• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alarm Correlation Rules Generation Algorithm Based on Confidence Covered Value

    2015-12-20 09:14:18LITongyan李彤巖
    關(guān)鍵詞:李彤

    LI Tong-yan(李彤巖)

    Meteorological Information and Signal Processing Key Laboratory of Sichuan Higher Education Institutes,Chengdu University of Information Technology,Chengdu 610225,China

    Introduction

    Recent global expansion in the demand for telecommunication services has resulted in a considerable growth of networks in terms of size,complexity and bandwidth.Networks often consist of hundreds or even thousands of interconnected nodes from different manufacturers using various transport mediums and systems.As a result,when a network problem or failure occurs,it is possible that a very large volume of alarms are generated.These alarms describe lots of detailed but very fragmented information about the problems.Typically,alarm flow is useful to find and isolate faults.However,it is also very difficult to determine the root cause of the faults.As we know,alarm correlation is used to help the faults diagnosis and localization[1-3].In the past,the knowledge of alarm correlation was mainly obtained by network experts.With the development of telecommunication networks,it is now much more difficult for the experts to keep up with the rapid change of networks and discover the real useful knowledge from the alarms.Therefore,researchers have adopted many advanced methods including association rules mining to analyze the alarm correlation in order to resolve this problem.Data mining is a science of extracting implicit,previously unknown,and potentially useful information from large data sets or databases,and is also known as knowledge discovery in databases(KDD).The problem of discovering association rules was introduced in Refs.[4-6].Nowadays,alarm correlation analysis based on association rules mining is playing an important part in current research and drawing more and more attentions.

    Alarm association rules mining usually includes two steps:frequent patterns mining and association rules generation.The first step is how to find weighted frequent patterns(WFPs)from the alarm data,and then the final realization is how to generate frequent patterns based on these WFPs.Rule itself reflects the correlation between alarm messages.Mining useful rules accurately are important for network ex-pert to find the root cause and locate the fault quickly.

    Association rules are generated according to the two criteria of support threshold and confidence threshold[7-9].A classical algorithm of rules generation is a recursive depth first search (DFS)method proposed in Refs.[10-11].However,efficiency of this method is very low,for it must test all frequent patterns as well as their parameters one by one to generate association rules.Meanwhile,the number of frequent patterns is too large to mine efficiently,resulting in that there are too many redundant rules to accurately reflect the relationship between the rules of alarms.For instance,some rules have redundant information with the same meaning in different rules;some rules which meet both support threshold and confidence threshold cannot fully represent implication relations,sometimes they only represent a complicated relationship.In this case,it is not enough to generate association rules with those two criteria in some specific applications.

    In this paper,a weighted frequent pattern based rules generation(WFP-RG)method is proposed for the condition of unequal telecommunication alarm transactions.And then a confidence covered value based rules generation method will be proposed,and finally the tests give the realization of association rule mining system and the results.

    The rest of this paper is organized as follows:section 1 shows the method of rules generation,section 2 gives the treatment of the rules including how to generate and reduce the rules,section 3shows a series of experiments and their simulation results,and finally a conclusion is made in section 4.

    1 Rules Generation Method

    Traditional rules generation algorithms are on the condition of equal itemsets.However,communication alarm itemsets are usually unequal;the rules generated objects are all the WFPs.For some WFPs,their sub-pattern may not be weighted frequently.Obviously,the non-weighted frequent itemsets can not appear in the rules,and we must delete all the non-weighted frequent itemsets from the subsets of WFPs.In this paper,a rules generation based on WFP method is proposed(shown in Algorithm 1).The depth-first algorithm is based on the improved recursive algorithm,making that the rules generation algorithm can not only maintain high efficiency,but also be adapt to the specific requirements of alarm data from communication networks.

    Algorithm 1 WFP-RG algorithm

    Input:all the weighted frequent itemsets WL,the maximum frequent itemsets MWL, confidence threshold minconf;

    Output:strong association rules.

