• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Approach to Learn the Equivalence Class of Bayesian Network

    2015-12-20 09:14:16ZHANGYingxia張盈俠YANGYoulong楊有龍CUIJianfei崔劍飛

    ZHANG Yingxia(張盈俠),YANG Youlong(楊有龍),CUI Jianfei(崔劍飛)

    1 School of Mathematics and Statistics,Xidian University,Xi'an710126,China

    2 School of Computer,Xidian University,Xi'an710126,China

    Introduction

    Bayesian networks (BNs),which are introduced by Pearl[1], graphically encode probabilistic relationships among a set of variables.Thus,they have become a powerful tool for representation with uncertainty and been used in numerical fields,including system biology[2],medicine[3], and artificial intelligence[4].With the assumption of causal sufficiency,which assures that no set of equal to or more than two variables share a hidden common cause,the true structure could be represented by a directed acyclic graph(DAG)(see section 1for definition)[5].In this case,a node represents a variable and directed edge indicates a direct causal relationship between two nodes.However,it is a difficult problem to find a DAG which could well fit the observational data.What's more,only using non-interventional data,identifying the exact DAG is generally impossible.It greatly limits our ability to infer the causal graph from uncontrolled data alone[6].Hence,traditional algorithms often generate a partial directed acyclic graph (PDAG),which consists of undirected and directed edges.

    Generally speaking,it is too complex to construct a true model graph for humans,since it is an NP-hard problem for exact inference of a DAG.Even though,people have proposed a lot of methods for structure learning end over the last two decades,which can be broadly categorized into three main types.(1)Constraint-based methods use the causal relationships among variables,which are detected by conditional independence(CI)tests,to construct a PDAG.There are many constraint-based methods,such as IC algorithm[7],PC algorithm[5],and TPDA algorithm[8].The common procedure of these algorithms is that they all find the skeleton of the BN first,and then orient partial edges.However,the efficiency of the constraint-based algorithm is assured by the accuracy of CI tests which is sensitive to noise and sample size[9].(2)Scored-based algorithms find a structure well suitable for the observational data,which is measured by a scoring function.However,it is very difficult to do an exhaustive search through a large number of all possible networks which are super exponential in the number of variables among the graph.(3)Hybrid methods combine these two methods together to find a BN,which is another kind of efficient structure learning algorithm.Hybrid methods such as SC algorithm[10],MMHC algorithm[11],and COS algorithm[12],first find a super structure of the skeleton using a constraint-based algorithm,and then search an optimal network which has a high score using a score-based algorithm.This strategy can lead to a BN which has a higher score,and can decrease the size of search space.

    Motivated by the aforementioned analysis,this paper presents a new constraint-based approach to learn the equivalence class of BN.Firstly,it learns a skeleton of BN in a more efficient way which reduces the number of CI tests compared with the PC algorithm.Secondly,partial edges will be oriented.It returns a representation of BN competitive to the PC algorithm do but is shown to significantly outperform the PC algorithm in running time and the number of CI tests.Thus,our algorithm is denominated as FPC,which is really faster than the PC algorithm.In addition,it shows that the FPC algorithm also outperforms the TPDA algorithm in structure errors when the sample size is small through a large number of experiments(see section 3).

    This paper is organized as follows.Section 1introduces preliminaries.Section 2describes the proposed algorithm.Section 3 presents the numerical experimental results and comparison with other classic algorithms.In section 4,we sum up the paper with some conclusions and further work.

    1 Preliminaries

    In this section,some relevant definitions are presented used throughout.

    Definition 1 (Directed acyclic graph(DAG))[13]A graph G=(V,E)is said to be a DAG if G=(V,E)is a directed graph such that there is not a directed path(α1,α2,…,αn)where αi∈V,(i=1,2,…,n)andα1=αn.

    A DAG G =(V,E)is said to be a BN with regard to(w.r.t)a probability distribution P,if it satisfies the Markov condition (local Markov property)that every variable x ∈V is independent of any subset of its nondescendant variables conditioned on the set of its parents[9].

