• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration Feature Fusion for State Evaluation of Machinery

    2015-12-20 09:14:12LIKangLINXiliang林習(xí)良HUXiangjiang胡湘江CAIZigang蔡自剛
    關(guān)鍵詞:湘江

    LI Kang(李 康),LIN Xiliang(林習(xí)良),HU Xiangjiang(胡湘江),CAI Zigang(蔡自剛)

    1Joint Lab of Flight Vehicle Ocean-Based Measurement and Control,China Satellite Maritime Tracking and Control Department,Jiangyin 214431,China

    2School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China

    Introduction

    In order to inspect states of mechanical equipments,one single feature of vibration signals is usually selected as state parameter.For example,Shao et al.[1]adopted rootmean-square (RMS)value and Kurtosis value as state parameters.Nagi et al.[2]took average amplitude of failure frequency and its six-step harmonic as state parameter.However,further research discovers that single feature is only effective for certain phase and certain failure mode.It means that a given feature behaves differently for different failure modes and different features behave differently at certain condition.An excellent state parameter should capture performance change of machinery in different phases[3-4].To overcome the disadvantages of single feature,state parameter construction based on feature fusion technology was researched[4-6].Because that failure mode and failure vibration are hard to obtain in application,while the self-organizing map(SOM)[7-8]is an unsupervised and emulative algorithm,feature fusion method based on SOM is researched as the emphasis in this paper.

    Section 1introduces the principle of the SOM.Feature fusion method based on SOM is presented in section 2.Section 3 designs an experimental flat and analyzes experimental results.Section 4concludes this paper.

    1 Principle of SOM

    Brain neurology shows that nerve cells at different area in brain have different functions.The cells are sensitive for different information feature,forming different paths.In the brain,the input signals of nerve cell partly come from feeling apparatus and partly come from feedback of cells in the same area.Information exchanges of nerve cells have the characteristics that adjacent cells inspire each other and farther cells restrain each other or inspire faintly.The self-organizing characteristics of the brain can be discovered from the phenomena that response of the nerve cells for certain input is tactic.SOM is presented according to such self-organizing characteristics of brain.The two-dimensional dot-matrix structure of SOM imitates structure of nerve cells in brain.The SOM imitates functions of clustering,self-organizing and selfstudying by reciprocities between different cells.Therefore,the SOM is an unsupervised forward network.It captures important feature or inherent law of data and sorts input vectors to different classes.What's more,the SOM can map arbitrary multidimensional input data to plane or line,beseeming analysis of multidimensional data.

    The structure of SOM is shown in Fig.1.The SOM contains input layer and output layer.Number of nerve cells for the input layer is n,and the output layer is the plane dot-matrix with M =m2cells.Topology of the output layer can be hexagon,gridding,and so on.Coefficients connect cells between input and output layers and connect cells in the output layer.We can see that there exist two kinds of coefficients which separately reflect response intensity for input and mutual action between cells of the output layer.

    Fig.1 Structure of SOM

    The learning algorithm of SOM is shown in Fig.2.

    Fig.2 Learning algorithm of SOM

    Supposing that the input is n dimensional vector x =(x1,x2,…,xn)Tand the output has M nodes,learning algorithm of SOM is as follows.

    (1)Network initialization

    Set the coefficients between input layer and output layer as random.

    (2)Vector input

    Normalize the input vector x =(x1,x2,…,xn)Tand provide the vector to input vector of SOM.

    (3)Euclidean distance calculation

    Calculate the Euclidean distance between input vector and coefficients in step (1).The distance between input vector and the j-th coefficient can be calculated as follows.

    where wijdenotes the coefficient between the i-th input nerve cell and the j-th output nerve cell.

    (4)The cell which has the minimum Euclidean distance with input vector is victorious nerve cell.

    Mark the victorious nerve cell as j*,j =1,2,…,M and present its neighbor muster.