    WFP-RG algorithm generates association rules from the maximum weighted frequent itemsets,which is different from traditional methods.In addition,WFP-RG algorithm increases the judgment whether the subsets of the maximum weighted frequent itemsets are frequent or not.Idea of this method is this:if the left side of the rule which shows that some subsets of the maximum weighted frequent itemsets is infrequent,then this subset will be deleted directly,without generating association rules;if the right side of the rule which shows that some subsets of the maximum weighted frequent itemsets is infrequent,then this subset will be deleted directly,without generating association rules;only when both the left and right sides of the rule are frequent,confidence threshold may be considered to judge whether the rule is strong;if the right of rule is a subset of some strong association rules,then this rule will be deleted as redundant rules.After judging with above conditions,strong rules that meet the condition of weighted frequent itemsets will be generated,without producing a large number of redundant rules.This method can reduce the number of rules and recursion,which is more suitable for generating rules with larger number and longer pattern.It proves that this method has more advantages in time complexity and space complexity.

    2 Treatment of the Rules

    WFP-RG algorithm can effectively find the rules which meet the support threshold and confidence threshold in an alarm transaction database.Meanwhile a large number of redundant rules may be removed during the process of rule generation.However,there are also some redundant rules,for these different rules express the same meaning.Additionally,although some rules meet the requirements of weighted support and confidence,they can not really express the relationship between faults;sometimes they only show a complicated relationship between alarms.Such a rule is meaningless for finding the root cause of fault.Reference[12]described an example of concurrency alarm situation in a communication network(shown in Fig.1).In Fig.1,NMS means network management system,MSC means mobile switching center,and BSC means base system controller.And we can see that a series of alarm are concurrent alarms,for they are triggered by a root alarm.Rules generated by these concurrent alarms are redundant for the root fault.

    Fig.1 An example of communication network

    The purpose of rule treatment is to improve the efficiency and provide useful knowledge for finding the root cause of fault by reducing the meaningless and redundant rules.For communication network alarms,this paper proposes a rule producing method based on the confidence covered value.The confidence covered value is defined as follows.

    Definition 1Confidence covered value:suppose R1is A?C,then the confidence isα(0≤α≤1);rule R2is B?C,confidence isβ(0≤β≤1);if A ?Band(β-α)≤θmin,then θminis called the confidence covered value,which is a positive value of 0and 1.

    Confidence covered value is a basis of judging whether a rule is redundant or not.If the left of a rule adds an antecedent constraint,but it can not guarantee a certain degree of confidence increased by a certain covered value,then this rule is considered as a redundant rule to be removed.

    After the rule is generated,if using the confidence covered value to judge at first,a large number of redundant rules can be deleted,so as to preserve the more valuable rule information.Secondly,the rules will be classified in order to discover the root causes of failure.Regular basis of classification is based on the topology correlation clustering into the network element with a group.If the right of a rule is from the same network group,they will be linked by a chain.Obviously,the rules with the same right part will be linked by a chain.The way of linking rules is shown in Fig.2.In Fig.2,M and AB describe the right side of a rule;meanwhile,N,A &B &AB,and X &Y present the left side of the rule.

    Fig.2 The way of linking rules

    Based on the linked method,we proposed a new rule produced algorithm as follows.

    Algorithm 2The rule produced algorithm

    Input:the original rules sets R1,the confidence covered valueθmin;

    Output:the produced rule sets R2.

    According to the confidence covered value,the rules may be generated.Algorithm 2 gives the method that how to produce rule sets.

    3 Simulation Results and Analyses

    A series of experiments have been done to show the performance of our algorithms.We collect original alarm data from telecommunication network in a city.Parameters of alarms are shown in Fig.3.

    Fig.3 Original alarm data

    We test three groups of original alarm data using the mining system,and the result is shown in Table 1.As can be seen,the generating number of rules is influenced by the factors of the alarm number,the alarm type,the minimum support and the minimum confidence.For example,we test the third group of data,which includes 7 190alarm transactions and 126different types,and the number of WFPs is 165.The wminsupis set to 0.025%and minconf is set to 60%.Running with the algorithm WFP-RG,48rules are generated,in which only 2rules meet 100%confidence,for example,one rule is 0x01 0xff 0xff 0xff 0xff &0x0b0xff 0xff 0xff 0xff=>0x07 0xff 0xff 0xff 0xff &0x06 0xff 0xff 0xff 0xff &0x05 0xff 0xff 0xff0xff.According to the network topology,we can easily find where may have failures.Similarly,it is possible to find rules that meet a high degree of confidence,and experts may find some useful information from these rules.

    Table 1 Results of association rules mining

    Then we test the efficiency of our algorithm WFP-RG and traditional rules generation method depth first searchrules generation(DFS-RG).Figures 4and 5show the flex performances of the two algorithms in running time and memory occupied rate.The minimum support is fixed up to 0.25.From the figures,although running time and memory occupied rate of the two algorithms increase with the number of alarms linearly,WFP-RG increases more slowly than DFS-RG,and it has better flex performance than DFS-RG.