    Definition 2 (Skeleton)[13]The skeleton of a directed graph G=(V,E)is obtained by making the graph undirected.That is,the skeleton of G is the graph G′=(V,E′),where(α,β)∈E′?(α,β)∈Eor(β,α)∈E.

    Fig.1 The skeleton(d)of(a),(b)and(c)

    Definition 3 (V-structure)A triple of nodes(x,z,y),which satisfies the condition that x and y meet head to head at z,while x and y are not directly connected in the graph,forms a V-structure.

    Definition 4 (Faithfulness)[14]Let P represent a joint probability distribution on the variable set V.A DAG G=(V,E)is faithful to P,if and only if every independence present in P is entailed by G and the Markov condition holds.A distribution Pis faithful if and only if there is a DAG Gsuch that Gis faithful to P.Particularly,Pand BN are faithful to each other,if and only if every conditional independence entailed by BN corresponds to certain Markov condition presented in P.

    Conditioned on faithfulness and if only noninterventional data are used,we cannot detect the exact DAG as the orientation of edges cannot be detected except in V-structures[15].

    Definition 5 (d-separation)Let G=(V,E)be a DAG,Z be a set of nodes in V,x and y be two distinct nodes in VZ,and they are said to be d-separated if all trails between x and y are blocked by Z.

    Under the faithfulness condition of distribution P and DAG G,the conditional independence in P and dseparation in G are equivalent,i.e.(x⊥y ∣z)G?(x⊥y ∣z)P.In addition,we also say G is a perfect map of P.We can use the dependence relationship of x and y in Pto detect the relationship of x and y in G,thus we could use CI test to detect the relationships among variables in P,to discover the relationships among the variables in G.

    Definition 6 (Equivalent BN structure)[7]Two DAGs,G1and G2are said to be equal or Markov equivalence,if and only if they have the same skeletons and the same set of Vstructures.Then,the corresponding BNs,N1and N2,are said to be equal,denoted as N1?N2.

    Fig.2 Equivalence classes of BN:(a),(b)and(c)

    In Fig.2,(a),(b)and(c)are equivalence classes of BN,as they have the same skeleton and V-structures.

    2 Proposed Algorithm

    In this section,we attempt to describe our proposed algorithm in detail.The new algorithm,F(xiàn)PC,can be largely divided into two phases.Beginning with a complete undirected graph,we first learn a skeleton of the BN from the observational data by CI tests.In the second phase,the set of V-structures are discovered,and the corresponding edges will be oriented.Thus,the skeleton and V-structures will be aggregated to complete the PDAG.The proposed method is illustrated for discrete case.

    ?

    The FPC algorithm starts with a fully connected graph where unnecessary edges get iteratively deleted one at a time.For each variable x ,the conditional independence relationships between xand its neighbors are tested along the existing edges by conditioning on all subsets of the current neighbors of x(Nbx).For every element of Nbx(y),each edge x-yis deleted if there exists a separate set S,which is a subset of Nbxand makes the dependence of x and y to be insignificant.

    For compact presentation,we declare some notations as described in the algorithm later.Nbxdenotes the neighbour set of variable x.And the condition set,which is used for CI tests,is denotes as S.

    The FPC algorithm contains two phases.Firstly,it learns a skeleton of BN.The inspiration of this step comes from Ref.[16],which is said more efficient than other relevant algorithms.In the second phase,the algorithm discovers the set of V-structures,which is the same as the PC algorithm does.The new algorithm can decrease the number of conditional independence tests,and run more quickly than the PC algorithm.In addition,compared with the classic TPDA algorithm,it decreases the number of total structure errors when the sample size is small.We will show the efficiency of FPC algorithm through multiple simulations on the standard benchmark network.