    (5)Update coefficients of the victorious nerve cell and its neighbor muster

    Update coefficients of the victorious nerve cell and its neighbor muster using the following formula.

    whereηis learning efficiency,and 0<η<1.h(j,j*)is the neighbor muster of victorious nerve cell which usually has Gauss form.

    whereσ2reflects neighbor area which deflates along with learning.Therefore,h(j,j*)is wide at beginning and getting narrow along with SOM learning.

    (6)Check if the learning satisfy request or not

    If the learning process satisfy request,end the learning.Otherwise,return to step(2)and keep on learning.In the SOM,we can see that coefficients of the victorious nerve cell and its neighbor muster are nearby the input vector.At beginning,h(j,j*)is wide and the map is cursory.However,h(j,j*)is narrower along with learning and cells of neighbor muster tail off.Therefore,resolving power of space is enhanced.

    2 Vibration Feature Fusion Based on SOM

    2.1 Fusion algorithm

    The SOM can classify input data according to Euclidean distance between coefficients and input vector.Different classes denote different states of machinery.The state change can be described by moving contrail of victorious nerve cell.In the normal state,the victorious nerve cell clusters in a certain area.When the machine scathes,the victorious nerve cell is out of the area of normal state.Out magnitude depends on failure mode and failure extend.Therefore,the failure extend can be assessed by the minimum quantization error (MQE)[4].The assessing process is as follows.

    (1)Normal state features train the SOM,obtaining coefficients of normal state.

    (2)Calculate Euclidean distance between features of vibration and all coefficients of normal state.

    (3)The best matching unit(BMU)is the cell whose coefficient distance is the shortest.And the shortest distance is the fusion result and a kind of state parameter.

    Essentially,the distance between BMU and input vector is the distance between current state and normal state.And the distance is defined as MQEas follows.

    where D is the input feature vector,and mBMUis the coefficient of BMU.

    2.2 Trend information extract based on wavelet packet

    In the process of vibration collection,feature extraction and feature fusion,data disturbing inevitably occurs.Disorder of feature fusion results exists.Some literature adopts the step of denoising for vibration signals[9],but the disorder of results for feature fusion howbeit exists.One of the reasons is that the vibration signals interfuse random noise when working.Another reason is that steps of feature extraction and feature fusion interfuse data noise.Some literature adopts method of slippage average to eliminate disorder[10], but the method easily brings end-point phenomena and state contrail of machinery leads or lags compared with real state contrail.It's very dangerous when sampling alternation is great.

    Considering that trend information is signal with low frequency while data disturbing is signal with high frequency.The MQE,seen as a signal and wavelet packet[11-12],is used to separate trend information and data disturbing.The MQE is decomposed by wavelet packet first and the low-frequency band is the trend information of MQE.The trend information of MQE is the final state parameter.

    The feature fusion method based on SOM is shown in Fig.3.

    Fig.3 Feature fusion algorithm based on SOM

    3 Experimental Results

    3.1 Experimental flat construction and vibration signals collection

    Experimental flat is designed for bearing accelerating fatigue in this paper.The flat consists of lathe bed,main body,drive system,load system,lubricating system,PID controlling system,wiring controlling system and computer system.The flat is shown in Fig.4.

    Fig.4 Experimental flat

    The flat uses computer to simulate working condition of bearing,such as load,rotate speed and temperature,fitting failure simulation or accelerating fatigue of bearing whose inner-diameter is 80-150mm.

    The main body of the flat includes radial loading,electricity axis,coupler,brace shafting,experimental bearing,axes loading and data collection system.The main body adopts splitting structure to make teardown easy.

    The coupler adopts cantilever framework,fixing experimental bearing to cantilever point of brace shafting.Load mode is the hydraulic and proportional loading.The main body is shown in Fig.5.