    Fig.4 Running time changes with the number of alarms

    Fig.5 Memory occupied changes with the number of alarms

    4 Conclusions

    The most important step of association rules mining is how to generate and produce rules efficiently.This paper presents a rules generation algorithm WFP-RG based on the characteristic of alarm data.For there are a lot of redundant rules and non-covered rules,we propose a novel rule processing method to resolve these problems.Finally,the mining system is used to test and verify the efficiency of WFPRG algorithm.

    [1]Koca F,S?zer H,Abreu R.Spectrum-Based Fault Localization for Diagnosing Concurrency Faults[J].Testing Software and Systems,2013,8254:239-254.

    [2]Estima J O,Marques Cardoso A J.A New Approach for Real-Time Multiple Open-Circuit Fault Diagnosis in Voltage-Source Inverters[J].IEEE Transactions on Industry Applications,2011,47(6):2487-2494.

    [3]Tang Y N,Al-Shaer E,Boutaba R.Efficient Fault Diagnosis Using Incremental Alarm Correlation and Active Investigation for Internet and Overlay Networks[J].IEEE Transactions on Network and Service Management,2008,5(1):36-49.

    [4]Agrawal R,Srikant R.Fast Algorithm for Mining Association Rules[C].Proceedings of the 20th VLDB Conference,Santiago,Chile,1994:487-499.

    [5]Brauckhoff D,Dimitropoulos X,Wagner A,et al.Anomaly Extraction in Backbone Networks Using Association Rules[J].IEEE/ACM Transactions on Networking (TON),2012,20(6):1788-1799.

    [6]Li T Y,Li X M.IULFP:an Efficient Incremental Updating Algorithm Based on LFP-tree for Mining Association Rules[C].Proceedings of the International Conference ICCASM 2010,Taiyuan,China,2010:426-430.

    [7]Bayaedo R J,Agrawal R.Mining the Most Interesting Rulesz[C].Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Diego,1999:145-154.

    [8]Huang Z,Lu X,Duan H.Mining Association Rules to Support Resource Allocation in Business Process Management[J].Expert Systems with Applications,2011,38(8):9483-9490.

    [9]Li T Y,Li X M.Novel Alarm Correlation Analysis System Based on Association Rules Mining in Telecommunication Networks[J].Information Sciences,2010,180:2960-2978.

    [10]Li A,Pu J Y.Optimization of Ship Field Repair Scheduling Based on Depth First Search Method[J].Applied Mechanics and Materials,2013,321/322/323/324:2152-2156.

    [11]Duhamel C,Lacomme P,Prodhon C.AHybrid Evolutionary Local Search with Depth First Search Split Procedure for the Heterogeneous Vehicle Routing Problems[J].Engineering Applications of Artificial Intelligence,2012,25(2):345-358.

    [12]Xu Q F.Alarm Correlation Analysis Based on Data Mining[M].Beijing:Beijing University of Post and Telecommunication,2007.(in Chinese)

