• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    羥基自由基和鳥嘌呤-胞嘧啶堿基對反應的密度泛函理論研究

    2015-12-29 02:32:47李敏杰李重杲陸文聰
    物理化學學報 2015年6期
    關鍵詞:鳥嘌呤胞嘧啶羥基

    李敏杰 刁 玲 寇 莉 李重杲 陸文聰

    (上海大學化學系,創(chuàng)新藥物研究中心,上海200444)

    羥基自由基和鳥嘌呤-胞嘧啶堿基對反應的密度泛函理論研究

    李敏杰*刁 玲 寇 莉 李重杲 陸文聰

    (上海大學化學系,創(chuàng)新藥物研究中心,上海200444)

    為了解決年齡衰老、基因突變和癌癥等問題,理解DNA的氧化損傷機理非常重要.本文利用密度泛函方法和極化連續(xù)介質模型在液相條件下研究了羥基自由基奪取鳥嘌呤-胞嘧啶(GC)堿基對上5個氫原子的反應機理.研究結果表明,所有的脫氫反應路徑都是放熱過程,熱力學上五個脫氫反應路徑形成自由基的穩(wěn)定性順序是(H2b-GC)?>(GC-H4b)?>(GC-H6)?>(GC-H5)?~(H8-GC)?,其中H2b反應路徑的能量變化最大,說明該反應平衡時的轉化率最高.動力學上,相對于反應復合物的局部反應能壘大小順序是H2b<H4b<H5<H6<H8,可以看出在H2b奪取路徑中能壘最小,表明了該反應能在室溫下迅速完成,和實驗結果一致.綜合考慮熱力學和動力學方面的分析,發(fā)現H2b奪取反應最容易進行,次之是H4b奪取反應,然后是H6和H5.而H8的奪取反應很難發(fā)生,和實驗觀察到的8位加成產物現象一致.

    DNA氧化損傷;羥基自由基;鳥嘌呤-胞嘧啶堿基對;反應機理;密度泛函理論

    www.whxb.pku.edu.cn

    1 In troduc tion

    It is known that free radicals and low-energy electrons are constantly formed in living organisms due to ionization ofwater byγ-ray,X-ray,and UV radiations.1-3In particular,hydroxyl radical(?OH),w ith a very short lifetime,playsan important role in radiation-induced nucleic acid(DNA/RNA)damageby reacting w ith nucleic acid components.The damage brings about deleterious biological effects such as cancer,mutations,aging,and apoptosis by altering the DNA/RNA sequence in living organisms.4-8For this reason,the reactions of hydroxyl radicalw ith nucleic acid bases,nucleosides,and nucleotides have been extensively studied experimentally and theoretically.9-37

    The reaction of nucleic acid w ith hydroxyl radicalmainly includes additionmodes on the base unitand hydrogen atom abstraction from the basesand the sugar units.Approximately half of the damage induced by OH radical(?OH)occurs on the bases among the nucleic components,11-13asgiven in chemicalequations (1)and(2).

    The necleobases are the structural unitswhich carry genetic information in DNA and RNA.Muchwork has been devoted to unveil theaddition and hydrogen abstraction reactionsof hydroxyl radicalw ith the bases.11-36It iswell established that hydroxyl radicaladds to the C8,C5,or C4 positions in purine bases(adenine and guanine),and to the C5=C6 double bond in pyrimidine bases(thymine,cytosine and uracil),which give rise to the formation of radical adductsw ith oxidizing or reduction capabilities.18-30The radical adducts can undergo subsequent inter-base hydrogen rearrangement,ring-opening or intra-or inter-molecular hydrogen abstraction,or cross-link reactionsw ith otherbiomacromolecules.12,31-33

    For hydrogen abstraction,Chatgilialoglu etal.13,28reported that themain abstraction of OH radicalw ith guanine is from N2 amino group using pulse radiolysisw ith optical detection and the same resultwas obtained by Mundy29and Abolfath30et al.using theoretical methods.Sevilla et al.19reported that the hydrogen abstraction pathways from N1 and N2 amino groupsof guanineare competitive route.The hydrogen abstractions from adenine by hydroxyl radical reported by Schaefer etal.11are exotherm ic.The sequenceof dehydrogenation kinetically isC6 amino group>N9>C2>C8.11To cytosine,the C4 amino group isenergeticallymore favorable than C5 and C6 for the dehydrogenation process.23,26The reaction of hydroxyl radicalw ith thym inewas studied24,26,27and the hydrogen of C5methylgroup would be themosteasily abstracted one.26,27Theabstraction from N1 ismore preferred than the N3 for uracil.25Furthermore,the propertiesof nucleobase radicalswere studied by Schaefer11and othergroups.

    The canonicalWatson-Crick base pairs are guanine-cytosine (GC,Fig.1)and adenine-thymine(AT)in DNA.Thymine is replaced by uracil in RNA.Base pairsare thebuilding blocksof the DNA double helix and contribute to the folded structure of both DNA and RNA.Some efforts have beenmade to understand the structures and energetics of hydroxyl radical addition reaction w ith Watson-Crick base pairs.The structures and stabilities of dehydrogenation GC radicalsare respectively studied theoretically by Schaefer etal.37The effectsof the hydroxyl radicaladdition on double proton transfer reactions in the guanine-cytosine base pair were also studied theoretically by Zhang and Eriksson.22The proton transfer reaction isproposed to beamutationmechanism.

    All of the previous theoretical predictions have contributed positively to the understanding of hydroxyl radical reactionsw ith nucleic acid bases in the DNA and RNA damage.Even though hydrogen abstractionsby hydroxyl radicalw ith GC and AT base pairs(Fig.1)may notbe known the prevailing reaction tillnow, it is important to study all theways of oxidative DNA damage caused by hydroxyl radical.

    However,to the bestof our know ledge,there isno theoretical study reported so far regarding the hydrogen abstraction process. The aim of thiswork is to systematically study themechanisms of hydrogen abstraction of GC base pairby hydroxyl radical.The structures and energetics of different reaction pathways[GC+?OH→reactant complexes→transition states(TSs)→product complexes→GC dehydrogenated radicals+H2O]are investigated using the B3LYP/DZPmethod.The solvation effectsare treated using the polarization continuum model(PCM).The corresponding reaction pathways,structures,and energetics are provided,whichwould shed lighton related biochemicalexperiments.

