• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TrainingRobust Support Vector Machine Based on a New Loss Function

    2015-12-20 09:14:18LIUYeqing劉葉青

    LIU Yeqing(劉葉青)

    School of Mathematics and Statistics,Henan University of Science &Technology,Luoyang 471003,China

    Introduction

    Support vector machine (SVM)[1]was introduced by Vladimir Vapnik and colleagues.It is a relatively new learning method used for data classification.The basic idea is to find a hyperplane which separates the d-dimensional data perfectly into its two classes.Since example data were often not linearly separable,the notion of a“kernel induced feature space”was introduced which mapped the data into a higher dimensional space where the data were separable.Typically,casting into such a space would cause overfitting and calculation problems.The key technique used in SVM is that the higher-dimensional space doesn't need to be dealt with directly(as it turns out,only the formula for the dotproduct in that space is needed), which eliminates overfitting and calculation problems.Furthermore,the VCdimension(a measure of a system's likelihood to perform well on unseen data)of SVM can be explicitly calculated,unlike other learning methods such as neural networks,for which there is no measure.Overall,SVM is intuitive,theoretically well-founded,and has shown to be practically successful.

    SVM has been receiving increasing interest in many areas as a popular data classification tool.Unfortunately,researchers have shown that SVM is sensitive to the presence of outliers even though the slack technique is adopted.The central reason is that outliers are always playing dominant roles in determining the decision hyperplane since they tend to have the largest margin losses according to the character of the hinge loss function.

    In machine learning,the hinge loss is a loss function used for training classifiers.The hinge loss is used for the“maximum-margin”classification,most notably for SVM.For an intended output yi=±1and a classifier score f(xi)=wxi+b,the hinge loss of the prediction f(xi)is defined as l(yi·f(xi))=max(0,1-yi·f(xi)).It can be seen that when yiand f(xi)have the same sign,this means that f(xi)predicts the right class and|f(xi)|≥1,l(yi·f(xi))=0,but when they have opposite sign,l(yi·f(xi))increases linearly with f(xi)(one-sided error).SVM uses linear hinge loss function[2].According to the character of the linear hinge loss function,SVM is sensitive to outliers.In addition,the linear hinge loss function was not smooth.Thus, when used in SVM,it degrades the generalization performance of SVM.

    In this paper a new tangent loss function was proposed.As the tangent loss function was not smoothing in some interval,a polynomial smoothing function was used to approximate it in this interval.Based on the tangent loss function,the tangent SVM (TSVM)was proposed.The experimental results show that TSVM reduces the effects of outliers.So the proposed new loss function is effective.

    1 Related Works

    Consider a binary classification problem.Given a training dataset,where xi∈?nand yi∈{-1,+1}.The primal optimization of SVM is usually written as:

    where C >0is a penalty parameter;H1(u)is the linear hinge loss function,which has the form of H1(u)=max(0,1-u).It is obvious that the linear hinge loss function has no limit on the loss values of outliers,whose loss values may be very large when yi(w·xi+b)?1.Thus,of all training samples,the outliers will retain the maximal influences on the solution since they will normally have the largest hinge loss.This results in the decision hyperplane of SVM being inappropriately drawn toward outliers so that its generalization performance is degraded.

    Many loss functions[3-11]have been proposed to improve the generalization performance,increase the speed of optimization problem solving, or account for certain nonstandard situations.

    Lee and Mangasarian[3]proposed quadratic hinge loss function,

    Though quadratic hinge loss function is smooth,it enhances greatly the loss values of outliers.

    Shen et al.[7]proposed a new method that replaced the hinge loss in SVM by a loss function of the form,

    Although their method[7]outperforms SVM in nonseparable cases,the method is computationally much more complex than SVM.

    Lin et al.[8]extended SVM to nonstandard situations by adding an extra term to the hinge loss

    Here the extra termc(y)reflects two types of nonstandard situations:(1)misclassification costs are different for different classes,and(2)the sampling proportions of classes are different from their population proportions due to sampling bias.