    猜你喜歡
    李彤
    rSIG/A在急診創(chuàng)傷中的應(yīng)用
    謫仙記
    起死回生的植物朋友
    關(guān)注虛假陳述司法解釋
    關(guān)注北交所之交易規(guī)則知多少
    我家的“小王爺”
    賣根雕
    李彤作品
    藝術(shù)家(2019年7期)2019-12-16 16:10:18
    賣根雕
    李彤:只是做了點“小事”
    文史博覽(2016年2期)2016-03-23 09:12:09
    高清av免费在线| 午夜日韩欧美国产| 丝袜美足系列| 成年版毛片免费区| 亚洲自偷自拍图片 自拍| 在线国产一区二区在线| 久久久久国产精品人妻aⅴ院 | 国产在线观看jvid| 国产一区有黄有色的免费视频| 无遮挡黄片免费观看| 黄色女人牲交| 亚洲精品国产精品久久久不卡| 黄色视频,在线免费观看| 69av精品久久久久久| 欧美精品人与动牲交sv欧美| 后天国语完整版免费观看| 视频区图区小说| 日韩有码中文字幕| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 亚洲情色 制服丝袜| 欧美最黄视频在线播放免费 | 成人18禁高潮啪啪吃奶动态图| 人人澡人人妻人| 热re99久久国产66热| 午夜福利影视在线免费观看| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一出视频| 国产亚洲av高清不卡| 日韩欧美国产一区二区入口| 精品国产一区二区三区四区第35| 成年动漫av网址| 高清视频免费观看一区二区| 国产精品一区二区在线观看99| 交换朋友夫妻互换小说| 两性夫妻黄色片| 国产成人一区二区三区免费视频网站| 色综合欧美亚洲国产小说| 国产精品一区二区在线不卡| 一区二区三区国产精品乱码| 一本大道久久a久久精品| 一级a爱视频在线免费观看| 一区二区三区激情视频| videos熟女内射| 一级a爱片免费观看的视频| 在线免费观看的www视频| 国产亚洲欧美在线一区二区| 国产精品久久久久久人妻精品电影| 久久午夜亚洲精品久久| 在线av久久热| 正在播放国产对白刺激| 美女福利国产在线| 97人妻天天添夜夜摸| 黄色 视频免费看| 村上凉子中文字幕在线| 99热只有精品国产| 午夜福利在线免费观看网站| 亚洲国产欧美一区二区综合| 国产精华一区二区三区| 操美女的视频在线观看| 亚洲精品国产色婷婷电影| 久久国产亚洲av麻豆专区| 在线观看66精品国产| 乱人伦中国视频| 久久精品国产亚洲av香蕉五月 | 在线国产一区二区在线| 女同久久另类99精品国产91| 久久久久久久国产电影| 一区二区日韩欧美中文字幕| 亚洲精品美女久久av网站| 日本a在线网址| 十八禁人妻一区二区| 两人在一起打扑克的视频| 欧美大码av| 搡老熟女国产l中国老女人| 侵犯人妻中文字幕一二三四区| 成人国产一区最新在线观看| 亚洲精品久久成人aⅴ小说| 国产又色又爽无遮挡免费看| 亚洲精品粉嫩美女一区| 在线看a的网站| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看 | 母亲3免费完整高清在线观看| 69av精品久久久久久| 午夜老司机福利片| 国产单亲对白刺激| 欧美最黄视频在线播放免费 | 在线观看舔阴道视频| 亚洲精品成人av观看孕妇| 亚洲精品在线观看二区| 久久中文看片网| 狠狠婷婷综合久久久久久88av| 欧美日韩视频精品一区| 亚洲综合色网址| 国精品久久久久久国模美| 激情在线观看视频在线高清 | 日本vs欧美在线观看视频| 最近最新中文字幕大全电影3 | 亚洲精品成人av观看孕妇| 老汉色∧v一级毛片| 日韩 欧美 亚洲 中文字幕| 高清视频免费观看一区二区| 男女下面插进去视频免费观看| 国产熟女午夜一区二区三区| 色综合欧美亚洲国产小说| 色播在线永久视频| 天堂俺去俺来也www色官网| 亚洲伊人色综图| av欧美777| 精品久久久久久久毛片微露脸| 最新的欧美精品一区二区| 在线av久久热| 夜夜躁狠狠躁天天躁| 免费在线观看视频国产中文字幕亚洲| 午夜两性在线视频| tube8黄色片| 黄色视频不卡| 18在线观看网站| 女人被狂操c到高潮| 成人18禁在线播放| 99国产精品99久久久久| 亚洲熟女毛片儿| 午夜福利欧美成人| 午夜福利免费观看在线| 久久久久久久久久久久大奶| 青草久久国产| 亚洲avbb在线观看| 日日夜夜操网爽| 超碰97精品在线观看| 国产在线观看jvid| 一个人免费在线观看的高清视频| 中亚洲国语对白在线视频| 亚洲一区高清亚洲精品| 欧美最黄视频在线播放免费 | 不卡av一区二区三区| 亚洲全国av大片| 国产精品久久久人人做人人爽| 香蕉丝袜av| 成年人黄色毛片网站| 搡老乐熟女国产| 亚洲自偷自拍图片 自拍| 婷婷精品国产亚洲av在线 | 最新美女视频免费是黄的| 女性被躁到高潮视频| 新久久久久国产一级毛片| 99re6热这里在线精品视频| 免费看十八禁软件| 成人三级做爰电影| 咕卡用的链子| 久久久久久久国产电影| 中文字幕人妻丝袜一区二区| 