• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    圓錐曲線中的切點(diǎn)弦方程

    2015-12-28 07:57:40陳紅明
    科學(xué)中國(guó)人 2015年26期
    關(guān)鍵詞:切點(diǎn)雙曲線切線

    陳紅明

    湖北隨州一中

    圓錐曲線中的切點(diǎn)弦方程

    陳紅明

    湖北隨州一中

    過平面上一點(diǎn)如果可以作出某圓錐曲線的兩條切線,連接兩個(gè)切點(diǎn)即為此圓錐曲線的切點(diǎn)弦(若為雙曲線,需對(duì)其同一支作兩條切線)。設(shè)點(diǎn)P(x0,y0),過點(diǎn)P作出的切線分別為PA、PB,設(shè)切點(diǎn)A(x1,y1)、B(x2,y2),則如何求出切點(diǎn)弦AB所在的直線的方程呢?下面作一簡(jiǎn)單的歸納和總結(jié)。

    (一)圓的切點(diǎn)弦的方程

    設(shè)圓C(C為圓心)的方程為(x-a)2+(y-b)2=r2

    即為(y-y1)(y1-b)+(x1-a)(x-x1)=0

    變形(y-b+b-y1)(y1-b)+(x1-a)(x-a+a-x1)=0

    即為(y-b)(y1-b)-(y1-b)2+(x1-a)(x-a)-(x1-a)2=0

    由③④可得lAB:(x-a)(x0-a)+(y-b)(y0-b)=r2

    特別地:圓x2+y2=r2的切點(diǎn)弦方程為:xx0+yy0=r2

    (2)橢圓的切點(diǎn)弦方程

    設(shè)橢圓C的方程為

    (方法一)設(shè)lPA:y-y1=k1(x-x1)

    故lPA

    同理lPB:

    將點(diǎn)P(x0、y0)代入⑤、⑥得

    由⑦⑧可得

    (方法二)設(shè)直線L與橢圓兩點(diǎn),設(shè)中點(diǎn)為Q(x‘、y'),由點(diǎn)差法易得kmn·

    將直線MN平移到與橢圓相切,上述法論仍然成立,此時(shí)有

    關(guān)于點(diǎn)A(x1、y1)對(duì)稱的橢圓

    由⑨-⑩可得下同方法一。

    (3)雙曲線的切點(diǎn)弦方程

    (4)拋物線的切點(diǎn)弦方程:

    設(shè)拋物線C:y2=2PX(P>0)

    (方法一)設(shè)LPA:y=k1(x-x1)+y1

    將點(diǎn)P(x0、y0)代入(11)、(12)得

    由(13)、(14)可得LAB:yy0=px0+px

    (方法二)先求出x2=2Py(P>0)的切點(diǎn)弦方程

    從而得出LPA:x1x=py+py1

    LPB:x2x=py+py2

    將(15)中的x、y及x0、y0互換,即可得到y(tǒng)2=2Px(P>0)的切點(diǎn)弦方程。

    (方法三)對(duì)y2=2Px兩邊對(duì)x求導(dǎo),得

    猜你喜歡
    切點(diǎn)雙曲線切線
    圓錐曲線的切線方程及其推廣的結(jié)論
    拋物線的切點(diǎn)弦方程的求法及性質(zhì)應(yīng)用
    切線在手,函數(shù)無憂
    一種偽內(nèi)切圓切點(diǎn)的刻畫辦法
    過圓錐曲線上一點(diǎn)作切線的新方法
    把握準(zhǔn)考綱,吃透雙曲線
    一道雙曲線題的十變式
    橢圓的三類切點(diǎn)弦的包絡(luò)
    雙曲線的若干優(yōu)美性質(zhì)及其應(yīng)用
    圓錐曲線的切點(diǎn)弦定理及其應(yīng)用
    平安县| 灯塔市| 天水市| 敦化市| 焦作市| 海原县| 苏尼特左旗| 阜新| 陇西县| 潜江市| 吴桥县| 南投县| 读书| 宣化县| 金堂县| 汝州市| 航空| 山东| 阜阳市| 江油市| 长治市| 湘乡市| 东港市| 肇庆市| 雷山县| 旺苍县| 凤翔县| 南陵县| 平塘县| 白山市| 遂川县| 濉溪县| 鄄城县| 宁波市| 永和县| 南和县| 紫金县| 大宁县| 中西区| 亳州市| 鹿邑县|