    3 Experiments

    To evaluate the proposed algorithm,we have done some experiments with the Alarm network.At first,we show some declarations about the experiment that all the simulations are performed on Matlab on a computer equipped with Pentium(R)Dual-core CPU E5800with 3.20-GHz processing speed,1.96GB of RAM,and Windows XP Pro.

    In this paper,we will focus on the PC and TPDA algorithms as case study.For comparison,we restrict our experiments to discrete simulated data.And Chi-Square test is used,while the significance levelα is set to 0.05.In addition,the TPDA algorithm results reported are performed using the publicly available Causal Explorer Toolkit[17].

    In order to cover a wide variety of possible cases,1 000to 15 000data points are generated randomly for experiments.Each method is used to recover multiple skeletons or PDAGs of varying sizes for the same network.And each size of datapoints will be implemented three times to obtain an average number,which is used for comparison.

    In the experiment,the number of CI tests,the structural error and the order of CI tests will be shown in figures.As the CI tests only work in the first phase,the numbers of added edges and missing edges will be shown only.

    Table 1contains the number of CI tests,the structure errors,the order of CI tests for the ALARM network,and we arrive at the facts as follows.

    Table 1 Results of experiments for alarm network

    The FPC algorithm has the structure errors competitive to the PC algorithm,but decreases the number of CI tests significantly,which means the proposed algorithm will run more quickly.In addition,it is observed that both the two algorithms have fewer added edges and more missing edges.And we arrive at the rule that when the sample size increases from 1 000to 15 000,the total structure error decreases quickly.

    For convenience,F(xiàn)ig.3shows an average plot for the number of CI tests of each algorithm while the number of data points is from 1 000to 15 000.Based on Fig.3,the proposed algorithm,F(xiàn)PC,is shown to consistently improve the speed of running time,while it decreases the number of CI tests greatly compared with the PC algorithm.

    Fig.3 Average number of CI tests with Alarm network

    Another important point is that,F(xiàn)PC does not decrease the order of CI tests.It may be the main reason that these two algorithms have the competitive structure errors.As high order CI tests are said to be unreliable,we will devote ourselves to doing a research in decreasing the order of CI tests later.

    Figure 4shows the average number of missing edges of the TPDA algorithm in recovering the skeletons of the Alarm network where the number of observations varies from 1 000to 15 000.In addition,F(xiàn)ig.5shows the average number of added edges in the same case.Note that,the FPC algorithm outperforms the TPDA algorithm in terms of the average number of added edges,but fails in terms of the average number of missing edges.However,the FPC algorithm is shown to consistently improve the accuracy(see Fig.6)compared with the TPDA algorithm when the number of observations is small.

    Fig.4 Average number of missing edges with Alarm network

    Fig.5 Average number of added edges with Alarm network

    Fig.6 Average number of structure errors with Alarm network

    4 Conclusions

    In the paper,a new constrained-based algorithm,F(xiàn)PC,has been proposed for learning BN structure.Under the faithfulness assumption,it usually returns an equivalence class of BN.Compared with PC,the total number of CI tests is infavor of FPC.However,the number of structure errors of FPC is competitive with PC.In addition,the FPC algorithm has improved the accuracy of skeleton recovery compared with the TPDA algorithm when the sample size is small.Then,how to decrease the order of CI tests to obtain a more accurate BN is an important problem for us to research in the future.What's more,how to relax the assumption of faithfulness is also an open problem.

    [1]Pearl J.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Francisco,USA:Morgan Kaufmann Publishers,1988.

    [2]Friedman N.Inferring Cellular Networks Using Probabilistic Graphical Models[J].Science,2004,303(5659):799-805.

    [3]Cowell R G,David P,Lauritzen S L,et al.Probabilistic Networks and Expert Systems[M].New York:Springer-Verlag,1999.

    [4]Russell S J,Norvig P.Artificial Intelligence:a Modern Approach[M].3rd ed.Upper Saddle River:Prentice Hall,2009.