一级片免费观看大全| 亚洲第一欧美日韩一区二区三区| 黄色怎么调成土黄色| 女同久久另类99精品国产91| 精品一品国产午夜福利视频| 精品国产一区二区三区久久久樱花| 国产精品偷伦视频观看了| 国产人伦9x9x在线观看| 岛国在线观看网站| 村上凉子中文字幕在线| 免费高清在线观看日韩| 18禁黄网站禁片午夜丰满| 国产成人av激情在线播放| 亚洲三区欧美一区| 搡老岳熟女国产| 欧美日韩中文字幕国产精品一区二区三区 | √禁漫天堂资源中文www| 亚洲国产精品合色在线| 国产男靠女视频免费网站| www.999成人在线观看| 麻豆av在线久日| 国产精品免费大片| 久久精品国产综合久久久| 每晚都被弄得嗷嗷叫到高潮| 国产精品国产av在线观看| 亚洲精品中文字幕一二三四区| 精品久久久久久电影网| 精品高清国产在线一区| 天天躁夜夜躁狠狠躁躁| 亚洲熟妇中文字幕五十中出 | 亚洲人成伊人成综合网2020| 国产成人免费无遮挡视频| 国产精品久久久久久精品古装| 高清视频免费观看一区二区| 超色免费av| av天堂久久9| 天堂俺去俺来也www色官网| 精品国产美女av久久久久小说| a级毛片在线看网站| 午夜成年电影在线免费观看| 久久精品亚洲熟妇少妇任你| 日本欧美视频一区| 亚洲人成77777在线视频| 亚洲avbb在线观看| 国产成人精品久久二区二区免费| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| bbb黄色大片| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 天堂动漫精品| 嫁个100分男人电影在线观看| 国产亚洲欧美精品永久| 又黄又粗又硬又大视频| 欧美在线黄色| 精品免费久久久久久久清纯 | 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| 日本vs欧美在线观看视频| 咕卡用的链子| 国产成人系列免费观看| 亚洲欧美一区二区三区黑人| 久久久久视频综合| 99国产精品一区二区三区| 午夜影院日韩av| 欧美日韩乱码在线| 欧美丝袜亚洲另类 | 999久久久国产精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 99国产精品99久久久久| 好男人电影高清在线观看| 欧美激情极品国产一区二区三区| 99精品久久久久人妻精品| 99精品在免费线老司机午夜| 久久久久久人人人人人| 色94色欧美一区二区| 日本wwww免费看| 成人永久免费在线观看视频| 婷婷精品国产亚洲av在线 | 99国产精品一区二区三区| 美女午夜性视频免费| 欧美精品人与动牲交sv欧美| 国产高清videossex| 亚洲熟女毛片儿| 国产欧美日韩精品亚洲av| 国产国语露脸激情在线看| 久久国产亚洲av麻豆专区| 免费看a级黄色片| 中文字幕另类日韩欧美亚洲嫩草| 成年女人毛片免费观看观看9 | 黄色女人牲交| 一区二区三区精品91| 精品国产乱子伦一区二区三区| 欧美日韩亚洲高清精品| 亚洲熟妇熟女久久| 亚洲熟女精品中文字幕| av国产精品久久久久影院| 精品电影一区二区在线| 国产精品av久久久久免费| 18禁裸乳无遮挡动漫免费视频| 9热在线视频观看99| 国产91精品成人一区二区三区| 欧美乱妇无乱码| 一级毛片女人18水好多| 悠悠久久av| 一个人免费在线观看的高清视频| 精品久久久久久电影网| www日本在线高清视频| 久久亚洲精品不卡| 国产精品成人在线| 国产1区2区3区精品| 亚洲美女黄片视频| 99国产精品一区二区蜜桃av | a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 亚洲国产欧美网| 亚洲国产精品sss在线观看 | 国产亚洲欧美在线一区二区| 免费不卡黄色视频| 老司机亚洲免费影院| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 丝袜美足系列| 国产在线观看jvid| 久久精品成人免费网站| 精品少妇久久久久久888优播| 亚洲美女黄片视频| 亚洲五月天丁香| 高潮久久久久久久久久久不卡| 大型黄色视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费大片| 亚洲欧美激情在线| 国产精品.久久久| 99久久综合精品五月天人人| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看 | 亚洲成人手机| 亚洲国产精品sss在线观看 | 18禁美女被吸乳视频| 一级片'在线观看视频| 国产亚洲一区二区精品| 日韩三级视频一区二区三区| 在线av久久热| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 亚洲欧美激情综合另类| 欧美日韩精品网址| 亚洲成av片中文字幕在线观看| 性少妇av在线| 九色亚洲精品在线播放| 免费在线观看完整版高清| 人人妻人人澡人人看| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 