• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    半導(dǎo)體納米環(huán)中激子的磁場效應(yīng)

    2015-12-29 06:14:10解文方
    關(guān)鍵詞:激子工程學(xué)院大學(xué)物理

    解文方

    (廣州大學(xué)物理與電子工程學(xué)院,廣東廣州 510006)

    In nanoscale semiconductor quantum rings[nanorings(NRs)],charged carriers(electrons and holes)are confined in a small region and consequently the Coulomb interaction is enhanced.Compared with nanoscale semiconductor quantum dots,NRs belong to another kind of topological structures in which more rich phenomena can be clearly shown.These semiconductor nanodots and NRs are widely applied for fabricating single electron transistors,low threshold laser,optical memories,solar cells,light-emitting diodes,biological markers and so on.On the other hand,the application of a magnetic field leads the enhancement of the localization of both the electron and the hole in NRs.Under the influence of a magnetic field,some interesting physical phenomena of NRs,e.g.,persistent currents and Aharonov-Bohm(AB)effect,can be observed[1-2].It is now well recognized that the low-density regime is dominated by the exciton absorption/recombination.Electron-h(huán)ole interaction and correlation effects are shown to play an important role in electronic structures and optical properties of excitons in NRs[3].The existence of bound states of an exciton offers a unique opportunity to explore the AB effect[4-6]for excitons in NRs[7-8].Hence,the behavior of excitons is very important to understand the optical properties of lowdimensional semiconductor systems.

    The electronic and optical properties of NRs will cause the AB oscillation when a variable magnetic field is perpendicularly applied to the plane of the ring[9].Experimental observation on the AB oscillation in NRs was reported[2,10-11].In order to interpret experimental observations,some authors have theoretically studied the excitons in NRs[8,12-14].In recent years,the nonlinear optical properties of NRs have attracted an enormous interest because they have the potential for device applications in far-infrared laser amplifies,photodetectors,and high-speed electro-optical modulators[15-18].In the nonlinear optical properties of NRs,the analysis of exciton states is inevitable because the confinement of carriers in such structure leads to the enhancement of the oscillator strength of electron-h(huán)ole excitations.Theoretical work started with Hanamura[19]who studied the third-order optical polarizations due to the excitons in semiconductor microcrystallinities.The results showed that optical nonlinearity is very large when one considers excitonic effects.Recently,a number of theoretical investigations of excitonic effects on the optical properties in NRs have been published[20-22].Up to now,the study of the magnetic effect on the nonlinear optical properties of an exciton in semiconductor NRs is still rare.In this paper,we will investigate the behavior of an exciton in semiconductor NRs under an external magnetic field.We assume the NR to be infinitesimally thin(one-dimensional),and use modified Coulomb interactions[23].We use exact diagonalization method to calculate the exciton oscillator strength as a function of the magnetic field.The linear,third-order nonlinear and total optical absorption coefficients(ACs)of an exciton in semiconductor NRs are calculated in order to investigate the effects of the external magnetic field and the ring radius.

    1 Theory

    Let us consider an electron-h(huán)ole pair localized on a NR.Let a magnetic field be perpendicular to the plane of the ring.In the effective mass approximation,the Hamiltonian of an exciton is given by

    wheremeandmhare the effective masses of an electron and a hole,respectively,eis the electron charge,andcis the speed of light.→reand →rhare the position vectors of the electron and the hole,respectively.Aeand Ahdenote the magnetic vector potentials of the electron and the hole,respectively,andVeh(|→re-→rh|)describes the electron-h(huán)ole Coulomb interaction and|→re-→rh|is the relative distance between the electron and the hole.In what follows we assume that the ring has radiusRand infinitesimal thickness.With the symmetric gauge for vector potential→A=B(-y,x,0)/2,the Hamiltonian can then read

    where θeand θhdenote the azimuthal coordinates of the electron and the hole,respectively,andNφis the number of flux quanta threading the ring.In the absence of the Coulomb interaction,the wave functions of an electron and a hole are given by

    wherekeandkhare integers.The corresponding ener-

    gies are

    Hence,the single-particle energy with a definite angular momentum depends quadratically on the number of flux quanta.For typical NRs[10,24],the energy scale of the interlevel separation,WhenNφexceeds 0.5,the electron possesses a nonzero angular momentum in the ground state.The low energy sector as a function ofNφwill then consist of a set of cut parabolas,with smooth minima for integerNφ,and sharp maxima for half-integerNφ.