    Fig.1 Schem atic of theWaston-Crick guanine-cytosine(GC) base pairw ith atom-numbering scheme

    2 Com pu tationalm ethods

    All calculationswere performed using the Gaussian 09 program.38Geometry optimizations and frequency calculationswere carried out using the B3LYP hybrid density functional39,40w ith double-ζquality basis setsw ith polarization and diffuse functions (DZP++).41Localminimaand transition stateswere identified by imaginary frequencies.Thermodynamic correctionswere obtained from the frequency calculations.Intrinsic reaction coordinate (IRC)calculations were performed to confirm transition states properly connecting reactantsand products.Solventeffectswere taken into consideration by employing the self-consistent reaction field(SCRF)method w ith the polarized continuum modelat the levelof M 06/DZP++theory.42The dielectric constantε=78.4was used for the aqueous solution.Correction for basis set superposition errors(BSSE)were estimated at the same level.In all the cases,the reference state is 1mol·L-1,298 K.In our previousstudies,we have theoretically exam ined the redox potentials of nucleobases and themetabolites to understand the charge/electron transfer processes involved in nucleic acids.43

    The binding energies for reactant complexes[(GC)…OH]?(BE1)and for product complexes[(GC)-H…H2O]?(BE2)were predicted according to the follow ing definitionsgiven in equations (3)and(4):

    The dissociation energies for reactantcomplexes[(GC)…OH]?(DE1)and for product complexes[(GC)-H…H2O]?(DE2)were evaluated using follow ing equations:

    The reaction energies(ΔE)were calculated as the differences of the energies between the reactants and products respectively given in equation(7):

    The local barrier energies(ΔE≠)can be obtained as the differences of energies between the transition states and reactant complexesas depicted in equation(8).

    Fig.2 Different pathways for hydroxyl radical reaction w ith GC base pair

    3 Resu lts and d iscussion

    Seven hydrogen atoms forGC base pair can be abstracted by hydroxyl radical.Three hydrogen atomsare attached to guanine, H2b,H8,and H9.And four hydrogen atoms are attached to cytosine,H1,H4b,H5,and H6.In the real configuration of DNA, N1 atom of the cytosine and N9 atom of guanine are always bonded to a carbon atom of the deoxyribose,instead of a hydrogen atom,so the two hydrogen abstraction reactions attacked by hydroxyl radicalare not considered here.In this study,we have examined other five hydrogen abstraction reactions resulting from hydroxyl radical attacking the GC base pair(Fig.2),and five corresponding radicals are formed,(H2b-GC)?,(H8-GC)?,(GCH4b)?,(GC-H5)?,and(GC-H6)?radicals.

    3.1GC

    The optimized geometries of GC base pair are presented in Fig.3.The interatom ic distances of the intermolecular hydrogen bond in GC base pairobtained in ourwork are in good agreement w ith the theoretical structures reported by Schaefer etal.44,45The interatomic distances of N1(G)…N3(C),N2(G)…O2(C),and O6(G)…N4(C)in GC base pair obtained in our work are consistentw ith the results reported by Zhang and Eriksson.22Thus the structure ofG.C base pair is reasonable in thisarticle.

    Themolecular charge distribution in terms of natural bond orbital(NBO)analysis for GC is shown in Fig.4.Five H-atoms are bonded to nitrogen(N)or carbon(C)atoms.The charges are 0.418e,0.406e,0.229e,0.219e,and 0.194e for H2b,H4b,H5,H6, and H8,respectively.Obviously,the H-atomsbonded to N-atoms aremore positive charge than those bonded to C-atoms.The relativeorder isH2b>H4b>H5>H6>H8.

    3.2Dehyd rogenation rad icals

    The five dehydrogenation GC radicals by hydroxyl radicalare presented in Fig.5.As to the conformationsof the radicals,the coplaner configuration is not changed.The bond lengths of intermolecularhydrogen bondswere found to beelongated in nitrogen centered radicals(H2b-GC)?and(GC-H4b)?.No obvious deformations are found for bond lengths of hydrogen bonds in carbon centered radicals(H8-GC)?,(GC-H5)?,and(GC-H6)?. The changes forbond lengthsof thehydrogen bonds in nitrogen centered radicalsmay result in DNA lesions,since the intermolecularhydrogen bondsare responsible for the GC base pair.

    The relative energiesof GC dehydrogenation radicals respected to GC base pairare summarized in Table1.The(H2b-GC)?and (GC-H4b)?radicals are produced by the hydrogen abstractiondifferently from the exocyclic amino group of guanine and cytosine.The(H2b-GC)?radical is themost stable radical.The followed is the(GC-H4b)?radical.The(GC-H5)?radical,the mostunstable one,ishigher than the(H2b-GC)?radical in energy by 66.52 kJ·mol-1.The energies of the carbon centered radicals ((GC-H5)?,(GC-H6)?,and(H8-GC)?)arehigher than thoseofnitrogen centered radicals((H2b-GC)?)and(GC-H4b)?).The stability orderof these radicalsis(H2b-GC)?>(GC-H4b)?>(GC-H6)?>(H8-GC)?>(GC-H5)?.These resultsare in good agreementw ith those obtained by Bera and Schaefer.46The sequence isnotaltered when considering the zero pointenergy(ZPE)corrections.According to our calculations,H2b may be easier abstracted by hydroxyl radical than H4b,H5,H6,and H8.

    Fig.3 Optim ized geom etriesof GC base pair

    Fig.4 M olecu lar charge distribution in term sof NPA charges(e)

    Fig.5 Op tim ized geometriesof GC dehyd rogenation radicals

    Tab le1 Relativeenergies respected to GC base pair of theGC radicals

    3.3 H2b-GC abstrac tion

    H2b atom may be the easiest attacked by hydroxyl radical, since the atom is themostpositive charged hydrogen atom.The optimized geometries of the reactant complex,TS,and product complex for the reaction pathway of the OH radicalattacking H2b are shown in Fig.6.The OH radicalattaches to guanine at the N3 and H2b through two hydrogen bonds in reactantcomplex 1,with the distancesof 0.1780 and 0.2431 nm for N3…H and O…H2b, respectively.As the dehydrogenation reaction proceeds to TS1,the O…H2b distance decreases to 0.1404 nm,while the N2…H2b bond lengthens from 0.1014 to 0.1106 nm.When productcomplex 1 is formed,theO…H2b distance further decreases to 0.0983 nm, while the N2…H2b bond lengthens to 0.01955 nm.