99久久精品国产亚洲精品| 少妇 在线观看| 大香蕉久久网| 亚洲一区高清亚洲精品| 黄色成人免费大全| 日本精品一区二区三区蜜桃| 国产成人免费观看mmmm| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 国产精品 欧美亚洲| 亚洲全国av大片| 人成视频在线观看免费观看| 我的亚洲天堂| av中文乱码字幕在线| 国产精品 国内视频| 久久国产亚洲av麻豆专区| 啦啦啦视频在线资源免费观看| 啦啦啦免费观看视频1| 国产精品偷伦视频观看了| 韩国av一区二区三区四区| 丰满的人妻完整版| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免费看| 欧美成狂野欧美在线观看| av电影中文网址| 精品一品国产午夜福利视频| 午夜精品久久久久久毛片777| 国产成+人综合+亚洲专区| 久久精品aⅴ一区二区三区四区| 香蕉国产在线看| 热99国产精品久久久久久7| 一本一本久久a久久精品综合妖精| 国产成人免费观看mmmm| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女 | 精品久久久久久久久久免费视频 | 中文亚洲av片在线观看爽 | 久久 成人 亚洲| 午夜福利乱码中文字幕| 男人操女人黄网站| 老司机亚洲免费影院| 亚洲精品美女久久av网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 日韩 精品 国产| 人成视频在线观看免费观看| 国产激情欧美一区二区| 久久久国产欧美日韩av| 青草久久国产| 一边摸一边抽搐一进一出视频| 在线天堂中文资源库| 午夜久久久在线观看| 国产精品综合久久久久久久免费 | 国产免费男女视频| 宅男免费午夜| 国产成人免费观看mmmm| 妹子高潮喷水视频| 一夜夜www| 精品国内亚洲2022精品成人 | 亚洲精品自拍成人| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区 | 91成人精品电影| 中国美女看黄片| 午夜91福利影院| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| tocl精华| 超碰成人久久| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 亚洲精品在线观看二区| 最新的欧美精品一区二区| 不卡av一区二区三区| 大香蕉久久网| 欧美大码av| 涩涩av久久男人的天堂| 后天国语完整版免费观看| 欧美日韩精品网址| 午夜福利免费观看在线| 久久热在线av| 一a级毛片在线观看| 老司机午夜十八禁免费视频| 欧美成人午夜精品| 国产伦人伦偷精品视频| 脱女人内裤的视频| 精品一品国产午夜福利视频| 免费不卡黄色视频| 国产一区二区三区视频了| 亚洲黑人精品在线| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| 狂野欧美激情性xxxx| 999久久久国产精品视频| 一边摸一边抽搐一进一小说 | 51午夜福利影视在线观看| 国产1区2区3区精品| 在线永久观看黄色视频| 在线av久久热| 午夜视频精品福利| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 99精品欧美一区二区三区四区| 免费久久久久久久精品成人欧美视频| 亚洲精品在线观看二区| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 18禁美女被吸乳视频| 9191精品国产免费久久| 99re6热这里在线精品视频| 777米奇影视久久| 久久久久久人人人人人| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| 国产在线观看jvid| 国产国语露脸激情在线看| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 精品国产国语对白av| 男女床上黄色一级片免费看| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 一边摸一边抽搐一进一小说 | 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| 国产片内射在线| 日韩欧美国产一区二区入口| 在线观看日韩欧美| 国产无遮挡羞羞视频在线观看| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站 | 亚洲精品av麻豆狂野| 国产不卡av网站在线观看| 精品午夜福利视频在线观看一区| 亚洲少妇的诱惑av| bbb黄色大片| 丰满饥渴人妻一区二区三| 亚洲五月天丁香| 老司机在亚洲福利影院| 亚洲精品中文字幕一二三四区| 一级毛片精品| 一本一本久久a久久精品综合妖精| 黄色丝袜av网址大全| 精品国产一区二区三区四区第35| 国产区一区二久久| 亚洲 国产 在线| 99精品久久久久人妻精品| 一区二区三区激情视频| 国产精品 国内视频| 欧美不卡视频在线免费观看 | 色精品久久人妻99蜜桃| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 国产亚洲精品一区二区www | 在线国产一区二区在线| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 一进一出好大好爽视频| www.