    The Coulomb interaction in Eqs.(1)and(2)is modeled by the following approximation,

    where ε is the effective dielectric constant,andd=D/Rwhich the parameter D is introduced to account for the effect of finite thickness of the ring[23,25].

    The Hamiltonian has cylindrical symmetry which implies that the total orbital angular momentumL=ke+khis a conserved quantity,i.e.,a good quantum number.Hence,the trial wave functions for computing the energies of low-lying state exciton are taken as

    The matrix diagonalization method consists in spanning the Hamiltonian for a given basis and extracting the lowest eigenvalues of the matrix generated.The calculation of matrix elements of the Coulomb interaction is realized by introducing the center of mass and relative coordinates

    The important carrier confinement in low-dimensional semiconductor systems leads to an enhancement of the electron-h(huán)ole Coulomb interaction.One consequence of this situation is an important increase of the oscillator strengths of excitons in a semiconductor nanostructure as compared to the bulk values.The observation of oscillator strength is imperative especially in the study of optical properties and they are related to the electronic dipole allowed absorptions.Moreover,the outcome of the results will be viewed on the fine structure of the optical absorption.After the energy levels and corresponding wave functions are obtained,the oscillator strength for the semiconductor NRs can be calculated.The oscillator strengthPfifor an optical transition between an initial state|i> and final state|f> is given by the well-known relation called Fermi rule that is defined as[26]

    wheremμ=memh/(me+mh)is the reduced mass of the exciton,Mfiis the dipole position matrix element of an optical transition from|i> state to|f> state,andEfiis the energy difference between the final and initial states.Large values ofPficorrespond to a large transition matrix element.On the other hand,from the oscillator strength,we can also obtain additional information on the fine structure and selection rules of the optical absorption[27].In the dipole-allowed optical transitions of an exciton,the angular momenta must differ by unity.Hence,we restrict our study to the transition of theL=0 state to theL=1 state.

    Based on the compact-density-matrix approach,the total optical AC is given[28-29]

    where

    and are the linear and third-order nonlinear optical ACs,respectively.σsis the electron density,μ is the permeability of the system defined as μ =1/ε0c2wherecis the speed of light in vacuum and ε0is the electrical permittivity of the vacuum,Iis the incident optical intensity,nris the refractive index and εR=n2rε0is the real part of the permittivity.Γ is the phenomenological operator.Nondiagonal matrix element Γfi(f≠i)of operator Γ,which is called as the relaxation rate offthstate andithstate,is the inverse of the relaxation timeTfifor the states|f> and|i>,namely Γfi=1/Tfi.

    2 Results and discussion

    All calculations were performed using the following parameters:me=0.067m0,wherem0is the free electron mass,me/mh=0.25,D=0.05R(the qualitative results are not sensitive to D),ε =13.1,σs=5.0 ×1016·cm-3,Γfi=1/1.4ps-1,andnr=3.2.The basis functionseikeθe+ikhθh/2π are used to diagonalize H,wherekeandkhare integers;each ranges from -20 to 20.This is sufficient to obtain accurate solutions.After the diagonalization,the eigenenergies E are obtained.From Eqs.(2)and(5),we found that the kinetic energy of an exciton in a NR is proportional toR-2,and the interaction term toR-1.Thus changing the ring radius changes the ratio between the kinetic and Coulomb energies and transfers the system from weakly(small radii)to strongly interacting(large radii).In order to investigate the influence of the Coulomb interaction on the optical properties of semiconductor NRs,in Figs.1,the normalized oscillator strengths of an exciton in a semiconductor NR as a function of the number of flux quanta have been plotted for three different radiiR=3.0 nm a),R=7.0 nm b),andR=10.0 nm c).It is readily seen that in the case of small radii(weak interactions)the magnetic field dependence of the oscillator strength exhibits distinct oscillations and resembles that of a single particle,i.e.,the AB oscillation of the oscillator strength as a function of the number of flux quanta.It is obvious that Figs.1b and 1c show the AB oscillation as a function of the magnetic flux within two flux periods at different values ofR.We found that as the ring radius increases,the amplitude of excitonic AB oscillations increases less for a large ring radius but the effect is still revealed.Hence,in the case of small radii(weak interactions),an increase inRleads to a reduction in the amplitude of the oscillation of the oscillator strength.However,as ring radius further increased(strong interactions),we found that the oscillator strength of largeRdepends smoothly on the number of flux quanta,i.e.,the excitonic AB oscillation would disappear from the oscillator strength.This result shows that the ring radius(i.e.,the electronhole Coulomb interaction)has an important influence on the optical properties of an exciton in semiconductor NRs.ear,total optical ACs of an exciton in a GaAs NR as a function of the incident photon energy atI=0.015 MW·cm-2andNφ=0.5.Note that variation of the ring radius,R,also implies variation of the electronhole interaction.The electron-h(huán)ole interaction influence of a semiconductor NR is obvious.It is readily seen that a ring-radius-induced shift toward lower energy,red-shift,of the resonant peaks is detected in the semiconductor NR.This is because as the ring increases,the electron-h(huán)ole interaction increases and an obvious decrement in the energy difference between the lower and upper states is obtained.We also note that the intensities of the third-order nonlinear optical AC increase fast so that those of the total optical AC decrease fast with increasing ring radius.The physical origin is that the transition probability will increase and the energy difference between the subbands will decrease with increasingRin NRs,therefore leading to the magnitude of the third-order nonlinear optical AC increasing considerably and to the total optical AC decreasing.It is also interesting that a saturation case is observed on the total AC for a large ring radius of the semiconductor NR.We found that the total absorption peak will be significantly split up to two peaks,which is in consequence of the absorption at linear center which will be strongly bleached whenR=10.0 nm.Therefore,if it is desired to obtain a larger nonlinear optical absorption in the semiconductor NR,then a relatively larger ring radius(a relatively stronger interaction)should be employed.