    For this pathway,the relative energies in aqueous solution are also shown in Fig.6.Reactantcomplex 1 hasa binding energy of 22.34 kJ·mol-1relative to separated reactantsGC plus?OH.The localenergy barrierof reaction from reactantcomplex 1 to TS1 is predicted to be 1.09 kJ·mol-1,itseems that the reaction for H2b abstraction in kinetics view would be rapid.A fter the H2b is abstracted,the productcomplex 1 is formed by thehydrogen bond (H2b…N2)of the resultingwaterand the new ly formed N2-GC radical.Theenergy of productcomplex is100.37 kJ·mol-1lower than thatof separated reactants.Compared to the reactant complex,the productcomplex is78.03 kJ·mol-1lower in energy.The corresponding dissociation energy for productcomplex 1 to N2-GC radicaland H2O is9.79 kJ·mol-1.Meanwhile,the separated N2-GC radical plus H2O lies 90.58 kJ·mol-1below separated reactants.

    3.4 H8-GC abstrac tion

    The hydrogen abstraction process from C8 atom isalso studied.The optim ized geometries and relative energies are displayed in Fig.7.Reactant complex 2 is a hydroxyl radical adduct characterized by experiments,12instead of hydrogen bond interaction complex in other reaction pathways.The conjugation of the entire system is disrupted and N7=C8 double bond(0.1310 nm)is broken to N7―C8 bond(0.1452 nm).The distance of C8―O bond is 0.1414 nm.As the reaction progresses,the C8―O bond breaksand H8m igrates away from C8,the C8…H bond(0.1304 nm)and H8…O hydrogen bond(0.1197 nm)form in TS2.In product complex 2,the water and the C8-GC radical are held together through O6…H and N7…H hydrogen bonds w ith the distancesof 0.1984 and 0.2347 nm,respectively.

    Fig.6 Op tim ized geom etriesand energy surfaces for the reaction of hydroxyl radicalattacking on H 2b of GC

    Fig.7 Op tim ized geometriesand relativeenergies for the hydroxyl radicalattacking on H8 of GC

    Fig.8 Optim ized geom etriesand relativeenergies for the hydroxyl radicalattacking on H4 ofGC

    The energy of reactantcomplex 2 is136.57 kJ·mol-1lower than thatof separated GC plus?OH.Itis themoststable one among all the reactant complexes.The local barrier ismuch higher than thoseofother reaction pathwaysw ith the valueof153.14 kJ·mol-1. TS2 lies16.57 kJ·mol-1above separated reactants in energy.The product complex lies101.63 kJ·mol-1above the corresponding reactantcomplex.The dissociation energy for product complex 2 is 18.20 kJ·mol-1relative to C8-GC radical pluswater.The H8 abstraction process(GC+?OH→C8-GC?+H2O)isexothermic by ca 16.74 kJ·mol-1.

    3.5 GC-H4b abstrac tion

    H4b atom is the secondedmost positively charged hydrogen atom,itmay be also easily abstracted by OH radical.In order to attack H4b atom,the OH radical binds to cytosine by two hydrogen bonds.As shown in Fig.8,the one is H4b hydrogenbonded to OH radical,the other is H5 linked to oxygen atom of OH radical.As the reaction progresses,thehydrogen bond lengths of O…H4b decrease from 0.1893 nm in reactant complex 3,to 0.1241 nm in TS3,then to 0.0983 nm in product complex 3. Meanwhile,the N4…H4b gradually increases along the pathway, from 0.1024 nm in reactantcomplex 3,to 0.1189 nm in TS3,to 0.1939 nm in product complex 3.The H5…O hydrogen bond is formed in productcomplex 3 and the length is0.2317 nm.

    The binding energy between the GC base pairand the attacking OH radical is predicted to be4.18 kJ·mol-1,see Fig.8.There isa localenergy barrier from reactantcomplex 3 to TS3with the value of9.58 kJ·mol-1.Theenergy of TS3 is5.40 kJ·mol-1higher than that of the separated reactants.The H5…O and N4…H4b hydrogen bonds are formed in the product complex and the dissociation energy ispredicted to be10.63 kJ·mol-1.Theenergy of the productcomplex is45.74 kJ·mol-1lower than thatof the reactant complex.The H4b abstraction process is exothermic by 39.29 kJ· mol-1.

    3.6 GC-H5 abstrac tion

    Thehydrogen abstraction reaction by OH radical from C5 site to form GC-C5 radicalwas also studied.Fig.9 shows the optimized geometries of reactant complex 4,TS4,and productcomplex 4 of the reaction pathway.The OH radicalbinds to GC at the H4b and H5 positions through two hydrogen bonds to form the reactantcomplex 4.TheO…H5 distance is0.2556 nm,a long hydrogen bond,while the O…H4b distance is0.1893 nm.A long the reaction pathway,the O…H5 bond decreases to 0.1195 nm in the TS4,and further shortens to 0.0969 nm in the product complex,and in themeantime the C5―H5 bond length increases from 0.1085 nm in the reactant complex,to 0.1195 nm in TS4,and finally the bond cleaves in the product complex.The O…H4b bond cleaves in TS4 and formsw ith the distance of 0.1987 nm in productcomplex 4.

    Fig.9 Optim ized geometriesand relativeenergies for the hyd roxyl radicalattacking on H 5 of GC

    The stability energy of the reactant complex by two hydrogen bonds is computed to be4.18 kJ·mol-1compared to separated GC plushydroxyl radical(Fig.9).The localactivation energy is23.34 kJ·mol-1and theenergy of TS4 is19.16 kJ·mol-1above separated reactants.The corresponding dissociation energy is calculated to be8.79 kJ·mol-1relative to GC-C5 radicalpluswater.Theproduct complex and the separated products lie above the corresponding reactantcomplex and separated reactantsby 21.30 and 16.69 kJ· mol-1in energy,respectively.

    3.7 GC-H6 abstrac tion

    The abstraction process of H6 involves reactant complex 5, TS5,and productcomplex 5(Fig.10).OH radicalbinds to cytosine through two bonds.The one is the H1-bonded to the attacking OH radical(O…H1 distance is0.2053 nm),the other isO2 linked to hydrogen atom of OH radical(O2…H length is0.1745 nm).As the reaction progresses,the two hydrogen bonds cleave and the new hydrogen bond of O…H6(0.1217 nm)forms in TS5,the O2…H(0.1872 nm)and O…H1(0.1860 nm)bonds form in product complex 5,and in themeantime the C6…H6 bond increases from 0.1088 nm in reactantcomplex 5 to 0.1278 nm in the TS5,and further cleaves in productcomplex 5.