    [5]Spirtes P,Glymour C,Scheines R.Causation,Prediction,and Search [M].2nd ed.London,England:The MIT Press,2001.

    [6]Pearl J.Causality:Models,Reasoning,and Inference[M].Cambridge:Cambridge University Press,2000.

    [7]Vermas T,Pearl J.Equivalence and Synthesis of Causal Models[C].In Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence,New York,USA,1990:220-227.

    [8]Cheng J,Greiner R,Kelly J,et al.Learning Bayesian Networks from Data: an Information-Theory Based Approach[J].Artificial Intelligence,2002,137(1/2):43-90.

    [9]Mahdi R,Mezey J.Sub-local Constraint-Based Learning of Bayesian Networks Using a Joint Dependence Criterion[J].Journal of Machine Learning Research,2013,14(1):1563-1603.

    [10]Friedman N,Nachman I,Peer D.Learning Bayesian Network Structure from Assive Datasets:the “Sparse Candidate”Algorithm [C].Proceedings of the 5th Conference on Uncertainty in Artificial Intelligence,Stockholm,Sweden,1999:206-215.

    [11]Tsamardinos I,Brown L E,Aliferis C F.The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm[J].Machine Learning,2006,65(1):31-78.

    [12]Perrier E,Imoto S,Miyano S.Finding Optimal Bayesian Network Given a Super-structure[J].Journal of Machine Learning Research,2008,9(10):2251-2286.

    [13]Koski T,Noble J M.Bayesian Networks:an Introduction[M].Chichester,United Kingdom:John Wiley &Sons,2009.

    [14]Aliferis C F,Statnikov A,Tsamardinos I,et al.Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I:Algorithms and Empirical Evaluation[J].The Journal of Machine Learning Research,2010,11:171-234.

    [15]Pellet J,Elisseeff A.Using Markov Blankets for Causal Structure Learning[J].The Journal of Machine Learning Research,2008,9:1295-1342.

    [16]Fu S K,Desmarais M.Feature Selection by Efficient Learning of Markov Blanket[J].Lecture Notes in Engineering and Computer Science,2010,2183:302-308.

    [17]Aliferis C F,Tsamardinos I,Statnikov A R,et al.Causal Explorer:a Causal Probabilistic Network Learning Toolkit for Biomedical Discovery,Discovery Systems Laboratory(DSL)[D].Tennessee,USA:Vanderbilt University,2005.