    Fig.1 Dependences of the normalized oscillator strength of an exciton in the semiconductor NR on the number of flux quanta for three different values of the ring radius,a)R=10.0 nm,b)R=7.0 nm,and c)R=3.0 nm.In Fig.2 we plot the linear,third-order nonlin-

    Fig.2 Linear,third-order nonlinear,and total optical ACs of an exciton in the semiconductor NR as a function of photon energy for the different R values with Nφ=0.5,and I=0.015 MW·cm-2

    Finally,in order to observe further the effect of the external magnetic field on the optical absorptions,in Fig.3,we plot the linear,third-order nonlinear,and total optical ACs of an exciton in a GaAs NR as a function of the incident photon energy for the different values of the magnetic fluxes atR=3.0 nm andI=0.025 MW·cm-2.As we can see from this figure the all optical ACs are not monotonic functions of hυ.In agreement with Fig.1,it shows the AB oscillations of an exciton in the linear,third-order nonlinear and total optical ACs.It is readily seen that,at the beginning,the peak position of the optical ACs shift to higher energy(blue shift)with increasing the external magnetic field.Then the peak position of all ACs will shifts to lower energy(red shift)with increasing the external magnetic field further.On the other hand,we find that,at the beginning,the intensities of all ACs increase with increasingNφ.Then,asNφincreases further,the intensities of all ACs decrease.This result shows an excitonic AB oscillation in the optical absorptions in a semiconductor NR.This phenomenon tells us by varying the external magnetic field,it is possible to control the frequency shift and the peak intensity of the optical absorptions of an exciton in a semiconductor NR.

    Fig.3 Linear,third-order nonlinear,and total optical ACs of an exciton in the semiconductor NR as a function of photon energy for the different Nφvalues with R=3.0 nm,and I=0.025 MW·cm-2

    In conclusion,we have investigated the magnetic effect on the optical absorptions of an exciton in a semiconductor NR by using the matrix diagonalization method and the compact density-matrix approach within the effective-mass approximation.Based on the computed energies and wave functions,the oscillator strength,the linear and the nonlinear optical absorptions have been examined.It has been seen that the oscillator strength and the optical absorptions of an exciton in a semiconductor NR exhibit AB oscillation for small ring radius(weakly interacting).The results show that it is possible to control the frequency shift and the intensity in the absorption spectrum of the exciton by varying the external magnetic field in a semiconductor NR.

    [1] MAILLY D,CHAPELIER C,BENOIT A.Experimental observation of persistent currents in GaAs-AlGaAs single loop[J].Phys Rev Lett,1993,70:2020-2022.

    [2] FUHRER A,LüSCHER S,IHN T,et al.Spin filter using a semiconductor quantum ring side-coupled to a quantum wire[J].Nature:London,2001,413:822-826.

    [3] GAMMON D,SNOW E S,SHANABROOK B V,et al.Fine structure splitting in the optical spectra of single GaAs quantum dots[J].Phys Rev Lett,1996,76:3005-3008.

    [4] AHARONOV Y,BOHM D.Significance of electromagnetic potentials in the quantum theory[J].Phys Rev,1959,115:485-489.