    Fig.5 The main body of the experimental flat

    In the experiment,the alternator drives the bearing through the coupler.The rotating speed is 6 000r/min.Radial load is 11kN and axes load is 2kN.Type of the experimental bearing is H7018C.Lance vibration sensors are used to collect radial vibration,the sampling frequency is 20 kHz,the sampling length is 32 786,and the sampling alternation is 5 min.In the 70th hour,the experimental bearing damages lightly.In the 86th hour after the experiment beginning,the experimental bearing invalidates.

    3.2 Feature fusion results based on SOM

    As we all know,RMS values of vibration and its envelope are not sensitive for forepart damage while their stability is well;however,Kurtosis values of vibration and its envelope are sensitive for pulse-forepart damage but their stability is bad;waveform parameter values of vibration and its envelope are not sensitive for pulse-forepart damage but they reflect the whole intensity of vibration well[13].Therefore,each kind of feature has his strong point while each feature can not reflect state of mechanical equipment in different stage effectively.Thus, RMS, Kurtosis and waveform parameter of vibration signals of 0-25hand their envelopes are used to train the SOM in the experiment.Then,MQE values are continually calculated by inputting the six features of vibration signal in whole life to SOM trained.At last,“db5”wavelet packet is used to decompose MQE curve into five frequency bands,and the first band with the lowest frequency is the final state parameter.The experimental process is shown in Fig.6.The experimental results are shown in Fig.7.

    Fig.6 The experimental process

    Fig.7 Results of feature fusion based on SOM

    We can see from Fig.7that at the time of 70h,MQE rises abruptly,detecting the state change of experimental bearing.After that,MQE rises astatically,implying that desquamating of the bearing is getting serious.

    At the time of 82 h, MQE rises rapidly and exponentially,implying that the bearing comes into invalidation stage.MQE is sensitive for both forepart damage and afternoon damage,and the stability is well.Therefore,the MQE reflects state of mechanical equipment in different stages effectively.

    4 Conclusions

    To overcome the problem that differentkinds of vibration features can not reflect state of machinery in different stages effectively,a vibration feature fusion method based on SOM is presented in this paper.Wavelet packet is used to extract trend information of MQE curve,enhancing state differentiating.Experimental flat is designed for bearing accelerating fatigue.And experimental results are shown to validate the effectiveness of feature fusion based on SOM.

    [1]Shao Y,Nezu K.Prognosis of Remaining Bearing Life Using Neural Network [J].Journal of Systerms and Control Engineering,2000,214(3):217-230.

    [2]Nagi Z G,Mark L A.Neural Network Degradation Model for Computing and Updating Residual Life Distributions[J].IEEE Transactions on Automation Science and Engineering,2008,5(1):154-163.

    [3]Shen Z J,Chen X F,He Z J.Remaining Life Predictions of Rolling Bearing Based on Relative Features and Multivariable Support Vector Machine [J].Journal of Mechanical Engineering,2013,49(2):183-189.

    [4]Qiu H,Lee J,Lin J,et al.Robust Performance Degradation Assessment Methods for Enhanced Rolling Element Bearing Prognostics[J].Advanced Engineering Informatics,2003,17(3/4):127-140.

    [5]Zhang L J,Liu B,Zhang B,et al.Feature Extraction Method of Bearing Performance Degradation Based on Time-Frequency Image Fusion [J].Journal of Mechanical Engineering,2013,49(22):53-58.

    [6]Liao L X,Lee J.A Novel Method for Machine Performance Degradation Assessment Based on Fixed Cycle Features Test[J].Journal of Sound and Vibration,2009,326(3/4/5):894-908.

    [7]Bishop C M.Neural Networks for Pattern Recognition[M].UK:Oxford University Press,1995:91-108.

    [8]Jiang W J.Fault Diagnosis of Vehicle Rolling Bearing Based on Wavelet Packet and SOM Neural Network[J].Machine Design and Research,2012,28(6):70-73.