    91字幕亚洲| 少妇高潮的动态图| 我的老师免费观看完整版| 最好的美女福利视频网| 日韩人妻高清精品专区| 我的女老师完整版在线观看| 国产免费av片在线观看野外av| 色哟哟·www| 丝袜美腿在线中文| 91麻豆av在线| 国产精品国产高清国产av| 亚洲真实伦在线观看| 国产成人福利小说| 国产人妻一区二区三区在| 亚洲第一电影网av| 黄色日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清作品| 最近最新免费中文字幕在线| 在线播放国产精品三级| 久久国产精品影院| 丰满人妻一区二区三区视频av| 亚洲av熟女| 首页视频小说图片口味搜索| 搞女人的毛片| 亚洲乱码一区二区免费版| 亚洲精品一区av在线观看| 黄片小视频在线播放| 日本免费a在线| 亚洲国产色片| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 婷婷精品国产亚洲av在线| 香蕉av资源在线| 九九热线精品视视频播放| 日韩欧美精品免费久久 | 人妻制服诱惑在线中文字幕| 91久久精品电影网| 美女高潮喷水抽搐中文字幕| 国模一区二区三区四区视频| 免费黄网站久久成人精品 | 露出奶头的视频| 国产精品久久久久久人妻精品电影| 国产麻豆成人av免费视频| 天堂影院成人在线观看| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 搡老岳熟女国产| 久久久久久国产a免费观看| 午夜福利在线观看吧| 首页视频小说图片口味搜索| 一本综合久久免费| 国产三级在线视频| 国产精品爽爽va在线观看网站| 天美传媒精品一区二区| 99久久精品国产亚洲精品| 午夜精品一区二区三区免费看| 婷婷亚洲欧美| 精品国产三级普通话版| а√天堂www在线а√下载| 国产麻豆成人av免费视频| 亚洲av成人精品一区久久| 国产白丝娇喘喷水9色精品| 色在线成人网| 偷拍熟女少妇极品色| av女优亚洲男人天堂| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 色在线成人网| 51午夜福利影视在线观看| 狂野欧美白嫩少妇大欣赏| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 此物有八面人人有两片| 亚洲精品色激情综合| 一个人观看的视频www高清免费观看| 一级黄片播放器| 高潮久久久久久久久久久不卡| 一个人看的www免费观看视频| 国产av在哪里看| www.999成人在线观看| 色播亚洲综合网| xxxwww97欧美| 成人欧美大片| 每晚都被弄得嗷嗷叫到高潮| 国产成人福利小说| 无人区码免费观看不卡| 国产亚洲精品综合一区在线观看| 亚洲电影在线观看av| 18禁黄网站禁片免费观看直播| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| 亚洲在线观看片| 中文亚洲av片在线观看爽| 草草在线视频免费看| 嫩草影院新地址| 午夜福利视频1000在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美日本视频| av中文乱码字幕在线| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 美女免费视频网站| 偷拍熟女少妇极品色| 精品无人区乱码1区二区| 成人欧美大片| 亚洲乱码一区二区免费版| 国产精品自产拍在线观看55亚洲| 能在线免费观看的黄片| 免费av观看视频| 人人妻人人澡欧美一区二区| 成人无遮挡网站| 婷婷丁香在线五月| 国语自产精品视频在线第100页| 久久国产乱子免费精品| 欧美成人性av电影在线观看| 国产成人啪精品午夜网站| 国语自产精品视频在线第100页| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app | 亚洲色图av天堂| 美女免费视频网站| 国产精品久久视频播放| 欧美一级a爱片免费观看看| 亚洲成人久久性| 国产伦在线观看视频一区| 午夜免费成人在线视频| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 精品免费久久久久久久清纯| 久久人妻av系列| 精品一区二区三区人妻视频| 国产伦人伦偷精品视频| 国产色爽女视频免费观看| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 午夜久久久久精精品| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 色综合欧美亚洲国产小说| 亚洲,欧美,日韩| 亚洲人与动物交配视频| 在线播放无遮挡| 精品人妻视频免费看| 久久亚洲真实| 精品久久久久久久人妻蜜臀av| 午夜影院日韩av| 