    [5] BYERS N,YANG C N.Theoretical considerations concerning quantized magnetic flux in superconducting cylinders[J].Phys Rev Lett,1961,7:46-49.

    [6] CHAKRABORTY T,PIETIL?NEN P.Interacting-electron states and the persistent current in a quantum ring[J].Solid Stat Commun,1993,87:809-812.

    [7] CHAPLIK A.Magnetoexcitons in quantum rings and in antidots[J].JETP Lett,1995,62:900-904.

    [8] R?MER R A,RAIKH M E.Aharonov-Bohm effect for an exciton[J].Phys Rev B,2000,62:7045-7049.

    [9] BüTIKER M,IMRY Y,LANDAUER R.Josephson behavior in small normal one-dimensional rings[J].Phys Lett A,1983,96:365-367.

    [10] LORKE A,LUYKEN R J,GOVOROV A O,et al.Spectroscopy of nanoscopic semiconductor rings[J].Phys Rev Lett,2000,84:2223-2226.

    [11] WARBURTON R J,SCH?FLEIN C,HAFT D,et al.Optical emission from a charge-tunable quantum ring[J].Nature,2000,405:926-929.

    [12] CHAPLIK A V.Neutral and charged magnetic excitons in finite-width quantum rings[J].JETP Lett,2001,92:169-173.

    [13] SONG J,ULLOA S E.Magnetic field effects on quantum ring excitons[J].Phys Rev B,2001,63:125302.

    [14] HU H,ZHU J L,LI D J,et al.Aharonov-Bohm effect of excitons in nanorings[J].Phys Rev B,2001,63:195307.

    [15] EOUGENIOUS L IVCHENKO.Optical spectroscopy of semiconductor nanostructures[M].Alpha Science International Ltd.2005.

    [16] MANUK G B,RICARDO L R,MIGUEL E M-R,et al.Donor impurity-related linear and nonlinear intraband optical obsorption coefficients in quantum ring:Effect of Applied electric field and hydrostatic pressure[J].Nanos Res Lett,2012(7):538.

    [17] XIE W F.Aharonov-bohm oscillation of photoionization cross section in a quantum ring with a repulsive scattering center[J].Phys Lett A,2013,377:903-906.

    [18] MUGHNETSYAN V N,MANASELYAN A K,BARSEGHYAN M G,et al.Simultaneous effects of hydrostatic pressure and spin-orbit coupling on linear and nonlinear intraband optical absorption coefficients in a GaAs quantum ring[J].J Lumin,2013,134:24-27.

    [19] HANAMURA E.Very large optical nonlinearity of semiconductor microcrystallites[J].Phys Rev B,1987,37:1273-1279.

    [20] MASLOV A V,CITRIN D S.Enhancement of the Aharonov-Bohm effect of neutral excitons in semiconductor nanorings with an electric field[J].Phys Rev B,2003,67:121304.

    [21] GONZáLEZ-SANTANDER C,DOMíNGUEZ-ADAME F,R?MER R A.Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring[J].Phys Rev B,2011,84:235103.

    [22] XIE W F.Optical absorptions of an exciton in a quantum ring:Effects of the repulsive core[J].Phys Lett A,2013,377:2647-2652.

    [23] BAO C G,HUANG G M,LIU Y M.Symmetry background of the fractional Aharonov-Bohm oscillation and an oscillation in dipole-transitions of narrow quantum rings with a few electrons[J].Phys Rev B,2005,72:195310.

    [24] RIBEIRO E,GOVOROV A O,CARVALHO J W,et al.Aharonov-bohm signature for neutral polarized excitons in type-II quantum dot ensembles[J].Phys Rev Lett,2004,92:126402.

    [25] KORKUSINSKI M,HAWRYLAK P,BAYER M.Negatively charged exciton on a quantum ring[J].Phys Status Solid B,2002,234:273-282.

    [26] AYHAN ?,YUSUF Y,BEKIR ?,et al.Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot[J].Optics Commun,2009,282:3999-4004.

    [27] CHAKRABORTY T,PIETIL?INEN P.Optical signatures of spin-orbit interaction effects in a parabolic quantum dot[J].Phys Rev Lett,2005,95:136603.

    [28] KARABULUT ,?AFAK H,TOMAK M.Excitonic effects on the nonlinear optical properties of small quantum dots[J].J Phys D:Appl Phys,2008,41:155104.

    [29] KARABULUT ,BASKOUTAS S.Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots:Effects of impurities,electric field,size and optical intensity[J].J Appl Phys,2008,103:73512.