    The binding energy for reactant complex 5 is 19.87 kJ·mol-1compared to the separated GC plus hydroxyl radical.The local activation energy(reactant complex 5→TS5)is 39.49 kJ·mol-1. This localbarrier ishigher than those for theabstraction processes of H2b,H4b,and H5,though it ismuch lower than the H8 abstraction barrier.The TS5 lies19.62 kJ·mol-1above the separated reactants in energy.The formation of O2…H and O…H1 bonds stabilizes productcomplex 5,and the corresponding dissociation energy ispredicted to be18.37 kJ·mol-1.Theenergy lies28.12 kJ· mol-1below thatof reactantcomplex 5.The abstraction process isexothermic by ca29.62 kJ·mol-1.

    Fig.10 Optim ized geometriesand relativeenergies for the hyd roxyl radicalattacking on H 6 of GC

    3.8 Energitics

    The energy profiles along the five reaction pathway[GC+?OH→reactantcomplexes→TS→productcomplexes→(GC-H)?+ H2O]are shown in Fig.11.The reaction energiesand localbarrier energies in aqueous solution are listed in Table 2.Thermodynamically,all thehydrogen abstraction processesare exothermic. The H2b abstraction processhas the highest reaction energiesw ith the data of 90.58 kJ·mol-1.The reaction energies forH4b,H5,H6, and H8 abstraction processes are 39.29,16.69,29.62,16.74 kJ· mol-1,respectively.According to our calculations,the abstraction order is H2b>H4b>H6>H5~H8 from a thermodynamic view.The H2b and H4b would be themore thermodynam ically favorableabstraction sites than H6,H5,and H8.In addition,the localbarrier of H2b abstraction process is the lowest in all the studied pathwayswith the valueof 1.09 kJ·mol-1.Theother localbarriersare 9.58,23.34,39.49,153.14 kJ·mol-1for H4b,H5,H6,H8 abstraction processes,respectively.In kinetics,the abstraction order is H2b>H4b>H5>H6>H8,which is consistentwith the theoretical results reported by Yadav and M ishra.26Both in thermodynamics and in kinetics,H2b abstraction process is themost favorable reaction pathway among all the hydrogen abstraction reactions and it is followed by H4b abstraction pathway.Themain path of hydrogen abstraction is from the exocyclic NH2of guanine initiated by OH radical also reported experimentally by Chatgilialoglu etal.13,28Xia etal.23also reported thatH4b site is more abstracted than H5 site of cytosine by OH radical thermodynamically and kinetically.In comparison w ith other sites,H8 abstraction process has the least reaction probably,which is consistentwith experimentally observed hydroxylation adduct,12nothydrogen abstraction radical.

    Tab le2 Reaction energies(ΔE)and localbarrier energies(ΔE≠) for fiveabstraction pathways in aqueoussolution

    4 Conc lusions

    In thiswork,we have studied five possible hydrogen abstraction reactions by hydroxyl radical in GC base pair in aqueous solution at theM 06/DZP++//B3LYP/DZP++levelof theory.All the reactions in GC base pair are thermodynamically exothermic. The stability of dehydrogenation radical is in the sequence:(H2b-GC)?>(GC-H4b)?>(GC-H6)?>(GC-H5)?~(H8-GC)?,the reaction energy in H2b reaction process is the lowest compared w ith the other pathways,indicated that reaction conversion of(H2b-GC)?would be the highest.In kinetics,the localbarrier energy in the abstraction pathways is in the sequence of H2b<H4b<H5<H6<H8, observing that thebarrierenergy in H2b abstraction process is the lowest among all the discussed processes,suggested that this pathway in kinetics view would be themost rapid.H2b abstraction processwould be themost favorable reaction pathway,and the compatible pathway is H4b abstraction and it is followed by H5 and H6 abstraction pathways.In comparisonw ith other sites, H8 abstraction process is probably themost impossible reaction pathway,which is consistentw ith experimentally observed hydroxylation adduct.Moreover,the NBO charge analysis further verifies thatH2b and H4b atomsw ithmore positive charges can bemore easily attacked by hydroxyl radical,while H8w ith the mostnegative charges is themostdifficultattacked by hydroxyl radical.This study assists further research for a better interpretation of the dehydrogenationmechanism in DNA double helix.

    (1)Bao,S.D.;Wu,Q.L.;M cLendon,R.E.;Hao,Y.L.;Shi,Q.; Hjelmeland,A.B.;Dewhirst,M.W.;Bigner,D.D.;Rich,J.N. Nature 2006,444,756.doi:10.1038/nature05236

    (2)O'Donovan,P.;Perrett,C.M.;Zhang,X.H.;Montaner,B.;Xu, Y.Z.;Harwood,C.A.;M cGregor,J.M.;Walker,S.L.; Hanaoka,F.;Karran,P.Science 2005,309,1871.doi:10.1126/ science.1114233

    (3)Shukla,L.I.;Adhikary,A.;Pazdro,R.;Becker,D.;Sevilla,M. D.Nucleic AcidsRes.2004,32,6565.doi:10.1093/nar/gkh989

    (4)Steenken,S.Chem.Rev.1989,89,503.doi:10.1021/ cr00093a003

    (5)von Sonntag,C.Free-Radical-Induced DNADamage and Its Repair;Springer Verlag:Berlin,2006.

    (6)Dizdaroglu,M.;Jaruga,P.Free RadicalRes.2012,46,382.doi: 10.3109/10715762.2011.653969

    (7)Antonchenko,V.Y.;Kryachko,E.J.J.Phys.Chem.A 2005, 109,3052.

    (8)D'Souza,J.S.;Dharmadhikari,J.A.;Dharmadhikari,A.K.; Rao,B.J.;Mathur,D.Phys.Rev.Lett.2011,106,118101.doi: 10.1103/PhysRevLett.106.118101

    (9)Zhang,R.B.;Eriksson,L.A.Chem.-Eur.J.2009,15,2394. doi:10.1002/chem.v15:10

    (10)Kanvah,S.;Joseph,J.;Schuster,G.B.;Barnett,R.N.;Clevland, C.L.;Landman,U.AccountsChem.Res.2010,43,280.doi: 10.1021/ar900175a

    (11)Cheng,Q.;Gu,J.;Compaan,K.R.;Schaefer,H.F.Chem.-Eur. J.2010,16,11848.doi:10.1002/chem.201001236

    (12)Candeias,L.P.;Steenken,S.Chem.-Eur.J.2000,6,475.