    [9]Duan C D.Research on Fault Diagnostics Based on Second Generation Wavelet[M].Xi'an:Xi'an Jiaotong University,2005.(in Chinese)

    [10]Miao X W.Prognosis of Remaining Life for Aero Engine Main Bearing[M].Beijing:Beihang University,2009.(in Chinese)

    [11]Ji Y B.Frequency-Order of Wavelet Packet[J].Journal of Vibration and Shock,2005,24(3):96-110.(in Chinese)

    [12]Wu W B,Wu W M.Diagnosis of Flow Control Valve Using Wavelet Packet [J].Journal of Jinggangshan University,2011,32(1):97-99.(in Chinese)

    [13]He Z J.Theories and Application of Machinery Fault Diagnostics[M].Beijing:High Education Press,2009:34-36.(in Chinese)

    猜你喜歡
    湘江
    湘江渡
    心聲歌刊(2021年1期)2021-07-22 07:52:18
    湘江魂
    歌海(2021年2期)2021-06-22 02:25:59
    悠然湘江上
    湘江之戀
    詠湘江戰(zhàn)役
    文史春秋(2019年7期)2019-09-10 08:36:50
    紅三十四師浴血奮戰(zhàn)湘江之側(cè)
    文史春秋(2019年7期)2019-09-10 08:36:44
    湘江邊走走
    湘江模樣
    湘江渡
    歌海(2019年6期)2019-02-22 12:23:31
    湘江大地
    名作欣賞(2017年25期)2017-11-06 01:40:12
    久久久精品欧美日韩精品| 免费黄频网站在线观看国产| 午夜福利在线观看吧| 男女视频在线观看网站免费| 好男人视频免费观看在线| 久久6这里有精品| 亚州av有码| 日日撸夜夜添| 日韩av免费高清视频| 综合色av麻豆| 天美传媒精品一区二区| 久久韩国三级中文字幕| 啦啦啦中文免费视频观看日本| 欧美一区二区亚洲| 亚洲aⅴ乱码一区二区在线播放| 卡戴珊不雅视频在线播放| 亚洲精品久久午夜乱码| videossex国产| 一级黄片播放器| 老女人水多毛片| 国产免费又黄又爽又色| 精品少妇黑人巨大在线播放| 80岁老熟妇乱子伦牲交| 少妇高潮的动态图| 亚洲欧美精品自产自拍| 亚洲av成人精品一二三区| 国产一区二区亚洲精品在线观看| 欧美精品国产亚洲| 亚洲欧美成人综合另类久久久| 国产午夜精品久久久久久一区二区三区| 国产一区二区三区av在线| 有码 亚洲区| 丝袜美腿在线中文| 日韩一区二区三区影片| 2021少妇久久久久久久久久久| 水蜜桃什么品种好| 亚洲精品一区蜜桃| 久久久久免费精品人妻一区二区| 插逼视频在线观看| 精品久久久久久久久亚洲| 国产一区二区亚洲精品在线观看| 大片免费播放器 马上看| 国产精品美女特级片免费视频播放器| 又爽又黄无遮挡网站| 女的被弄到高潮叫床怎么办| av黄色大香蕉| 伦精品一区二区三区| 欧美日韩综合久久久久久| 永久免费av网站大全| 午夜福利在线在线| av网站免费在线观看视频 | 久久久欧美国产精品| 亚洲精品一区蜜桃| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合| 看免费成人av毛片| 大话2 男鬼变身卡| 欧美日韩精品成人综合77777| 美女国产视频在线观看| 国产亚洲最大av| 成人漫画全彩无遮挡| 卡戴珊不雅视频在线播放| 熟女人妻精品中文字幕| 亚洲不卡免费看| 午夜免费观看性视频| 免费看光身美女| 三级国产精品欧美在线观看| 免费观看a级毛片全部| 国产男人的电影天堂91| 少妇裸体淫交视频免费看高清| 毛片女人毛片| 