    The above loss functions penalize only points with u <1.As a result,they all have the same problems as SVM,namely,they are sensitive to training samples and perform poorly.

    The Ramp loss function

    was used in SVM recently[5-6].The Ramp loss function has been investigated widely in the theoretical literature in order to improve the robustness of SVM,which limits its maximal loss value distinctly.Obviously,the Ramp loss function can put definite restrictions on the influences of outliers so that it is much less sensitive to their presence.Though the Ramp loss function limits the loss values of outliers,the losses caused by outliers are the same as those caused by any other misclassified samples.Thus,all misclassified samples are considered the same.Obviously,outliers and support vectors could not be treated equally.

    2 Tangent Loss Function

    To robustify the SVM,a new loss function is proposed.We call it tangent loss function,which has the form,

    The value of the function T(u)is in the interval[0,2).It is apparent that the loss function T(u)limits loss value of outliers.However,the tangent loss function is not smooth when u=1,and a polynomial function is used as the smooth approximation for T (u ) in the intervalwhere k >0.Thus,T(u)changes into a new smoothing loss function S(u)(see Fig.1),

    Thus,under the smoothing loss S(u),optimization problem(1)changes into the following problem,

    We call this SVM as TSVM.

    3 Experiments

    Fig.1 The function image of S(u)

    To verify the efficiency of the tangent loss function,experiments are performed on UCI data sets.We compare TSVM with SVM,which use the loss function of H2(u).Because the H2(u)quadratic hinge loss function is smooth function,the corresponding optimization problem can be solved directly.If we use the linear loss function H1(u),then the corresponding optimization problem can be solved only after being approximated using a smooth function.BFGS algorithm was used to solve the optimization problem(2).The algorithms are written in Matlab7.1,k =25,and other parameters are chosen for optimal performance.

    We demonstrate the effectiveness of the TSVM by comparing it numerically with SVM on UCI data sets.

    Those data sets include moderate sized data sets,monks-1,monks-2,breast-w,heart-statlog;balance and large data sets magic gamma telescope.In data sets monks-1 and monks-2,the training samples are draw-out from the testing samples.Their training samples are fixed.In other data sets,the training samples are chosen randomly,the remaining samples are testing samples.In the latter data sets,to demonstrate the capability of TSVM,training set sizes change.We performs 5-fold cross validation on each data set.Table 1shows the results of TSVM and SVM according to average testing accuracy,and p,q,and k are the numbers of training samples,testing samples,and outliers,respectively.

    Table 1 Comparing the testing accuracy of TSVM and SVM

    In order to compare the robustnesses of TSVM and SVM,we repeat above experiments on these training sets by adding 1% outliers.The outliers are produced by changing their labels.TSVM and SVM learn classification on such new training sets.The experimental results are also reported in Table 1.It is obvious that testing accuracy of TSVM is higher than that of SVM on all data sets.As a result of adding 1% outliers to the datasets,the testing accuracy of TSVM decreases no more than 1.5% while that of SVM decreases much more significantly by about 1.5%-7.5%.

    The experimental results show that TSVM is effective and is more robust to outliers than SVM.

    4 Conclusions and Future Research

    Because of using hinge loss function,conventional SVM is sensitive to outliers.A new loss function-tangent loss function was proposed.Since the tangent loss function was not smooth, a smoothing function was adopted to approximate it.The experimental results show the tangent loss function is more robust to outliers than linear hinge loss function.Therefore,the proposed new loss function is effective.

    There are several other research directions that need to be further pursued.Such as comparison with other large margin classifiers and other approaches to large sample bias problems would be interesting and generalized to nonlinear kernel functions needs to be investigated in the future.

    [1]Vapnik V.Satistical Learning Theory[M].New York:Wiley-Interscience,1998.

    [2]Chapelle O.Training a Support Vector Machine in the Primal[J].Neural Computation,2007,19(5):1155-1178.

    [3]Lee Y J,Mangasarian O L.SSVM:a Smooth Support Vector Machine for Classification[J].Computational Optimization and Applications,2001,22(1):5-21.