    (13)Chatgilialoglu,C.;D'Angelantonio,M.;Kciuk,G.;Bobrowski, K.Chem.Res.Toxicol.2011,24,2200.doi:10.1021/tx2003245

    (14)Frances-Monerris,A.;Manuela,M.;Roca-Sanjuan,D.J.Chem. Phys.2013,139,071101.doi:10.1063/1.4818727

    (15)Tan,R.;Wang,D.;Hu,L.;Zhang.F.S.Int.J.Quantum Chem. 2014,114,367.doi:10.1002/qua.24567

    (16)Wagner,J.R.;Cadet,J.AccountsChem.Res.2010,43,564.doi: 10.1021/ar9002637

    (17)Agnibotri,N.;M ishra,P.C.Chem.Phys.Lett.2011,503, 305.doi:10.1016/j.cplett.2011.01.042

    (18)Llano,J.;Eriksson,L.A.Phys.Chem.Chem.Phys.2004,6, 4707.doi:10.1039/b410922h

    (19)Kumar,A.;Pottiboyina,V.;Sevilla,M.D.J.Phys.Chem.B 2011,115,15129.doi:10.1021/jp208841q

    (20)Jena,N.R.;M ishra,P.C.J.Phys.Chem.B.2005,109,14205. doi:10.1021/jp050646j

    (21)Catterall,H.;Davies,M.J.;Gilbert,B.C.;Polack,N.P. J.Chem.Soc.Perk.Trans.2 1993,2039.

    (22)Zhang,R.B.;Eriksson,L.A.J.Phys.Chem.B 2007,111, 6571.doi:10.1021/jp071772l

    (23)Ji,Y.J.;Xia,Y.Y.;Zhao,M.W.;Huang,B.;Li,F.J.Mol. Struct.-Theochem 2005,723,123.doi:10.1016/j. theochem.2005.02.039

    (24)Ji,Y.J.;Xia,Y.Y.;Zhao,M.W.;Li,F.;Huang,B.Int.J.Quantum Chem.2005,101,211.

    (25)Prasanthkumar,K.P.;Suresh,C.H.;Aravindakumar,C.T. Radiat.Phys.Chem.2012,81,267.doi:10.1016/j. radphyschem.2011.11.001

    (26)Yadav,A.;M ishra,P.C.Int.J.Quantum Chem.2013,113, 56.doi:10.1002/qua.24050

    (27)Wu,Y.;Mundy,C.J.;Colvin,M.E.;Car,R.J.Phys.Chem.A 2004,108,2922.doi:10.1021/jp0363592

    (28)Chatgilialoglu,C.;D'Angelantonio,M.;Guerra,M.;Kaloudis, P.;Mulazzani,Q.G.Angew.Chem.Int.Edit.2009,48,2214. doi:10.1002/anie.v48:12

    (29)Mundy,C.J.;Colvin,M.E.;Quong,A.A.J.Phys.Chem.A 2002,106,10063.doi:10.1021/jp0212904

    (30)Abolfath,R.M.;Biswas,P.K.;Rajnarayanam,R.;Brabec,T.; Kodym,R.;Papiez,L.J.Phys.Chem.A 2012,116,3940.doi: 10.1021/jp300258n

    (31)Vieira,A.J.S.C.;Steenken,S.J.Phys.Chem.1991,95, 9340.doi:10.1021/j100176a056

    (32)Ceron-Carrasco,J.P.;Jacquem in.D.RSCAdvances2012,2, 11867.doi:10.1039/c2ra22389a

    (33)Pottiboyina,V.;Kumar,A.;Sevilla M.D.J.Phys.Chem.B 2011,115,15090.doi:10.1021/jp207873a

    (34)Chaban,G.M.;Wang,D.;Huo,W.M.J.Phys.Chem.A 2015, 119,377.doi:10.1021/jp508771g.

    (35)Gao,Y.;Chen,X.;Zhong,L.;Yao,W.;Li.S.Org.Biomol. Chem.2014,12,5891.doi:10.1039/C4OB00168K

    (36)Frances-Monerris,A.;Manuela,M.;Roca-Sanjuan,D.J.Phys. Chem.B 2014,118,2932.doi:10.1021/jp412347k

    (37)Lind,M.C.;Richardson,N.A.;Wheeler,S.E.;Schaefer,H.F. J.Phys.Chem.B 2007,111,5525.doi:10.1021/jp0714926

    (38)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;etal.Gaussian 09, Revision A.01;Gaussian Inc.:Wallingford,CT,2009.

    (39)Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/ 1.464913

    (40)Becke,A.D.Phys.Rev.A 1988,38,3098.doi:10.1103/ PhysRevA.38.3098

    (41)Rienstra-Kiracofe,J.C.;Tschumper,G.S.;Schaefer,H.F.; Nandi,S.;Ellison,G.B.Chem.Rev.2002,102,231.doi: 10.1021/cr990044u

    (42)Cadet,J.;Douki,T.;Ravanat,J.L.AccountsChem.Res.2008, 41,1075.doi:10.1021/ar700245e

    (43)Li,M.J.;Liu,W.X.;Peng,C.R.;Lu,W.C.Acta Phys.-Chim. Sin.2011,27(3),595.[李敏杰,劉衛(wèi)霞,彭淳榮,陸文聰.物理化學學報,2011,27(3),595.]doi:10.3866/PKU. WHXB20110333

    (44)Gupta,A.;Jaeger,H.M.;Compaan,K.R.;Schaefer,H.F. J.Phys.Chem.B 2012,116,5579.doi:10.1021/jp211608b

    (45)Zhang,J.D.;Schaefer,H.F.J.Chem.Theor.Comput.2006,3, 115.