成人亚洲精品av一区二区| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| 欧美三级亚洲精品| 久久精品人妻少妇| 联通29元200g的流量卡| av在线亚洲专区| 国产一级毛片七仙女欲春2| 亚洲激情五月婷婷啪啪| 日本与韩国留学比较| 26uuu在线亚洲综合色| 爱豆传媒免费全集在线观看| 欧美精品国产亚洲| 日韩成人av中文字幕在线观看| 能在线免费看毛片的网站| 在线免费观看不下载黄p国产| 亚洲不卡免费看| 欧美日本视频| 全区人妻精品视频| 少妇人妻一区二区三区视频| 亚洲av福利一区| 搡老乐熟女国产| 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 成人综合一区亚洲| 伦理电影大哥的女人| 禁无遮挡网站| 久久精品久久久久久久性| 中文在线观看免费www的网站| 可以在线观看毛片的网站| 国产黄片美女视频| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 岛国毛片在线播放| 婷婷六月久久综合丁香| 国产精品美女特级片免费视频播放器| 九草在线视频观看| 国产男人的电影天堂91| 国产精品伦人一区二区| 黄色日韩在线| 久久久国产一区二区| 亚洲精品第二区| 欧美激情国产日韩精品一区| 久久久成人免费电影| 精品久久久久久久末码| 久久久久久久亚洲中文字幕| 精品酒店卫生间| 亚洲真实伦在线观看| 亚洲美女视频黄频| 欧美精品国产亚洲| 欧美成人a在线观看| 成人av在线播放网站| 亚洲美女搞黄在线观看| 80岁老熟妇乱子伦牲交| 大香蕉久久网| av在线观看视频网站免费| 黑人高潮一二区| 女人十人毛片免费观看3o分钟| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| .国产精品久久| 亚洲乱码一区二区免费版| 日韩三级伦理在线观看| 亚洲av二区三区四区| 神马国产精品三级电影在线观看| 国产亚洲91精品色在线| 国产免费视频播放在线视频 | 国产精品国产三级国产专区5o| 啦啦啦啦在线视频资源| 亚洲av二区三区四区| 免费观看a级毛片全部| 国产视频首页在线观看| 男插女下体视频免费在线播放| 久久久久久久大尺度免费视频| 18+在线观看网站| 插逼视频在线观看| 精品人妻视频免费看| 五月玫瑰六月丁香| 97热精品久久久久久| 午夜激情福利司机影院| 丝袜喷水一区| 国产精品.久久久| 欧美日韩在线观看h| 舔av片在线| 国产精品熟女久久久久浪| 丝瓜视频免费看黄片| 搞女人的毛片| av网站免费在线观看视频 | 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 一区二区三区高清视频在线| 亚洲综合色惰| 两个人视频免费观看高清| 亚洲av电影不卡..在线观看| 天天躁夜夜躁狠狠久久av| 国产黄片视频在线免费观看| 蜜桃亚洲精品一区二区三区| 亚洲成人一二三区av| 高清毛片免费看| 久久这里有精品视频免费| 日本黄大片高清| 2018国产大陆天天弄谢| 久久99热6这里只有精品| 日韩在线高清观看一区二区三区| 亚洲精品aⅴ在线观看| 99久久精品热视频| 91精品伊人久久大香线蕉| 欧美xxxx性猛交bbbb| 秋霞伦理黄片| 伦精品一区二区三区| 亚洲欧美一区二区三区国产| 亚洲av电影不卡..在线观看| 国产色爽女视频免费观看| 久久热精品热| 一边亲一边摸免费视频| 水蜜桃什么品种好| 精品国内亚洲2022精品成人| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 亚洲av电影不卡..在线观看| 国产精品一区二区在线观看99 | 97人妻精品一区二区三区麻豆| av又黄又爽大尺度在线免费看| 舔av片在线| 免费在线观看成人毛片| 91精品一卡2卡3卡4卡| 神马国产精品三级电影在线观看| 国产精品日韩av在线免费观看| 久99久视频精品免费| 免费看不卡的av| ponron亚洲| 国产精品人妻久久久影院| 亚洲综合精品二区| 熟妇人妻不卡中文字幕| av福利片在线观看| 久久99精品国语久久久| 亚洲av电影在线观看一区二区三区 | 特级一级黄色大片| 亚洲av免费在线观看| 一二三四中文在线观看免费高清| 少妇人妻精品综合一区二区| 成年av动漫网址| 久久久久久久久久久免费av| 