    猜你喜歡
    激子工程學(xué)院大學(xué)物理
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    CdSeS合金結(jié)構(gòu)量子點的多激子俄歇復(fù)合過程*
    找到你了,激子素
    福建工程學(xué)院
    長程電子關(guān)聯(lián)對聚合物中激子極化率的影響
    現(xiàn)代信息技術(shù)在大學(xué)物理教學(xué)中的應(yīng)用探討
    有機發(fā)光二極管中三重態(tài)激子的單重態(tài)轉(zhuǎn)換
    大學(xué)物理與高中物理銜接教育的探討
    物理與工程(2012年1期)2012-03-25 10:04:59
    国产成人精品在线电影| 欧美日韩亚洲高清精品| 国产精品人妻久久久影院| 只有这里有精品99| 国产黄色免费在线视频| 满18在线观看网站| 香蕉丝袜av| 色网站视频免费| 亚洲精品美女久久av网站| 老汉色av国产亚洲站长工具| 国产乱人偷精品视频| 午夜精品国产一区二区电影| 欧美亚洲日本最大视频资源| 亚洲三区欧美一区| 九色亚洲精品在线播放| 国产精品一区二区精品视频观看| 亚洲国产精品成人久久小说| 欧美日韩国产mv在线观看视频| 国产成人系列免费观看| 亚洲成av片中文字幕在线观看| avwww免费| 狠狠精品人妻久久久久久综合| 丰满饥渴人妻一区二区三| 老司机影院成人| netflix在线观看网站| 男男h啪啪无遮挡| 国产99久久九九免费精品| 男女高潮啪啪啪动态图| 熟女少妇亚洲综合色aaa.| 免费久久久久久久精品成人欧美视频| 别揉我奶头~嗯~啊~动态视频 | 国产精品欧美亚洲77777| 精品一区二区免费观看| av片东京热男人的天堂| 日韩精品有码人妻一区| 国产欧美日韩综合在线一区二区| 一区在线观看完整版| 只有这里有精品99| 麻豆av在线久日| 亚洲av日韩在线播放| 精品福利永久在线观看| 久久久亚洲精品成人影院| 午夜福利网站1000一区二区三区| 精品国产乱码久久久久久男人| 精品国产一区二区三区久久久樱花| 成人亚洲欧美一区二区av| 亚洲人成77777在线视频| 大陆偷拍与自拍| 国产成人精品久久久久久| 亚洲欧美精品自产自拍| 永久免费av网站大全| 亚洲精品自拍成人| 91国产中文字幕| 在线观看免费日韩欧美大片| 欧美精品一区二区免费开放| 国产黄频视频在线观看| 男人操女人黄网站| 青草久久国产| 国产成人91sexporn| 国产男人的电影天堂91| 操美女的视频在线观看| 免费观看a级毛片全部| 亚洲美女黄色视频免费看| 街头女战士在线观看网站| 亚洲精品,欧美精品| 成人黄色视频免费在线看| 亚洲天堂av无毛| 日本午夜av视频| 久久性视频一级片| 精品国产乱码久久久久久小说| 日韩精品有码人妻一区| 99久久精品国产亚洲精品| 色吧在线观看| 大片电影免费在线观看免费| 激情五月婷婷亚洲| 亚洲精品久久午夜乱码| 久久 成人 亚洲| 9191精品国产免费久久| 国产精品熟女久久久久浪| 老司机在亚洲福利影院| 成年人午夜在线观看视频| 亚洲精品日本国产第一区| 亚洲国产精品成人久久小说| 韩国高清视频一区二区三区| www.自偷自拍.com| 欧美av亚洲av综合av国产av | 极品人妻少妇av视频| 国产成人欧美在线观看 | 亚洲成人国产一区在线观看 | 九草在线视频观看| 精品国产一区二区三区久久久樱花| 男女之事视频高清在线观看 | 久久人人97超碰香蕉20202| 在现免费观看毛片| 大片免费播放器 马上看| 亚洲综合色网址| 国产精品三级大全| 日本av手机在线免费观看| 热99国产精品久久久久久7| 最近2019中文字幕mv第一页| 久久久久久免费高清国产稀缺| 国产亚洲最大av| 中国三级夫妇交换| 国产成人啪精品午夜网站| 搡老乐熟女国产| 精品国产国语对白av| 久久久久精品性色| 青春草国产在线视频| 亚洲伊人色综图| 亚洲第一av免费看| 欧美老熟妇乱子伦牲交| 大香蕉久久网| 国产成人精品无人区| 大香蕉久久成人网| 性少妇av在线| 男女国产视频网站| 色视频在线一区二区三区| 91精品伊人久久大香线蕉| 国产在视频线精品| 99热全是精品| 在线亚洲精品国产二区图片欧美| 少妇精品久久久久久久| 男女无遮挡免费网站观看| 少妇被粗大的猛进出69影院| 免费高清在线观看日韩| 电影成人av| 老鸭窝网址在线观看| 成人黄色视频免费在线看| 日韩大片免费观看网站| 精品一区在线观看国产| 久久韩国三级中文字幕| 欧美 亚洲 国产 日韩一| 韩国av在线不卡| 国产乱人偷精品视频| 1024香蕉在线观看| 日韩,欧美,国产一区二区三区| 精品免费久久久久久久清纯 | 黄色视频在线播放观看不卡| 建设人人有责人人尽责人人享有的| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费视频网站a站| 啦啦啦 在线观看视频| 亚洲欧美一区二区三区黑人| 亚洲av国产av综合av卡| 最近中文字幕2019免费版| 新久久久久国产一级毛片| 国产麻豆69| 久久久久国产精品人妻一区二区| 欧美日韩视频高清一区二区三区二| 亚洲av电影不卡..