    (46)Bera,P.P.;Schaefer,H.F.Proc.Natl.Acad.Sci.U.S.A.2005, 102,6698.doi:10.1073/pnas.0408644102

    Hyd roxy lRad icalReac tion w ith the Guanine-Cytosine Base Pair: A Density Func tional Theo ry Study

    LIMin-Jie*DIAO Ling KOU Li LIZhong-Gao LUWen-Cong
    (Innovative Drug Research Center,DepartmentofChemistry,ShanghaiUniversity,Shanghai200444,P.R.China)

    To address problems such as aging,mutation,and cancer,it is ofgreat im portance to understand the damagemechanism ofDNA induced by hydroxyl radical.In this study,the abstraction reactionmechanism ofhydroxyl radicalwith guanine-cytosine(GC)base pair in aqueous phase under the polarized continuum model (PCM)has been explored by using density functional theory(DFT).The results indicated thatall the abstraction reactions in GC base pairwere thermodynam ically exotherm ic,and the stability of dehydrogenation radicals decreased in the orderof(H2b-GC)?>(GC-H4b)?>(GC-H6)?>(GC-H5)?~(H8-GC)?.The reaction energy ofH2b abstraction pathway was the lowest among all investigated pathways,thus indicating that the reaction conversion of(H2b-GC)?was the highest.In the five hydrogen abstraction pathways,the localenergy barriers w ith respect to the corresponding reactantcomp lexes increased in the follow ing order:H2b<H4b<H5<H6<H8, thereby suggesting that the H2b abstraction pathway was themost rapid.Thus,H2b abstraction process was themost likely favorable reaction pathway.Another compatible pathwaywould be the H4b abstraction,followed by H6 and H5 abstraction pathways in thermodynam ics and in kinetics.H8 abstraction processwas the least favorable pathway,as consistentw ith the formation ofhydroxylation adductobserved experimentally rather than the hydrogen abstraction radical.

    DNAoxidative damage;Hydroxyl radical;Guanine-cytosine base pair; Reactionmechanism;Density functionaltheory

    O641 [Communication]

    10.3866/PKU.WHXB201504171

    Received:February 9,2015;Revised:April17,2015;Published onWeb:April17,2015.

    ?Corresponding author.Email:minjieli@shu.edu.cn;Tel:+86-10-66133513.

    The projectwassupported by the NationalNatural Science Foundation of China(21273145).