色播亚洲综合网| 天堂网av新在线| av天堂在线播放| 两个人视频免费观看高清| 午夜福利成人在线免费观看| 我的老师免费观看完整版| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 中文在线观看免费www的网站| 国产高清视频在线播放一区| 嫩草影院入口| 国产精品不卡视频一区二区 | 色视频www国产| 婷婷精品国产亚洲av| 十八禁网站免费在线| 国内精品久久久久久久电影| 欧美区成人在线视频| 少妇的逼好多水| 欧美黄色淫秽网站| 国产一级毛片七仙女欲春2| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 丝袜美腿在线中文| 国产亚洲精品综合一区在线观看| 他把我摸到了高潮在线观看| 精品人妻熟女av久视频| 麻豆成人av在线观看| 亚洲内射少妇av| 久久精品国产99精品国产亚洲性色| .国产精品久久| 女生性感内裤真人,穿戴方法视频| 蜜桃亚洲精品一区二区三区| 老熟妇仑乱视频hdxx| 制服丝袜大香蕉在线| 国产在视频线在精品| 日韩人妻高清精品专区| 一本久久中文字幕| 国产毛片a区久久久久| 男女床上黄色一级片免费看| 亚洲av电影不卡..在线观看| 日韩人妻高清精品专区| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 欧美三级亚洲精品| 一夜夜www| 最近最新中文字幕大全电影3| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 精品久久久久久,| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 丰满的人妻完整版| 成年免费大片在线观看| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 欧美潮喷喷水| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 永久网站在线| 老鸭窝网址在线观看| 欧美潮喷喷水| 亚洲av.av天堂| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 国产亚洲欧美在线一区二区| 真实男女啪啪啪动态图| 18禁黄网站禁片免费观看直播| a在线观看视频网站| 国产熟女xx| 国产精品一及| 精品久久久久久成人av| 午夜影院日韩av| 青草久久国产| 99久久九九国产精品国产免费| 天堂√8在线中文| 91麻豆av在线| 国产三级在线视频| 狂野欧美白嫩少妇大欣赏| 久久国产精品影院| 丝袜美腿在线中文| 老司机深夜福利视频在线观看| www.999成人在线观看| 亚洲av电影不卡..在线观看| 日本与韩国留学比较| 男插女下体视频免费在线播放| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区久久| 亚洲欧美精品综合久久99| 国产精品综合久久久久久久免费| 欧美在线一区亚洲| 国产精品99久久久久久久久| a级毛片免费高清观看在线播放| 国产精品永久免费网站| 久久国产乱子免费精品| aaaaa片日本免费| 中文亚洲av片在线观看爽| 一夜夜www| av专区在线播放| 九九久久精品国产亚洲av麻豆| 两人在一起打扑克的视频| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 色综合婷婷激情| 色综合亚洲欧美另类图片| 欧美丝袜亚洲另类 | 亚洲片人在线观看| 免费在线观看成人毛片| 两个人的视频大全免费| 久久性视频一级片| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 99热只有精品国产| 欧美国产日韩亚洲一区| 精华霜和精华液先用哪个| 精品人妻熟女av久视频| 亚洲成人久久性| 中国美女看黄片| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 免费黄网站久久成人精品 | 黄色丝袜av网址大全| 亚洲成人精品中文字幕电影| 无人区码免费观看不卡| 午夜福利高清视频| 国产精品嫩草影院av在线观看 | 国产精品久久电影中文字幕| 久久国产乱子免费精品| 亚洲欧美日韩高清专用| 亚洲无线观看免费| 欧美一区二区国产精品久久精品| 国产色婷婷99| 深夜精品福利| 亚洲人成网站高清观看| 国产精品一及| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 欧美3d第一页| 午夜免费成人在线视频| 一级黄片播放器| 成人av一区二区三区在线看| 欧美色视频一区免费| 亚洲av二区三区四区| 免费看美女性在线毛片视频| 好看av亚洲va欧美ⅴa在| 哪里可以看免费的av片| 亚洲第一电影网av| 精品一区二区免费观看| 