熟女人妻精品国产| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 午夜影院日韩av| 三级毛片av免费| 老汉色∧v一级毛片| 亚洲av日韩在线播放| 精品一区二区三区av网在线观看| 人妻 亚洲 视频| 最新的欧美精品一区二区| netflix在线观看网站| 免费在线观看完整版高清| 夜夜夜夜夜久久久久| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 久久精品人人爽人人爽视色| 美女扒开内裤让男人捅视频| 日本欧美视频一区| 精品久久蜜臀av无| 亚洲,欧美精品.| 亚洲免费av在线视频| 久久精品国产a三级三级三级| 久久性视频一级片| 国产亚洲精品久久久久久毛片 | 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| 在线av久久热| 村上凉子中文字幕在线| 99久久精品国产亚洲精品| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| www.自偷自拍.com| 国产精品秋霞免费鲁丝片| 久久人人97超碰香蕉20202| 国产精华一区二区三区| 999久久久精品免费观看国产| 欧美日韩成人在线一区二区| 亚洲在线自拍视频| 亚洲成av片中文字幕在线观看| 性色av乱码一区二区三区2| 黑人猛操日本美女一级片| 亚洲精品久久成人aⅴ小说| 亚洲avbb在线观看| 久久久精品免费免费高清| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 成年女人毛片免费观看观看9 | 国产在线观看jvid| 国产成人欧美在线观看 | 亚洲第一欧美日韩一区二区三区| 免费看a级黄色片| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 精品无人区乱码1区二区| 村上凉子中文字幕在线| 亚洲综合色网址| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | 一夜夜www| 97人妻天天添夜夜摸| 亚洲精品自拍成人| 精品国产亚洲在线| 欧美精品av麻豆av| 成年动漫av网址| 在线播放国产精品三级| 另类亚洲欧美激情| 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| netflix在线观看网站| 黄频高清免费视频| 曰老女人黄片| 18禁裸乳无遮挡免费网站照片 | 国产xxxxx性猛交| 男女高潮啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频| 日日夜夜操网爽| 免费高清在线观看日韩| 国产成+人综合+亚洲专区| 欧美精品人与动牲交sv欧美| 曰老女人黄片| 丝袜人妻中文字幕| 激情视频va一区二区三区| 一进一出抽搐动态| 极品少妇高潮喷水抽搐| 校园春色视频在线观看| 两个人免费观看高清视频| 国产精品久久电影中文字幕 | cao死你这个sao货| 777久久人妻少妇嫩草av网站| 亚洲五月天丁香| 久久婷婷成人综合色麻豆| 女人精品久久久久毛片| 精品一品国产午夜福利视频| 人人澡人人妻人| 亚洲av日韩精品久久久久久密| 日韩免费高清中文字幕av| 中亚洲国语对白在线视频| 国产精品久久久久久精品古装| 99久久国产精品久久久| 亚洲第一av免费看| 在线播放国产精品三级| 啦啦啦 在线观看视频| 午夜福利影视在线免费观看| 一级,二级,三级黄色视频| 欧美 日韩 精品 国产| 国产97色在线日韩免费| 80岁老熟妇乱子伦牲交| 国产99久久九九免费精品| 免费高清在线观看日韩| 曰老女人黄片| 国产av又大| 激情视频va一区二区三区| 精品一区二区三区四区五区乱码| 国产淫语在线视频| 久久影院123| 女人久久www免费人成看片| 757午夜福利合集在线观看| 超色免费av| 国内久久婷婷六月综合欲色啪| 美女午夜性视频免费| 在线播放国产精品三级| 国产三级黄色录像| 午夜福利影视在线免费观看| 视频在线观看一区二区三区| 999精品在线视频| 久久久久久亚洲精品国产蜜桃av| 久久精品aⅴ一区二区三区四区| 我的亚洲天堂| 国内毛片毛片毛片毛片毛片| 又黄又爽又免费观看的视频| 高清毛片免费观看视频网站 | 岛国在线观看网站| 后天国语完整版免费观看| 国产精品久久久av美女十八| 中文字幕色久视频| 久久精品国产清高在天天线| 国产成人精品久久二区二区免费| 国产成人精品久久二区二区91| 国产无遮挡羞羞视频在线观看| 操美女的视频在线观看| 丰满的人妻完整版|