国产不卡一卡二| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 夜夜爽夜夜爽视频| 精品国产露脸久久av麻豆 | 日韩欧美三级三区| av国产久精品久网站免费入址| av在线天堂中文字幕| 精品国产一区二区三区久久久樱花 | 久久精品国产亚洲网站| 久久久久久久久久黄片| 精品人妻偷拍中文字幕| ponron亚洲| 精品久久国产蜜桃| 超碰av人人做人人爽久久| 晚上一个人看的免费电影| 国产午夜精品论理片| 国产午夜精品久久久久久一区二区三区| 在线观看美女被高潮喷水网站| 亚洲精品第二区| 亚洲精品乱码久久久v下载方式| 亚洲国产日韩欧美精品在线观看| 国产黄频视频在线观看| 国产精品精品国产色婷婷| 水蜜桃什么品种好| 久久久精品免费免费高清| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区三区四区久久| 91久久精品国产一区二区成人| 成人无遮挡网站| 熟妇人妻不卡中文字幕| 国产精品久久久久久久电影| 一边亲一边摸免费视频| 少妇人妻精品综合一区二区| h日本视频在线播放| 久久久久久伊人网av| 大片免费播放器 马上看| videos熟女内射| 亚洲国产高清在线一区二区三| 色吧在线观看| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区国产| 国产午夜精品一二区理论片| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 天堂√8在线中文| 插阴视频在线观看视频| 欧美日韩亚洲高清精品| 亚洲三级黄色毛片| 午夜福利高清视频| 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 永久免费av网站大全| 久久久久久伊人网av| 男插女下体视频免费在线播放| 美女高潮的动态| 欧美激情久久久久久爽电影| 亚洲欧美一区二区三区黑人 | 十八禁网站网址无遮挡 | 高清毛片免费看| 高清欧美精品videossex| 久久久久久久午夜电影| 最近中文字幕高清免费大全6| 在线免费十八禁| 国产伦在线观看视频一区| av播播在线观看一区| 啦啦啦中文免费视频观看日本| 成人二区视频| 国产午夜精品一二区理论片| 亚洲乱码一区二区免费版| 国产一区二区在线观看日韩| 搡女人真爽免费视频火全软件| 777米奇影视久久| 成人特级av手机在线观看| 成人无遮挡网站| 真实男女啪啪啪动态图| 欧美三级亚洲精品| 亚洲精品成人久久久久久| 97超视频在线观看视频| 婷婷色综合www| 又黄又爽又刺激的免费视频.| 成人高潮视频无遮挡免费网站| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 亚洲一区高清亚洲精品| 欧美日本视频| 国产亚洲av片在线观看秒播厂 | 国产极品天堂在线| 亚洲综合色惰| 18禁裸乳无遮挡免费网站照片| 久久亚洲国产成人精品v| 精品国产三级普通话版| 日本一二三区视频观看| 日韩 亚洲 欧美在线| 啦啦啦中文免费视频观看日本| 久久久久性生活片| 黄色一级大片看看| 欧美bdsm另类| 成人午夜高清在线视频| 熟妇人妻不卡中文字幕| 国产av码专区亚洲av| 久久久久久伊人网av| 美女cb高潮喷水在线观看| 午夜视频国产福利| 久久久久久久久久人人人人人人| 精华霜和精华液先用哪个| 欧美性猛交╳xxx乱大交人| 亚洲精品第二区| 亚洲无线观看免费| www.色视频.com| 人妻少妇偷人精品九色| 伦精品一区二区三区| 99热网站在线观看| 国产精品美女特级片免费视频播放器| 久久久久久久久中文| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 国产91av在线免费观看| 亚洲电影在线观看av| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 久99久视频精品免费| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 免费av毛片视频| 在线观看美女被高潮喷水网站| 特大巨黑吊av在线直播| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲| 欧美成人一区二区免费高清观看| 日韩视频在线欧美| 国产有黄有色有爽视频| 精品久久国产蜜桃| 亚洲av电影不卡..