    [4]Wang S C,Jiang W,Tsui K L.Adjusted Support Vector Machines Based on a New Loss Function[J].Annals of Operations Research,2008,174(1):83-101.

    [5]Xu L,Crammer K,Schuurmans D.Robust Support Vector Machine Training via Convex Outlier Ablation [C].Proceedings of the 21st National Conference on Artificial Intelligence,Boston,2006:1321-1323.

    [6]Wang L,Jia H D,Li J.Training Robust Support Vector Machine with Smooth Ramp Loss in the Primal Space[J].Neurocomputing,2008,71(479):3020-3025.

    [7]Shen X,Tseng G C,Zhang X,et al.Onψ-Learning[J].Journal of American Statistical Association,2003,98(463):724-734.

    [8]Lin Y,Lee Y K,Wahba G.Support Vector Machines for Classification in Nonstandard Situations [J].Machine Learning,2002,46(2):191-202.

    [9]Wu Y C,Liu Y F.Non-crossing Large-Margin Probability Estimation and Its Application to Robust SVM via Preconditioning[J].Statistical Methodology,2011,8(1):56-67.

    [10]Ertekin S,Bottou L,Giles C.Nonconvex Online Support Vector Machines[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(2):368-381.

    [11]Zhong P.Training Robust Support Vector Regression with Smooth Non-convex Loss Function[J].Optimization Methods&Software,2012,27(6):1039-1058.