    國家自然科學基金(21273145)資助項目

    ?Editorialofficeof Acta Physico-Chim ica Sinica

    猜你喜歡
    鳥嘌呤胞嘧啶羥基
    電化學法檢測細胞中的胸腺嘧啶和胞嘧啶
    8-羥基鳥嘌呤DNA糖苷酶與支氣管哮喘關系的研究進展
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    2-氨基-6-氯鳥嘌呤的合成工藝改進研究
    8-羥鳥嘌呤可促進小鼠骨骼肌成肌細胞的增殖和分化
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    鳥嘌呤在聚L-甲硫氨酸/石墨烯修飾電極上的電化學行為及測定
    遺傳密碼知多少?
    百科知識(2015年13期)2015-09-10 07:22:44
    質子化胞嘧啶碰撞誘導解離的實驗和理論研究
    質譜學報(2015年5期)2015-03-01 03:18:25
    亚洲美女搞黄在线观看| 日韩免费高清中文字幕av| 日韩亚洲欧美综合| 久久精品国产a三级三级三级| 免费看不卡的av| 老司机影院毛片| 日本色播在线视频| 综合色丁香网| 国产视频内射| 国产伦理片在线播放av一区| 欧美三级亚洲精品| 少妇人妻一区二区三区视频| av国产精品久久久久影院| 下体分泌物呈黄色| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 高清日韩中文字幕在线| 99久久精品国产国产毛片| 丝瓜视频免费看黄片| 国产成人freesex在线| 午夜福利高清视频| 亚洲精品国产成人久久av| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 成年美女黄网站色视频大全免费 | 18+在线观看网站| 午夜福利网站1000一区二区三区| 国产精品免费大片| 亚洲精品第二区| 在线观看一区二区三区激情| 国产免费一级a男人的天堂| 99久久中文字幕三级久久日本| 91久久精品国产一区二区成人| 91精品国产九色| 精品少妇黑人巨大在线播放| 日韩不卡一区二区三区视频在线| videossex国产| 久久久久久人妻| 日韩,欧美,国产一区二区三区| 自拍偷自拍亚洲精品老妇| 激情五月婷婷亚洲| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| av免费观看日本| 亚洲国产精品一区三区| 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| a级毛色黄片| 欧美高清成人免费视频www| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 久久精品熟女亚洲av麻豆精品| 国产免费福利视频在线观看| 有码 亚洲区| 丝袜脚勾引网站| 亚洲丝袜综合中文字幕| 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 男人和女人高潮做爰伦理| a级毛色黄片| a级毛色黄片| .国产精品久久| 少妇人妻一区二区三区视频| 日韩中字成人| 国国产精品蜜臀av免费| 亚洲精品国产av成人精品| 女的被弄到高潮叫床怎么办| 中文字幕久久专区| 小蜜桃在线观看免费完整版高清| 精品国产一区二区三区久久久樱花 | 日韩成人av中文字幕在线观看| 日韩成人av中文字幕在线观看| 国产精品嫩草影院av在线观看| 中文字幕免费在线视频6| 在线播放无遮挡| 亚洲第一区二区三区不卡| 身体一侧抽搐| 国产精品无大码| 日韩强制内射视频| 夜夜骑夜夜射夜夜干| 九九爱精品视频在线观看| av视频免费观看在线观看| 插逼视频在线观看| 少妇人妻久久综合中文| videossex国产| 亚洲人成网站在线播| 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 午夜免费男女啪啪视频观看| 色综合色国产| 精品熟女少妇av免费看| 成人黄色视频免费在线看| videossex国产| 亚洲国产色片| 极品教师在线视频| 亚洲图色成人| 直男gayav资源| 久久这里有精品视频免费| 伦理电影大哥的女人| 永久免费av网站大全| 国产亚洲5aaaaa淫片| 国产欧美另类精品又又久久亚洲欧美| 久久久久人妻精品一区果冻| 色视频www国产| 赤兔流量卡办理| 亚洲真实伦在线观看| 久久人人爽av亚洲精品天堂 | 少妇人妻 视频| av国产久精品久网站免费入址| tube8黄色片| 三级国产精品欧美在线观看| 99久久精品热视频| 国产男人的电影天堂91| 99九九线精品视频在线观看视频| 婷婷色综合www| 下体分泌物呈黄色| 女的被弄到高潮叫床怎么办| 国产一区有黄有色的免费视频| 亚洲三级黄色毛片| 三级经典国产精品| 22中文网久久字幕| 亚洲怡红院男人天堂| 亚洲精品国产色婷婷电影| 卡戴珊不雅视频在线播放| 久久精品夜色国产| 国产色爽女视频免费观看| 国产亚洲av片在线观看秒播厂| 亚洲久久久国产精品| 成人毛片a级毛片在线播放| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 九色成人免费人妻av| 少妇熟女欧美另类| 久久久久久久久久人人人人人人| 精品久久久久久久久av| 亚洲精品成人av观看孕妇| 免费看光身美女| 亚洲国产精品专区欧美| 日韩 亚洲 欧美在线| 亚洲性久久影院| 男女下面进入的视频免费午夜| 好男人视频免费观看在线| 久久久久久久亚洲中文字幕| 国产精品成人在线| 热99国产精品久久久久久7| 午夜免费男女啪啪视频观看| 亚洲综合色惰| 国产69精品久久久久777片| 网址你懂的国产日韩在线| 十分钟在线观看高清视频www | 国产成人aa在线观看| 一个人看视频在线观看www免费| 九九久久精品国产亚洲av麻豆| 男人和女人高潮做爰伦理| 熟女av电影| 搡女人真爽免费视频火全软件| av不卡在线播放| 日韩欧美一区视频在线观看 | 成人漫画全彩无遮挡| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 亚洲内射少妇av| 国产精品伦人一区二区| 大话2 男鬼变身卡| 青春草亚洲视频在线观看| 熟妇人妻不卡中文字幕| 一个人看的www免费观看视频| 在线看a的网站| 男女边吃奶边做爰视频| 国产男人的电影天堂91| 91久久精品国产一区二区三区| 一级毛片我不卡| 欧美丝袜亚洲另类| 久久精品熟女亚洲av麻豆精品| 内射极品少妇av片p| 交换朋友夫妻互换小说| 中国三级夫妇交换| 欧美成人a在线观看| 最近的中文字幕免费完整| av线在线观看网站| 99国产精品免费福利视频| 国产男女超爽视频在线观看| 亚洲激情五月婷婷啪啪| 大码成人一级视频| 性色avwww在线观看| 亚洲精品中文字幕在线视频 | 一级毛片久久久久久久久女| 久久国产亚洲av麻豆专区| 亚洲av综合色区一区| 欧美老熟妇乱子伦牲交| 国产精品福利在线免费观看| 国产精品一及| 美女福利国产在线 | 国产精品人妻久久久久久| 国产黄色免费在线视频| 欧美日韩视频高清一区二区三区二| 日韩 亚洲 欧美在线| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区久久久樱花 | 91aial.com中文字幕在线观看| 夫妻午夜视频| 在线免费十八禁| 美女中出高潮动态图| 国产成人精品福利久久| 在线观看av片永久免费下载| 最近最新中文字幕免费大全7| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播| 国产熟女欧美一区二区| 黄片wwwwww| 亚洲人成网站在线播| 中文在线观看免费www的网站| 精品国产一区二区三区久久久樱花 | 搡女人真爽免费视频火全软件| av在线播放精品| 欧美丝袜亚洲另类| 18+在线观看网站| 国产乱人视频| 国产亚洲欧美精品永久| 亚洲欧美清纯卡通| 亚洲国产精品国产精品| 国产成人freesex在线| 欧美xxⅹ黑人| av又黄又爽大尺度在线免费看| 亚洲va在线va天堂va国产| 日韩一区二区三区影片| 男人添女人高潮全过程视频| 国产av精品麻豆| 最黄视频免费看| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 欧美高清成人免费视频www| 高清黄色对白视频在线免费看 | 亚洲美女视频黄频| 国产精品久久久久久av不卡| 直男gayav资源| 免费大片黄手机在线观看| 亚洲精品视频女| 久久久成人免费电影| 青春草亚洲视频在线观看| 秋霞在线观看毛片| 久久精品熟女亚洲av麻豆精品| 亚洲av二区三区四区| 日本wwww免费看| 国产精品久久久久久av不卡| 久久久久久久国产电影| 久久av网站| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 国产亚洲一区二区精品| 直男gayav资源| 欧美三级亚洲精品| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 又黄又爽又刺激的免费视频.