在线观看| 黄片播放在线免费| 手机成人av网站| 身体一侧抽搐| 美女大奶头视频| 亚洲无线在线观看| 1024视频免费在线观看| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清在线视频| 曰老女人黄片| 国产一区二区三区视频了| av视频免费观看在线观看| 免费观看人在逋| 一区二区三区精品91| 成年女人毛片免费观看观看9| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 999久久久精品免费观看国产| 日本欧美视频一区| 国产一区二区三区综合在线观看| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 欧美国产日韩亚洲一区| 亚洲国产欧美网| 成人特级黄色片久久久久久久| 亚洲国产看品久久| 亚洲av电影在线进入| 十八禁人妻一区二区| 欧美成人免费av一区二区三区| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 中文字幕人成人乱码亚洲影| 国产成人精品在线电影| 91国产中文字幕| 精品欧美一区二区三区在线| 99国产精品99久久久久| 亚洲三区欧美一区| av欧美777| 日本免费a在线| 国产欧美日韩一区二区精品| 亚洲男人的天堂狠狠| 中文字幕精品免费在线观看视频| 国产高清视频在线播放一区| av视频免费观看在线观看| 亚洲九九香蕉| 精品欧美国产一区二区三| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品综合一区在线观看 | 日韩高清综合在线| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品99久久久久| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美成狂野欧美在线观看| 国产激情久久老熟女| 亚洲av片天天在线观看| 又紧又爽又黄一区二区| 久久国产乱子伦精品免费另类| 国产黄a三级三级三级人| 99riav亚洲国产免费| 中文字幕色久视频| 免费一级毛片在线播放高清视频 | а√天堂www在线а√下载| 波多野结衣一区麻豆| 日本三级黄在线观看| 精品高清国产在线一区| 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 国产亚洲欧美在线一区二区| 99riav亚洲国产免费| 午夜成年电影在线免费观看| 欧美日本视频| 纯流量卡能插随身wifi吗| 男人舔女人下体高潮全视频| 亚洲中文av在线| 男人的好看免费观看在线视频 | 人人妻人人澡欧美一区二区 | 制服人妻中文乱码| 国产精品99久久99久久久不卡| 18禁观看日本| av视频免费观看在线观看| 亚洲国产精品成人综合色| 极品人妻少妇av视频| 国内精品久久久久精免费| 一级黄色大片毛片| 久热这里只有精品99| 香蕉丝袜av| 亚洲成a人片在线一区二区| 91精品国产国语对白视频| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 香蕉丝袜av| 国产区一区二久久| 丝袜美足系列| 一进一出抽搐gif免费好疼| 亚洲视频免费观看视频| cao死你这个sao货| www国产在线视频色| 麻豆一二三区av精品| 国产成人欧美| 国产欧美日韩一区二区三| 亚洲国产欧美一区二区综合| 精品午夜福利视频在线观看一区| 亚洲av第一区精品v没综合| 真人一进一出gif抽搐免费| 黄片播放在线免费| 变态另类成人亚洲欧美熟女 | www国产在线视频色| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 国产一卡二卡三卡精品| 欧美成人一区二区免费高清观看 | 久久久久久久久免费视频了| 成人特级黄色片久久久久久久| 一区二区日韩欧美中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 在线永久观看黄色视频| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 黄频高清免费视频| 成人国语在线视频| 91九色精品人成在线观看| 嫩草影视91久久| 国产精品日韩av在线免费观看 | 动漫黄色视频在线观看| 亚洲,欧美精品.| 香蕉国产在线看| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三 | 身体一侧抽搐| 免费av毛片视频| 18美女黄网站色大片免费观看| 伦理电影免费视频| 亚洲中文字幕日韩| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区| 欧美一级a爱片免费观看看 | 午夜老司机福利片| 热re99久久国产66热| 亚洲伊人色综图| 久久久精品欧美日韩精品| 亚洲人成伊人成综合网2020| 国产伦一二天堂av在线观看| 免费看a级黄色片| 国产伦人伦偷精品视频| 成熟少妇高潮喷水视频| 亚洲一区中文字幕在线| 日韩欧美一区视频在线观看| 久久久久国内视频| 日韩欧美在线二视频| 久久国产精品影院| 