欧美国产日韩亚洲一区| 少妇被粗大猛烈的视频| 老司机福利观看| 在线播放无遮挡| 国产欧美日韩精品亚洲av| 免费黄频网站在线观看国产| 精品久久久久久电影网| 久久精品国产a三级三级三级| 深夜a级毛片| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 免费观看无遮挡的男女| 一个人看视频在线观看www免费| 日韩强制内射视频| kizo精华| 欧美性感艳星| 久久久欧美国产精品| 国产国拍精品亚洲av在线观看| 国产 一区 欧美 日韩| 少妇被粗大猛烈的视频| 亚洲精品国产av蜜桃| 精品人妻视频免费看| 久久人人爽人人片av| 国产精品一区二区性色av| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看 | 成人无遮挡网站| 亚洲色图av天堂| 91在线精品国自产拍蜜月| 熟女av电影| 男女边吃奶边做爰视频| av专区在线播放| 国产亚洲91精品色在线| 日韩视频在线欧美| 欧美精品国产亚洲| 成人一区二区视频在线观看| 九色成人免费人妻av| 在线观看一区二区三区激情| 亚洲一级一片aⅴ在线观看| 日日啪夜夜爽| 一级毛片 在线播放| 亚洲精品一区蜜桃| 成人国产av品久久久| 国产精品偷伦视频观看了| 最近的中文字幕免费完整| 久久久久久九九精品二区国产| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 免费观看性生交大片5| 亚洲国产精品999| 综合色av麻豆| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三卡| 国产男人的电影天堂91| 夜夜爽夜夜爽视频| xxx大片免费视频| 内地一区二区视频在线| 又大又黄又爽视频免费| 国产爽快片一区二区三区| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 丝瓜视频免费看黄片| 在线观看一区二区三区| 日日啪夜夜爽| 亚洲精品色激情综合| av在线老鸭窝| 大码成人一级视频| 久热这里只有精品99| 国产国拍精品亚洲av在线观看| 青春草视频在线免费观看| xxx大片免费视频| 中文在线观看免费www的网站| 七月丁香在线播放| tube8黄色片| 最近最新中文字幕免费大全7| 国产乱人偷精品视频| 精品一区二区免费观看| 在线观看人妻少妇| 欧美精品国产亚洲| 波多野结衣巨乳人妻| 精品久久国产蜜桃| 午夜免费观看性视频| 高清av免费在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲av男天堂| av线在线观看网站| 高清日韩中文字幕在线| 久久久a久久爽久久v久久| www.色视频.com| 久久久久久久久久久丰满| 久久99热这里只有精品18| 97在线人人人人妻| 少妇人妻 视频| 亚洲图色成人| 一级毛片 在线播放| 日日啪夜夜爽| 又粗又硬又长又爽又黄的视频| 乱码一卡2卡4卡精品| 日韩大片免费观看网站| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 午夜免费观看性视频| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 免费大片18禁| 网址你懂的国产日韩在线| 亚洲国产最新在线播放| 我的老师免费观看完整版| 亚洲成人久久爱视频| 日产精品乱码卡一卡2卡三| 啦啦啦啦在线视频资源| 欧美bdsm另类| 观看免费一级毛片| 又粗又硬又长又爽又黄的视频| 99久久精品一区二区三区| 亚洲精品国产成人久久av| 熟女av电影| 久久99热这里只频精品6学生| 黄色配什么色好看| 欧美日韩国产mv在线观看视频 | 免费电影在线观看免费观看| 夜夜爽夜夜爽视频| 舔av片在线| 日本熟妇午夜| 一区二区三区乱码不卡18| 身体一侧抽搐| 麻豆精品久久久久久蜜桃| av国产免费在线观看| 午夜精品国产一区二区电影 | 久久久久久久大尺度免费视频| 看非洲黑人一级黄片| av黄色大香蕉| 国产男女内射视频| 伦精品一区二区三区| 一二三四中文在线观看免费高清| 免费观看av网站的网址| 少妇 在线观看| 国产精品无大码| 在线亚洲精品国产二区图片欧美 | 成人欧美大片| 亚洲av一区综合| 久久久久久久久久久免费av| 免费观看的影片在线观看| 国产爱豆传媒在线观看| 国产精品伦人一区二区| 久久久久久久久大av| 男女无遮挡免费网站观看| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 国产免费一区二区三区四区乱码| 交换朋友夫妻互换小说| 国产精品久久久久久精品古装| 免费播放大片免费观看视频在线观看| tube8黄色片| 激情五月婷婷亚洲| 看免费成人av毛片| 国产亚洲精品久久久com| 