    欧美精品国产亚洲| a级一级毛片免费在线观看| 中文字幕免费在线视频6| 国产91av在线免费观看| 亚洲国产精品国产精品| 免费看光身美女| 一区二区三区精品91| xxx大片免费视频| 插阴视频在线观看视频| 免费看av在线观看网站| 97超碰精品成人国产| 高清黄色对白视频在线免费看 | 一级av片app| kizo精华| 亚洲av中文av极速乱| 午夜激情久久久久久久| 美女福利国产在线| 免费黄网站久久成人精品| 色视频在线一区二区三区| 亚洲国产精品成人久久小说| 亚洲不卡免费看| a级片在线免费高清观看视频| 日本-黄色视频高清免费观看| 99久久精品热视频| 精品少妇内射三级| 国产欧美日韩一区二区三区在线 | 久久久午夜欧美精品| 亚洲欧洲日产国产| 中文乱码字字幕精品一区二区三区| 久久久a久久爽久久v久久| 久久国产精品大桥未久av | 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人爽人人夜夜| 国产欧美日韩综合在线一区二区 | 日韩电影二区| 在线观看av片永久免费下载| 国产国拍精品亚洲av在线观看| 亚洲四区av| 国产一区有黄有色的免费视频| 欧美最新免费一区二区三区| 日日撸夜夜添| 好男人视频免费观看在线| 国产91av在线免费观看| 成人免费观看视频高清| 精品国产乱码久久久久久小说| 多毛熟女@视频| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 高清午夜精品一区二区三区| xxx大片免费视频| 国产精品久久久久成人av| 精品亚洲乱码少妇综合久久| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区 | 午夜免费男女啪啪视频观看| 观看免费一级毛片| 国产白丝娇喘喷水9色精品| 国产极品粉嫩免费观看在线 | 卡戴珊不雅视频在线播放| 欧美日韩亚洲高清精品| 麻豆成人av视频| 亚洲精品视频女| 日韩强制内射视频| 欧美丝袜亚洲另类| 国产探花极品一区二区| 久久国产乱子免费精品| 日韩成人av中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| 亚洲熟女精品中文字幕| 亚洲欧美日韩卡通动漫| 老熟女久久久| 国产成人精品久久久久久| 亚洲av福利一区| 热99国产精品久久久久久7| 十八禁高潮呻吟视频 | 免费黄色在线免费观看| 午夜免费男女啪啪视频观看| 国产永久视频网站| 亚洲精品久久久久久婷婷小说| 久久99精品国语久久久| 丰满人妻一区二区三区视频av| 我要看日韩黄色一级片| 2021少妇久久久久久久久久久| 亚洲国产成人一精品久久久| 熟妇人妻不卡中文字幕| 免费人成在线观看视频色| 亚洲人成网站在线观看播放| 伦理电影大哥的女人| 亚洲av国产av综合av卡| 亚洲精品,欧美精品| 亚洲一级一片aⅴ在线观看| 久久久久人妻精品一区果冻| 午夜91福利影院| 欧美日韩av久久| 亚洲国产成人一精品久久久| 久久久国产欧美日韩av| 新久久久久国产一级毛片| 国产高清三级在线| 人人妻人人看人人澡| 精品国产露脸久久av麻豆| 国产极品天堂在线| 各种免费的搞黄视频| 插阴视频在线观看视频| 插逼视频在线观看| 成人毛片60女人毛片免费| 国内少妇人妻偷人精品xxx网站| 久久人妻熟女aⅴ| 欧美xxⅹ黑人| 自拍偷自拍亚洲精品老妇| 最黄视频免费看| 亚洲av.av天堂| 18禁裸乳无遮挡动漫免费视频| 男女国产视频网站| 精品卡一卡二卡四卡免费| 国产片特级美女逼逼视频| 久久久久久久国产电影| 久久精品久久久久久久性| 涩涩av久久男人的天堂| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 老司机影院毛片| 亚洲欧洲国产日韩| 色婷婷久久久亚洲欧美| 一级毛片aaaaaa免费看小| 日日啪夜夜撸| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 免费高清在线观看视频在线观看| 一级毛片我不卡| 久久狼人影院| 日韩伦理黄色片| 午夜福利影视在线免费观看| 中国美白少妇内射xxxbb| 国产一区二区在线观看日韩| 一本久久精品| 久久久久久久久久成人| 亚洲av.av天堂| 丝袜脚勾引网站| 人人妻人人爽人人添夜夜欢视频 | av不卡在线播放| 亚洲丝袜综合中文字幕| 亚洲美女黄色视频免费看| av卡一久久| 夜夜爽夜夜爽视频| 午夜av观看不卡| 成人无遮挡网站| 秋霞伦理黄片| 亚洲国产av新网站| 国产美女午夜福利| 十八禁网站网址无遮挡 | 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 亚洲国产最新在线播放| 