亚洲第一青青草原| 麻豆国产av国片精品| 可以在线观看毛片的网站| 欧美一区二区精品小视频在线| 国产一区二区在线av高清观看| 操出白浆在线播放| 色播在线永久视频| 精品人妻1区二区| 制服丝袜大香蕉在线| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 他把我摸到了高潮在线观看| 久久午夜亚洲精品久久| 中文字幕久久专区| 午夜福利高清视频| 久久中文字幕人妻熟女| 自拍欧美九色日韩亚洲蝌蚪91| 伦理电影免费视频| 中文字幕久久专区| 天天躁夜夜躁狠狠躁躁| 国产一区在线观看成人免费| 一夜夜www| 国产精品 欧美亚洲| 精品一区二区三区视频在线观看免费| www.999成人在线观看| av福利片在线| 国产熟女xx| 午夜福利欧美成人| 丝袜人妻中文字幕| 99精品在免费线老司机午夜| 久久人人97超碰香蕉20202| 亚洲精品中文字幕一二三四区| 黄色丝袜av网址大全| 妹子高潮喷水视频| 国产三级黄色录像| 极品人妻少妇av视频| 色老头精品视频在线观看| 在线永久观看黄色视频| 国产熟女午夜一区二区三区| 欧美日本视频| av欧美777| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 中亚洲国语对白在线视频| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 90打野战视频偷拍视频| 中出人妻视频一区二区| 一边摸一边抽搐一进一出视频| 午夜福利,免费看| bbb黄色大片| 又黄又粗又硬又大视频| 黄色女人牲交| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 热99re8久久精品国产| 欧美激情久久久久久爽电影 | 熟女少妇亚洲综合色aaa.| 亚洲 欧美 日韩 在线 免费| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 久久久久久免费高清国产稀缺| 久久久久久大精品| 中出人妻视频一区二区| 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 麻豆成人av在线观看| 欧美激情极品国产一区二区三区| 大码成人一级视频| 老司机靠b影院| 人成视频在线观看免费观看| 久久人人爽av亚洲精品天堂| 此物有八面人人有两片| 亚洲九九香蕉| 亚洲第一欧美日韩一区二区三区| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站 | 久久久久久久精品吃奶| 成人欧美大片| 美女午夜性视频免费| 高清毛片免费观看视频网站| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 最新在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 久久久精品欧美日韩精品| √禁漫天堂资源中文www| 男人舔女人的私密视频| 久久亚洲真实| 91精品国产国语对白视频| av在线播放免费不卡| 欧美人与性动交α欧美精品济南到| 韩国av一区二区三区四区| 一区二区日韩欧美中文字幕| 欧美日韩一级在线毛片| 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 国产国语露脸激情在线看| 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 狂野欧美激情性xxxx| 激情视频va一区二区三区| 国产亚洲精品久久久久5区| 久久久久久久久免费视频了| 亚洲美女黄片视频| 高清毛片免费观看视频网站| 精品高清国产在线一区| 日韩欧美一区视频在线观看| 99在线视频只有这里精品首页| 香蕉久久夜色| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 啦啦啦观看免费观看视频高清 | 99久久国产精品久久久| 麻豆成人av在线观看| 99国产综合亚洲精品| 国产精品一区二区在线不卡| 成人国产一区最新在线观看| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 国产一区在线观看成人免费| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| 90打野战视频偷拍视频| 一区在线观看完整版| 岛国在线观看网站| 深夜精品福利| 欧美中文日本在线观看视频| 老汉色∧v一级毛片| 久久精品国产亚洲av高清一级| 麻豆一二三区av精品| 国产蜜桃级精品一区二区三区| 欧美黄色淫秽网站| 国产一级毛片七仙女欲春2 | 在线观看66精品国产| 亚洲av成人av| 日本在线视频免费播放| 亚洲少妇的诱惑av| 国产熟女午夜一区二区三区| 女同久久另类99精品国产91| 欧美日韩乱码在线| xxx96com| 男女下面进入的视频免费午夜 | 18禁美女被吸乳视频| 成人欧美大片| 两个人免费观看高清视频| 久久久国产成人精品二区| 午夜视频精品福利| 欧美成人一区二区免费高清观看 | 黄色成人免费大全| 