在线观看| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| videos熟女内射| 2022亚洲国产成人精品| 免费观看无遮挡的男女| 亚洲天堂国产精品一区在线| 插逼视频在线观看| 久久精品综合一区二区三区| 韩国av在线不卡| 国产一区二区三区综合在线观看 | 美女xxoo啪啪120秒动态图| 亚洲av电影不卡..在线观看| 日本黄大片高清| 国精品久久久久久国模美| 夜夜爽夜夜爽视频| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 亚洲精品456在线播放app| 国产午夜福利久久久久久| 69人妻影院| 成人午夜精彩视频在线观看| 久久亚洲国产成人精品v| 色吧在线观看| 最近最新中文字幕大全电影3| 我的女老师完整版在线观看| 久久久a久久爽久久v久久| 亚洲av男天堂| 免费少妇av软件| 五月玫瑰六月丁香| 亚洲三级黄色毛片| a级毛片免费高清观看在线播放| 可以在线观看毛片的网站| av又黄又爽大尺度在线免费看| 色尼玛亚洲综合影院| 国产三级在线视频| 亚洲四区av| 91久久精品国产一区二区成人| 亚洲精品中文字幕在线视频 | 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久免费av| 在线观看一区二区三区| 在现免费观看毛片| 亚洲最大成人中文| 亚洲av男天堂| 人妻系列 视频| 久久久久久久久久久免费av| 色综合站精品国产| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 国语对白做爰xxxⅹ性视频网站| 91狼人影院| 天堂√8在线中文| 丝瓜视频免费看黄片| 日韩精品青青久久久久久| 男女视频在线观看网站免费| 天堂网av新在线| 久久精品夜夜夜夜夜久久蜜豆| 在线观看免费高清a一片| 精品一区二区三卡| 精品久久久久久久久亚洲| 日韩 亚洲 欧美在线| 99久久九九国产精品国产免费| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 国产高清不卡午夜福利| 国产黄a三级三级三级人| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区| 男女国产视频网站| 成人美女网站在线观看视频| 哪个播放器可以免费观看大片| 国产亚洲av嫩草精品影院| 国产成人freesex在线| av又黄又爽大尺度在线免费看| 18禁动态无遮挡网站| 国产永久视频网站| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 亚洲自偷自拍三级| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版 | 蜜桃亚洲精品一区二区三区| 中文天堂在线官网| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av涩爱| 两个人视频免费观看高清| 国产精品一区二区在线观看99 | 国产毛片a区久久久久| 丝袜美腿在线中文| 国产成人精品久久久久久| 最近2019中文字幕mv第一页| 国产精品无大码| 熟妇人妻不卡中文字幕| 国产亚洲91精品色在线| 日韩成人伦理影院| 又爽又黄a免费视频| 国产男女超爽视频在线观看| 日本爱情动作片www.在线观看| 小蜜桃在线观看免费完整版高清| 欧美成人午夜免费资源| 久久热精品热| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜 | 高清在线视频一区二区三区| 亚洲电影在线观看av| 亚洲国产欧美在线一区| 欧美极品一区二区三区四区| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 一个人看的www免费观看视频| 淫秽高清视频在线观看| 久久精品熟女亚洲av麻豆精品 | 熟女人妻精品中文字幕| av.