国产在线男女| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 国产一区亚洲一区在线观看| 超碰97精品在线观看| 国产av精品麻豆| 97在线视频观看| 久久久久久久大尺度免费视频| 日本免费在线观看一区| 欧美性感艳星| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 国产片特级美女逼逼视频| 麻豆成人av视频| 亚洲国产精品专区欧美| 乱系列少妇在线播放| 日本黄色日本黄色录像| 国产男人的电影天堂91| 免费看日本二区| 一级毛片黄色毛片免费观看视频| 丰满迷人的少妇在线观看| 九九爱精品视频在线观看| 免费av不卡在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇丰满av| 一本一本综合久久| 国产伦在线观看视频一区| 美女国产视频在线观看| 国产淫片久久久久久久久| 亚洲,欧美,日韩| 久久久久久久久大av| 最近2019中文字幕mv第一页| 九草在线视频观看| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 久久99一区二区三区| 观看美女的网站| 丝袜喷水一区| 日本午夜av视频| 大香蕉97超碰在线| 亚洲中文av在线| 亚洲内射少妇av| 99热全是精品| 少妇被粗大的猛进出69影院 | 亚洲欧美精品专区久久| 色婷婷av一区二区三区视频| 久久影院123| 高清欧美精品videossex| 超碰97精品在线观看| 人人妻人人看人人澡| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久影院| 王馨瑶露胸无遮挡在线观看| 久久久久久久大尺度免费视频| 亚洲性久久影院| 亚洲精品自拍成人| 少妇的逼好多水| 亚洲四区av| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 男女国产视频网站| 亚洲精品国产av蜜桃| av福利片在线观看| 亚洲国产精品一区三区| 在线观看一区二区三区激情| 成人黄色视频免费在线看| 在现免费观看毛片| 伦理电影大哥的女人| 国产精品免费大片| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 麻豆成人午夜福利视频| h日本视频在线播放| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 亚洲四区av| 人妻制服诱惑在线中文字幕| 亚洲国产精品一区三区| 成人综合一区亚洲| av免费在线看不卡| 极品教师在线视频| 免费高清在线观看视频在线观看| 中文乱码字字幕精品一区二区三区| 成年人免费黄色播放视频 | 精品亚洲成a人片在线观看| 亚洲真实伦在线观看| 一区二区三区乱码不卡18| 亚洲欧美成人精品一区二区| 大码成人一级视频| 亚洲不卡免费看| 婷婷色麻豆天堂久久| 人妻人人澡人人爽人人| 人妻制服诱惑在线中文字幕| 亚洲欧洲日产国产| 精品亚洲成a人片在线观看| 国产一区二区三区av在线| 欧美 亚洲 国产 日韩一| 免费大片黄手机在线观看| 97在线视频观看| 涩涩av久久男人的天堂| 如日韩欧美国产精品一区二区三区 | 免费久久久久久久精品成人欧美视频 | 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 九草在线视频观看| 国产精品一区二区在线不卡| 在线观看免费视频网站a站| 菩萨蛮人人尽说江南好唐韦庄| a级毛色黄片| 久久99一区二区三区| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 久久久久久久久久久丰满| 汤姆久久久久久久影院中文字幕| 精品一区二区三区视频在线| 99精国产麻豆久久婷婷| 久久99热这里只频精品6学生| h视频一区二区三区| 国产伦精品一区二区三区视频9| 99热这里只有是精品在线观看| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 尾随美女入室| 久久久国产一区二区| 久久久久久久久久久丰满| 国产精品成人在线| 韩国av在线不卡| 亚洲国产精品一区二区三区在线| 亚洲欧美清纯卡通| 久久久久久久久久人人人人人人| 日日爽夜夜爽网站| 亚洲国产精品999| 精品久久国产蜜桃| 国产高清三级在线| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 自拍偷自拍亚洲精品老妇| 曰老女人黄片| 男的添女的下面高潮视频| 婷婷色综合www| 三级经典国产精品| 黄色毛片三级朝国网站 | 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看 | 