瓊的散文詩
      作品(2015年19期)2015-11-17 10:29:36
      Force-Based Quadrilateral Plate Bending Element for Plate Using Large Increment Method
      Cracking Patterns of Shear Walls in Reinforced Concrete Structure due to Strong Earthquake Based on Mohr-Coulomb Criterion
      我是和你相愛的人
      MAGIC IN INNER MONGOLIA
      蒲江县| 讷河市| 方城县| 光山县| 额济纳旗| 集贤县| 黔江区| 平乡县| 广元市| 曲周县| 清新县| 怀仁县| 新乡市| 咸阳市| 卢龙县| 乐都县| 兴义市| 花莲县| 讷河市| 营山县| 东乡族自治县| 伊春市| 汤阴县| 玉树县| 客服| 建昌县| 巢湖市| 濮阳市| 荥阳市| 福建省| 崇义县| 青龙| 盐津县| 岗巴县| 九江市| 商都县| 阿拉善盟| 新干县| 巨鹿县| 唐海县| 南江县|