日韩欧美免费精品| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 国产精品亚洲av一区麻豆| 自线自在国产av| 69精品国产乱码久久久| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 脱女人内裤的视频| 精品乱码久久久久久99久播| 午夜久久久在线观看| 国产成人系列免费观看| 人人妻人人澡人人看| 999久久久精品免费观看国产| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| 香蕉丝袜av| 啦啦啦韩国在线观看视频| 一区福利在线观看| 国内精品久久久久久久电影| 国产一区二区三区视频了| 一边摸一边抽搐一进一小说| 欧美 亚洲 国产 日韩一| 午夜福利免费观看在线| 亚洲情色 制服丝袜| 黄色女人牲交| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 操出白浆在线播放| 悠悠久久av| 国产色视频综合| 亚洲人成网站在线播放欧美日韩| 日韩欧美免费精品| 麻豆一二三区av精品| 天堂动漫精品| 成人18禁在线播放| 精品国产一区二区三区四区第35| 久久久久久亚洲精品国产蜜桃av| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 女同久久另类99精品国产91| 日韩av在线大香蕉| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 色综合婷婷激情| 视频区欧美日本亚洲| 国产精品一区二区免费欧美| 亚洲激情在线av| 久久伊人香网站| 日本 av在线| 欧美中文日本在线观看视频| 人人妻人人澡欧美一区二区 | 国产一区二区三区视频了| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 免费人成视频x8x8入口观看| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 欧美老熟妇乱子伦牲交| 日韩欧美在线二视频| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 色在线成人网| 久久久久久亚洲精品国产蜜桃av| 神马国产精品三级电影在线观看 | 国产男靠女视频免费网站| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 中文字幕人妻熟女乱码| 亚洲专区国产一区二区| 色播亚洲综合网| 激情在线观看视频在线高清| 亚洲aⅴ乱码一区二区在线播放 | 中国美女看黄片| 老熟妇乱子伦视频在线观看| 51午夜福利影视在线观看| 亚洲专区字幕在线| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 国产伦人伦偷精品视频| 超碰成人久久| 两个人视频免费观看高清| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 咕卡用的链子| 久久中文字幕人妻熟女| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 免费一级毛片在线播放高清视频 | 国产aⅴ精品一区二区三区波| 精品国产美女av久久久久小说| 亚洲精品国产色婷婷电影| 国产一卡二卡三卡精品| av天堂久久9| 在线免费观看的www视频| 亚洲在线自拍视频| 亚洲av成人av| 可以在线观看毛片的网站| 国产一区二区激情短视频| 热re99久久国产66热| 一个人免费在线观看的高清视频| 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 精品国产国语对白av| 国产亚洲精品久久久久5区| 不卡av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 美国免费a级毛片| 日韩欧美免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 亚洲av熟女| 久热爱精品视频在线9| 一边摸一边抽搐一进一小说| 激情视频va一区二区三区| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| av在线播放免费不卡| 亚洲第一电影网av| 久久精品aⅴ一区二区三区四区| 久久午夜综合久久蜜桃| 国产精品一区二区三区四区久久 | 国产精品秋霞免费鲁丝片| 久久人人精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 丝袜美足系列| 琪琪午夜伦伦电影理论片6080| 亚洲国产欧美网| 国产精品av久久久久免费| 亚洲一区中文字幕在线| www.www免费av| 国产高清视频在线播放一区| 非洲黑人性xxxx精品又粗又长| 国产三级在线视频| 中出人妻视频一区二区| 精品一品国产午夜福利视频| 9色porny在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久午夜综合久久蜜桃| 欧美黑人欧美精品刺激| 国产成人免费无遮挡视频| 搡老妇女老女人老熟妇|