大片电影免费在线观看免费| 日本欧美视频一区| 日韩中文字幕视频在线看片| 亚洲av成人精品一区久久| 少妇人妻久久综合中文| 99久久人妻综合| 日韩中字成人| 国产欧美日韩一区二区三区在线 | 国产高清有码在线观看视频| 不卡视频在线观看欧美| 校园人妻丝袜中文字幕| 免费看光身美女| 欧美性感艳星| 国产精品99久久久久久久久| 观看美女的网站| 亚洲欧美成人精品一区二区| 中国国产av一级| 两个人免费观看高清视频 | 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 国产欧美日韩精品一区二区| 夫妻午夜视频| 午夜免费男女啪啪视频观看| av天堂久久9| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 成人影院久久| 欧美老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 另类亚洲欧美激情| 国产精品三级大全| 免费人成在线观看视频色| av又黄又爽大尺度在线免费看| 国产亚洲av片在线观看秒播厂| 99久久精品热视频| 精品人妻一区二区三区麻豆| 18禁裸乳无遮挡动漫免费视频| av在线app专区| 极品人妻少妇av视频| 蜜桃久久精品国产亚洲av| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 免费观看a级毛片全部| 亚洲av综合色区一区| 日本与韩国留学比较| 人妻系列 视频| 久久久午夜欧美精品| 久久久久国产精品人妻一区二区| 汤姆久久久久久久影院中文字幕| 色视频www国产| 日本与韩国留学比较| 国产精品一二三区在线看| 日日啪夜夜撸| 成人二区视频| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 精品国产一区二区久久| videos熟女内射| 我的女老师完整版在线观看| 日本欧美视频一区| 亚洲欧洲日产国产| 亚洲精品一二三| 久久影院123| 久久av网站| 国产精品女同一区二区软件| 国产欧美亚洲国产| 久久午夜福利片| 色网站视频免费| 一级毛片我不卡| 肉色欧美久久久久久久蜜桃| 国产淫片久久久久久久久| 亚洲精品aⅴ在线观看| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 免费看av在线观看网站| 少妇丰满av| 熟妇人妻不卡中文字幕| 少妇人妻 视频| 久久久久久久久久久丰满| 亚洲国产精品专区欧美| 亚洲第一av免费看| 欧美另类一区| 99re6热这里在线精品视频| 日本爱情动作片www.在线观看| 欧美日本中文国产一区发布| 18禁在线无遮挡免费观看视频| 国产av精品麻豆| 我要看黄色一级片免费的| 国产免费福利视频在线观看| 亚洲人与动物交配视频| 国产精品无大码| 久久久久久久大尺度免费视频| 久久久久精品久久久久真实原创| 伊人久久国产一区二区| 在线观看三级黄色| 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 亚洲av二区三区四区| 成人无遮挡网站| 肉色欧美久久久久久久蜜桃| 熟女人妻精品中文字幕| 国产精品福利在线免费观看| 久久久久久久国产电影| 一本色道久久久久久精品综合| 在线观看一区二区三区激情| 激情五月婷婷亚洲| 伊人久久精品亚洲午夜| 一区二区三区免费毛片| 我的老师免费观看完整版| 欧美精品亚洲一区二区| 如日韩欧美国产精品一区二区三区 | 国产精品99久久99久久久不卡 | 观看美女的网站| 国产在线免费精品| av卡一久久| 你懂的网址亚洲精品在线观看| 亚洲精品日本国产第一区| 91午夜精品亚洲一区二区三区| a级毛色黄片| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 人妻 亚洲 视频| 搡老乐熟女国产| 国产一区二区三区综合在线观看 | 日本av手机在线免费观看| 国产精品.久久久| 一本久久精品| 亚洲激情五月婷婷啪啪| 香蕉精品网在线| 亚洲伊人久久精品综合| 成年女人在线观看亚洲视频| 人人澡人人妻人| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 22中文网久久字幕| 亚洲国产欧美日韩在线播放 | 国产在线男女| 十八禁网站网址无遮挡 | 天天躁夜夜躁狠狠久久av| 天堂俺去俺来也www色官网| 最黄视频免费看| 新久久久久国产一级毛片| 国产国拍精品亚洲av在线观看| kizo精华| 国产成人a∨麻豆精品| 亚洲电影在线观看av| 国产精品99久久99久久久不卡 | 免费大片18禁| 国产精品.