久久久亚洲精品成人影院| 欧美3d第一页| 久久久久久久久大av| 成人一区二区视频在线观看| 综合色丁香网| 全区人妻精品视频| 97精品久久久久久久久久精品| 九色成人免费人妻av| 人妻 亚洲 视频| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| av女优亚洲男人天堂| 日本与韩国留学比较| 欧美高清性xxxxhd video| 亚洲精品乱久久久久久| 在线播放无遮挡| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 亚洲成人久久爱视频| 日韩成人伦理影院| 欧美成人a在线观看| 免费观看在线日韩| 建设人人有责人人尽责人人享有的 | 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 最近中文字幕2019免费版| 好男人在线观看高清免费视频| 午夜福利在线在线| 99久久人妻综合| 一边亲一边摸免费视频| 免费av观看视频| 男男h啪啪无遮挡| 亚洲欧美精品自产自拍| 成人鲁丝片一二三区免费| 99热网站在线观看| 欧美变态另类bdsm刘玥| 在线观看免费高清a一片| av在线蜜桃| 女人被狂操c到高潮| 国产成人免费观看mmmm| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频 | 婷婷色av中文字幕| 七月丁香在线播放| 久久亚洲国产成人精品v| 好男人视频免费观看在线| 国产永久视频网站| 国产人妻一区二区三区在| 婷婷色综合大香蕉| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 亚洲精品中文字幕在线视频 | 高清午夜精品一区二区三区| 亚洲人与动物交配视频| 亚洲欧美成人综合另类久久久| 日韩电影二区| 欧美zozozo另类| 国内精品美女久久久久久| 婷婷色av中文字幕| 爱豆传媒免费全集在线观看| 欧美+日韩+精品| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久久久按摩| 免费黄网站久久成人精品| 国产国拍精品亚洲av在线观看| 亚洲最大成人中文| 麻豆成人午夜福利视频| 看非洲黑人一级黄片| 国产色婷婷99| 亚洲欧美日韩卡通动漫| 边亲边吃奶的免费视频| 欧美日韩亚洲高清精品| 国产男女内射视频| 看十八女毛片水多多多| 狂野欧美白嫩少妇大欣赏| 亚洲美女视频黄频| 少妇的逼水好多| 一个人观看的视频www高清免费观看| 91久久精品电影网| 蜜桃久久精品国产亚洲av| 精品久久国产蜜桃| 黄色日韩在线| 久久精品国产亚洲网站| 国产精品一及| 久久久久久久久久成人| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 国产久久久一区二区三区| 亚洲自偷自拍三级| 午夜视频国产福利| 在线观看国产h片| 久久久久久久久久成人| 亚洲伊人久久精品综合| 黄片无遮挡物在线观看| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 午夜精品一区二区三区免费看| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 看免费成人av毛片| 国语对白做爰xxxⅹ性视频网站| 男的添女的下面高潮视频| 建设人人有责人人尽责人人享有的 | 天美传媒精品一区二区| 网址你懂的国产日韩在线| 在现免费观看毛片| 久久99精品国语久久久| 亚洲不卡免费看| av又黄又爽大尺度在线免费看| 少妇的逼水好多| 国产av国产精品国产| 亚洲电影在线观看av| 秋霞在线观看毛片| 成人国产麻豆网| 欧美一级a爱片免费观看看| 久久影院123| 老司机影院毛片| 亚洲va在线va天堂va国产| 午夜福利高清视频| 成年免费大片在线观看| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 亚洲自偷自拍三级| 国产精品国产av在线观看| 午夜免费鲁丝| 成人亚洲欧美一区二区av| 男人爽女人下面视频在线观看| 国产精品国产三级专区第一集| 亚洲成人一二三区av| 精品国产乱码久久久久久小说| 内地一区二区视频在线| 免费电影在线观看免费观看| 成人欧美大片| 嫩草影院精品99| 看十八女毛片水多多多| 一本一本综合久久| av在线观看视频网站免费| 免费黄网站久久成人精品| 久久99热这里只有精品18| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| 久久久久久久久久人人人人人人| 国产精品熟女久久久久浪| 亚洲精品日韩在线中文字幕| 欧美成人精品欧美一级黄| 亚洲精品乱久久久久久| 波多野结衣巨乳人妻| 青青草视频在线视频观看| 在线天堂最新版资源| 成人鲁丝片一二三区免费|