在线天堂| 少妇猛男粗大的猛烈进出视频 | 国产熟女欧美一区二区| 国产av国产精品国产| 久久这里有精品视频免费| 有码 亚洲区| 男女那种视频在线观看| 免费av毛片视频| 91精品国产九色| 街头女战士在线观看网站| 国产视频内射| 婷婷色麻豆天堂久久| av国产久精品久网站免费入址| 成年版毛片免费区| 欧美性猛交╳xxx乱大交人| 91狼人影院| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲天堂国产精品一区在线| 国产 一区精品| 亚洲综合精品二区| 老司机影院毛片| 婷婷色综合www| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 麻豆成人午夜福利视频| 日本与韩国留学比较| 直男gayav资源| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 日韩av在线大香蕉| 三级国产精品欧美在线观看| 亚洲成人一二三区av| 色吧在线观看| 亚洲精品一二三| 国精品久久久久久国模美| 寂寞人妻少妇视频99o| 国产亚洲一区二区精品| 免费av毛片视频| 美女被艹到高潮喷水动态| 久久99热这里只频精品6学生| 国产老妇女一区| 久久精品夜色国产| 九九久久精品国产亚洲av麻豆| 成人一区二区视频在线观看| 午夜亚洲福利在线播放| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 联通29元200g的流量卡| 午夜亚洲福利在线播放| 欧美区成人在线视频| 欧美xxxx性猛交bbbb| 精华霜和精华液先用哪个| 欧美一级a爱片免费观看看| 免费大片18禁| 欧美xxⅹ黑人| 亚洲精品456在线播放app| 亚洲精品乱久久久久久| 99re6热这里在线精品视频| 精品久久久精品久久久| 亚洲激情五月婷婷啪啪| 亚洲国产精品国产精品| 国产精品日韩av在线免费观看| 亚洲色图av天堂| 毛片女人毛片| 亚洲国产精品sss在线观看| 尤物成人国产欧美一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人看人人澡| av国产久精品久网站免费入址| 国产高潮美女av| 久久精品久久久久久久性| 亚洲伊人久久精品综合| 亚洲精华国产精华液的使用体验| 69av精品久久久久久| ponron亚洲| 久久精品国产亚洲av天美| 日韩av免费高清视频| 国产成人精品福利久久| 最近的中文字幕免费完整| 欧美精品一区二区大全| 亚洲不卡免费看| 麻豆国产97在线/欧美| 色综合色国产| 最近2019中文字幕mv第一页| 男女下面进入的视频免费午夜| 天堂av国产一区二区熟女人妻| 免费观看无遮挡的男女| 天天躁夜夜躁狠狠久久av| 麻豆av噜噜一区二区三区| 夜夜看夜夜爽夜夜摸| av免费在线看不卡| 久久午夜福利片| 女人久久www免费人成看片| 亚洲欧美日韩卡通动漫| 国产成人午夜福利电影在线观看| 亚洲av成人av| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 午夜久久久久精精品| 免费av毛片视频| 国产精品麻豆人妻色哟哟久久 | 好男人在线观看高清免费视频| 久久久亚洲精品成人影院| 亚洲人与动物交配视频| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线| 午夜福利网站1000一区二区三区| 毛片女人毛片| 午夜福利网站1000一区二区三区| 99热6这里只有精品| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 亚洲精品久久午夜乱码| 三级经典国产精品| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久久电影| 五月天丁香电影| 午夜福利高清视频| 亚洲精品456在线播放app| 国产精品久久久久久精品电影| 亚洲在线自拍视频| 麻豆国产97在线/欧美| 91狼人影院| 大片免费播放器 马上看| 寂寞人妻少妇视频99o| 青春草国产在线视频| 亚洲欧美成人综合另类久久久| 亚洲图色成人| 久久久国产一区二区| 赤兔流量卡办理| 免费观看性生交大片5| 国产男女超爽视频在线观看| 久久久久精品性色| 2022亚洲国产成人精品| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 久久精品国产鲁丝片午夜精品| 一边亲一边摸免费视频| 久久久久免费精品人妻一区二区|