久久久| 免费观看的影片在线观看| 男女啪啪激烈高潮av片| 中文字幕亚洲精品专区| 日韩三级伦理在线观看| 熟女av电影| 午夜福利视频精品| 最近中文字幕高清免费大全6| 五月开心婷婷网| 国产精品久久久久成人av| 91午夜精品亚洲一区二区三区| 国产精品久久久久久精品古装| 九九久久精品国产亚洲av麻豆| 欧美一级a爱片免费观看看| 国产高清国产精品国产三级| 国产精品.久久久| 亚洲av免费高清在线观看| 汤姆久久久久久久影院中文字幕| 九九爱精品视频在线观看| 亚洲av福利一区| 国产精品不卡视频一区二区| 18禁在线无遮挡免费观看视频| 人妻夜夜爽99麻豆av| 国产亚洲一区二区精品| 亚洲综合色惰| 国产精品国产av在线观看| 亚洲,一卡二卡三卡| 肉色欧美久久久久久久蜜桃| 麻豆精品久久久久久蜜桃| 亚洲欧美成人综合另类久久久| 久久国产精品男人的天堂亚洲 | 国国产精品蜜臀av免费| 欧美激情极品国产一区二区三区 | 国产免费一区二区三区四区乱码| 亚洲av欧美aⅴ国产| 美女视频免费永久观看网站| 爱豆传媒免费全集在线观看| 日韩成人伦理影院| 午夜老司机福利剧场| 伊人亚洲综合成人网| 欧美 日韩 精品 国产| 久久久久视频综合| 亚洲,欧美,日韩| 亚洲va在线va天堂va国产| 午夜日本视频在线| 国产在线一区二区三区精| 国产精品三级大全| av有码第一页| 国产 精品1| 少妇被粗大猛烈的视频| 国产淫语在线视频| 在线观看美女被高潮喷水网站| 99精国产麻豆久久婷婷| 99热全是精品| 99热网站在线观看| 国产精品国产av在线观看| 久久韩国三级中文字幕| 亚洲av欧美aⅴ国产| 中文字幕亚洲精品专区| 免费久久久久久久精品成人欧美视频 | 午夜91福利影院| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美日韩在线播放 | 亚洲久久久国产精品| 观看美女的网站| 日韩,欧美,国产一区二区三区| 精品卡一卡二卡四卡免费| 男女啪啪激烈高潮av片| 免费看日本二区| 精品国产乱码久久久久久小说| 成年av动漫网址| 有码 亚洲区| 精品酒店卫生间| 人妻少妇偷人精品九色| 日韩不卡一区二区三区视频在线| 两个人免费观看高清视频 | 中文天堂在线官网| 99热这里只有精品一区| 日韩中文字幕视频在线看片| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 久久99蜜桃精品久久| 国产高清三级在线| 日本爱情动作片www.在线观看| 亚洲av日韩在线播放| 欧美 日韩 精品 国产| 国产亚洲欧美精品永久| 五月开心婷婷网| 亚洲人与动物交配视频| 少妇人妻久久综合中文| 尾随美女入室| 日本欧美国产在线视频| 最黄视频免费看| 99久久精品一区二区三区| 热re99久久国产66热| 这个男人来自地球电影免费观看 | 插逼视频在线观看| 在线免费观看不下载黄p国产| 日本vs欧美在线观看视频 | 成人无遮挡网站| av在线观看视频网站免费| 久久久a久久爽久久v久久| 天美传媒精品一区二区| 边亲边吃奶的免费视频| 国产深夜福利视频在线观看| 国产精品一区二区在线不卡| 欧美日韩一区二区视频在线观看视频在线| 另类精品久久| 一边亲一边摸免费视频| 日韩熟女老妇一区二区性免费视频| 狂野欧美白嫩少妇大欣赏| 久久久久久伊人网av| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久人人人人人人| 青春草国产在线视频| 亚洲自偷自拍三级| 少妇高潮的动态图| 秋霞在线观看毛片| 日韩三级伦理在线观看| 欧美激情极品国产一区二区三区 | 插阴视频在线观看视频| 这个男人来自地球电影免费观看 | 亚洲国产精品一区二区三区在线| 纯流量卡能插随身wifi吗| 丰满乱子伦码专区| 国产有黄有色有爽视频| 晚上一个人看的免费电影| √禁漫天堂资源中文www| 国产男女超爽视频在线观看| 欧美丝袜亚洲另类| 国产男女内射视频| 色网站视频免费| 一级av片app| 男女边吃奶边做爰视频| 欧美区成人在线视频| 丝袜在线中文字幕| 成人特级av手机在线观看| 欧美区成人在线视频| 国产精品久久久久久久久免| 免费av中文字幕在线| 一级毛片黄色毛片免费观看视频| 欧美成人精品欧美一级黄| 97在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品蜜桃在线观看| 伦理电影免费视频| 亚洲欧美一区二区三区黑人 | 一边亲一边摸免费视频| 夫妻性生交免费视频一级片| 亚洲成人一二三区av| 国产精品三级大全| 高清午夜精品一区二区三区| 18禁动态无遮挡网站| 国国产精品蜜臀av免费| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久大尺度免费视频| 日韩强制内射视频| 男女免费视频国产| 精品亚洲乱码少妇综合久久| 嫩草影院新地址| freevideosex欧美|