| 老司机影院毛片| 免费播放大片免费观看视频在线观看| 在线观看国产h片| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| av国产免费在线观看| 视频中文字幕在线观看| 国产视频内射| 亚洲欧美成人精品一区二区| 国产极品天堂在线| 一边亲一边摸免费视频| 亚洲va在线va天堂va国产| 熟妇人妻不卡中文字幕| 亚洲最大成人中文| 亚洲天堂av无毛| 美女福利国产在线 | 内射极品少妇av片p| 亚洲成人中文字幕在线播放| 国产免费视频播放在线视频| 91精品国产九色| 岛国毛片在线播放| 久久久国产一区二区| 老熟女久久久| 少妇丰满av| av黄色大香蕉| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 久久久亚洲精品成人影院| av国产久精品久网站免费入址| 99国产精品免费福利视频| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 视频区图区小说| 婷婷色av中文字幕| 亚洲精品,欧美精品| 国产精品一区www在线观看| 欧美区成人在线视频| 久久 成人 亚洲| 久久av网站| 丰满乱子伦码专区| 成人一区二区视频在线观看| 在线观看三级黄色| 新久久久久国产一级毛片| 26uuu在线亚洲综合色| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 97热精品久久久久久| 黄色一级大片看看| 啦啦啦视频在线资源免费观看| 亚洲,欧美,日韩| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 91久久精品国产一区二区三区| 夜夜爽夜夜爽视频| 97超视频在线观看视频| 新久久久久国产一级毛片| 日韩精品有码人妻一区| 欧美成人午夜免费资源| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 在线观看一区二区三区| 久久久久久人妻| 五月伊人婷婷丁香| 极品教师在线视频| 黄片wwwwww| 美女视频免费永久观看网站| av国产免费在线观看| 性色av一级| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 国产在视频线精品| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区综合在线观看 | 成人亚洲精品一区在线观看 | 小蜜桃在线观看免费完整版高清| av一本久久久久| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品| xxx大片免费视频| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看 | 亚洲性久久影院| 舔av片在线| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 激情五月婷婷亚洲| 日日摸夜夜添夜夜添av毛片| 人人妻人人添人人爽欧美一区卜 | 国国产精品蜜臀av免费| 久热这里只有精品99| 一边亲一边摸免费视频| av视频免费观看在线观看| 国国产精品蜜臀av免费| 在线播放无遮挡| 国产精品一区二区在线不卡| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 成人国产av品久久久| 国产精品久久久久久精品电影小说 | 日本爱情动作片www.在线观看| 欧美激情国产日韩精品一区| av在线播放精品| 免费大片黄手机在线观看| 亚洲,一卡二卡三卡| 国产在线免费精品| 亚洲婷婷狠狠爱综合网| 夜夜看夜夜爽夜夜摸| 一本久久精品| 1000部很黄的大片| 下体分泌物呈黄色| 国产极品天堂在线| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久| 蜜桃久久精品国产亚洲av| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 精品久久久久久久久亚洲| 欧美极品一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 日日啪夜夜爽| 在线观看三级黄色| 欧美变态另类bdsm刘玥| 欧美一区二区亚洲| 色综合色国产| 亚洲综合精品二区| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说 | 王馨瑶露胸无遮挡在线观看| 精品国产露脸久久av麻豆| 好男人视频免费观看在线| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 国产爱豆传媒在线观看| 国产乱来视频区| 亚洲欧美精品专区久久| 亚洲人成网站在线播| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| av又黄又爽大尺度在线免费看| 大又大粗又爽又黄少妇毛片口| 大片电影免费在线观看免费| kizo精华| 国产精品免费大片| 亚洲国产精品国产精品| 91aial.com中文字幕在线观看| 精品少妇久久久久久888优播| 亚洲成人中文字幕在线播放| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 色婷婷av一区二区三区视频| 狂野欧美激情性bbbbbb| 日韩人妻高清精品专区| 欧美精品亚洲一区二区| 永久免费av网站大全| 91精品伊人久久大香线蕉| 91狼人影院| av在线观看视频网站免费| 人体艺术视频欧美日本| 国产精品久久久久久av不卡| 国产成人一区二区在线| 97在线视频观看| 国产欧美日韩精品一区二区| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 国产精品无大码| 好男人视频免费观看在线| 人妻制服诱惑在线中文字幕| 久久久久人妻精品一区果冻| 一级毛片aaaaaa免费看小| 亚洲av男天堂| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 久久久久精品性色| 国产成人精品久久久久久| 大片免费播放器 马上看| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 久热这里只有精品99| xxx大片免费视频| av线在线观看网站| 欧美bdsm另类| 性色av一级| 日产精品乱码卡一卡2卡三| 水蜜桃什么品种好| 边亲边吃奶的免费视频| 春色校园在线视频观看| 久久国产精品大桥未久av | 深爱激情五月婷婷| 精品亚洲成a人片在线观看 | 蜜桃久久精品国产亚洲av| 国产 一区精品| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 18禁在线无遮挡免费观看视频| 黄色一级大片看看| 午夜免费鲁丝| 91精品一卡2卡3卡4卡| 成人影院久久| 一级毛片aaaaaa免费看小| 一级片'在线观看视频| 国产日韩欧美在线精品| 少妇 在线观看| 精品久久久噜噜| 黄片无遮挡物在线观看| a级毛色黄片| 蜜臀久久99精品久久宅男| 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 国产精品熟女久久久久浪| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 国产av码专区亚洲av| 成人无遮挡网站| 国产精品一区二区在线观看99| 欧美性感艳星| 高清视频免费观看一区二区| 亚洲av电影在线观看一区二区三区| 少妇的逼水好多| 男女边吃奶边做爰视频| 国产淫语在线视频| 成人漫画全彩无遮挡| 人人妻人人澡人人爽人人夜夜| 久久久久网色| 欧美日韩在线观看h| av在线app专区| 国产精品欧美亚洲77777| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 国产极品天堂在线| 久久精品久久久久久久性| 国产真实伦视频高清在线观看| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲成人手机| 国产在线免费精品| 男男h啪啪无遮挡| 亚洲中文av在线| 日韩欧美精品免费久久| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡免费网站照片| 三级经典国产精品| 插阴视频在线观看视频| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区| 国产av码专区亚洲av| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 午夜免费鲁丝| 国产欧美亚洲国产| 一区二区三区四区激情视频| 免费大片黄手机在线观看| 久久韩国三级中文字幕| 亚洲经典国产精华液单| 国产免费一区二区三区四区乱码| 亚洲精华国产精华液的使用体验| 一级a做视频免费观看| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 日韩一区二区视频免费看| 精品一区在线观看国产| 亚洲精品一二三| 欧美日韩视频高清一区二区三区二| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 日本欧美国产在线视频| av国产免费在线观看| 青春草视频在线免费观看| 亚洲,一卡二卡三卡| 永久免费av网站大全| 国产欧美日韩一区二区三区在线 | 亚洲精品日韩av片在线观看| 中文字幕久久专区| 亚洲aⅴ乱码一区二区在线播放| av网站免费在线观看视频| 狠狠精品人妻久久久久久综合| 有码 亚洲区| 国产黄片美女视频| 秋霞在线观看毛片| 十分钟在线观看高清视频www | 国产av码专区亚洲av| 色视频www国产| 日韩中文字幕视频在线看片 | av不卡在线播放| 少妇人妻一区二区三区视频| 大又大粗又爽又黄少妇毛片口| 免费观看无遮挡的男女| 91午夜精品亚洲一区二区三区| 亚洲国产精品国产精品| 美女xxoo啪啪120秒动态图| 欧美三级亚洲精品| 女的被弄到高潮叫床怎么办| 国国产精品蜜臀av免费| 国产av精品麻豆| 妹子高潮喷水视频| 亚洲自偷自拍三级| 大香蕉久久网| 日韩 亚洲 欧美在线| 精品一区二区免费观看| 国产成人一区二区在线| 国产老妇伦熟女老妇高清| 日韩精品有码人妻一区| 蜜桃在线观看..| 国语对白做爰xxxⅹ性视频网站| 亚洲美女黄色视频免费看| 中文字幕久久专区| av卡一久久| 自拍偷自拍亚洲精品老妇| 亚洲第一av免费看| 少妇猛男粗大的猛烈进出视频| 国产黄色免费在线视频| 亚洲国产毛片av蜜桃av| 久久6这里有精品| 午夜福利高清视频| av在线app专区| 久久久久久久精品精品| 22中文网久久字幕| 老熟女久久久| 在线观看美女被高潮喷水网站| 国产女主播在线喷水免费视频网站| 亚洲不卡免费看| 欧美一区二区亚洲| 91久久精品电影网| 亚洲国产精品国产精品| 天美传媒精品一区二区| 欧美精品一区二区大全| 极品少妇高潮喷水抽搐| 日本爱情动作片www.在线观看| 国产乱人视频| tube8黄色片| 91久久精品国产一区二区成人| 2022亚洲国产成人精品| 国产免费又黄又爽又色| 美女内射精品一级片tv| 日本av免费视频播放| 久久久精品免费免费高清| 性色avwww在线观看| 3wmmmm亚洲av在线观看| 亚洲欧美成人精品一区二区| 在线 av 中文字幕| 日本vs欧美在线观看视频 | 日韩伦理黄色片| 国产精品国产av在线观看| 日本欧美国产在线视频| 亚洲怡红院男人天堂|