• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation of Uniform Oil-Soluble Fe3O4 Nanoparticles via Oil-Water Interface System

    2015-12-20 09:13:58XUEJingcheng薛精誠WANGHuiZHENGXueshuang鄭學(xué)雙WUYingZHOUXingping周興平
    關(guān)鍵詞:興平

    XUE Jingcheng(薛精誠),WANG Hui(王 會(huì)),ZHENG Xueshuang(鄭學(xué)雙),WU Ying(吳 瑛),2,ZHOU Xingping(周興平)*

    1College of Chemistry,Chemical Engineering and Biotechnology,Donghua University,Shanghai 201620,China

    2College of Life Science,Tarim University,Alar 843300,China

    Introduction

    Fe3O4nanoparticles(NPs),possessing unique physical and chemical properties,show a lot of sparking traits in comparison with the conventional magnetic materials.It is widely applied in the fields of bio-separation[1],biomedicine[2-3], hyperthermia[4-5], bio-labels[6], etc.Nowadays,due to their promising prospects on practical applications,many studies have focused on the synthesis of Fe3O4[7-8].So far,a wide variety of methods have been developed to produce Fe3O4NPs,such as high temperature pyrolysis[9],chemical co-precipitation method[10],gel-sol method[11]and microemulsion method[12].However,high temperature pyrolysis requires complex reaction conditions and has a certain toxicity.The uniformity of the products obtained by co-precipitation method was unsatisfactory,limiting the usage of Fe3O4NPs in practical application.The products synthesized by gel-sol method are easy to aggregate,causing many defective sites on their surfaces.The products prepared from microemulsion have some excellent properties,but the output is relatively low with a high cost.

    Oil-water interface method was employed firstly to prepare QDs by Alexander et al.[13]and Kasuyaet al.[14]In Alexander's work,uniform CdS NPs sized as about 3.0nm in a cubic crystal structure were prepared successfully.By the same method,highly luminescing and monodispersed CdSe QDs were also successfully prepared by Kasuya et al.[14]In the previous work,the oil-water interface method has been employed to prepare TiO2NPs[15]and ZnS NPs[16]and the possible formation mechanism by this method has been proposed that the adsorption of surfactant on the nuclei plays a crucial role in determining their formation.

    In the novel oil-water interface method,which is somewhat similar to that of upper-phase microemulsion,oil and water phases coexist,and the reactants exist in different phases.By controlling the reaction conditions,nucleation and growth can only occur at the oil-water interface.In the presence of surfactant,when the nucleation happens,the pre-formed nuclei are capped by the surfactant to form a hydrophobic surface and then spontaneously enter into the oil phase to stop growing[16].Hereafter,the growth period could be shortened and the size distribution of products could be narrowed.Therefore, nearly monodispersed nanoparticles sized usually as several nanometers can be formed by the oil-water interface method,with a high output in comparison with that from microemulsion due to the existence of a large amount of both oil and water including reactants.Meanwhile,the surface defect sites of the product decrease markedly,owing to the vital decrease of free cations and anions in oil phase by comparison with that in water phase.Distinguishing from the defects of the other methods above,the novel oil-water method can avoid the shortcomings and combine the advantages successfully such as mild reaction conditions,low cost,narrow size distribution and good oil-solubility.

    Additionally,effects of reaction conditions,nucleation and growth on size and shape control of Fe3O4NPs formed by coprecipitation,gel-sol method, hydrothermal method and microemulsion method have been fully investigated[17-23],which is very useful and significant to the preparation of Fe3O4NPs from the oil-water interface method.In this work,reaction conditions such as NH3·H2O concentration,amount of oleic acid,reaction temperature and time were altered to investigate their effects on the properties of Fe3O4NPs.The as-prepared Fe3O4NPs owned the advantages of good oil-solubility and narrow size-distribution under mild reaction conditions and simple operations.More importantly,the formation mechanism of Fe3O4NPs synthesized by oil-water interface method was firstly proposed on the bases of those of oil-soluble TiO2and ZnS NPs.

    1 Experimental

    1.1 Materials

    Absolute alcohol(AR,99.7%),aqueous ammonia(CP,97%),ferric sulfate(AR,99%),cyclohexane(AR,99.5%),oleic acid(CP,97%),and sodium stearate(CP,98%)were purchased from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China)Green copperas(AR,99%)was purchased from Shanghai Gongxuetuan No.2Experiment Factory(China).

    1.2 Synthesis of oil-soluble Fe3O4 NPs

    Some amount of sodium stearate was firstly added into a three-necked flask containing about 60 mL of de-ionized water.Then ferric sulfate solution was injected into the flask and reacted for 2h.The upper oil phase was filtered by step funnel and washed by hot water for three times,and then dried at 80 ℃for 24h.

    The standard conditions for preparing Fe3O4NPs by the oilwater interface method were established as follows[8-11].The above prepared ferric stearate was dissolved in 40 mL of cyclohexane to achieve 0.067mol/L solution.Then 5mL oleic acid was injected into the three-necked flask with vigorous stirring to form the oil phase.Ferrous sulfate was dissolved into de-ionized water and injected into the flask with stirring for 20min.The molar ratio of ferric stearate to ferrous sulfate was 2∶1.After that,30mL NH3·H2O of 4.5mol/L was gradually transferred into the oil-water mixture and the system was maintained at 80℃for 2h.The upper oil phase was washed centrifugally by the solvent of ethanol:water(v/v)4∶1mixture for three times and oil-soluble Fe3O4nanoparticles were obtained by drying the centrifugal products at 60 ℃for 24h.

    2 Results and Discussion

    2.1 Characterization of Fe3O4 NPs

    2.1.1 Transmission electron microscopy(TEM)and X-ray diffraction(XRD)

    Figure 1(a)displays the TEM image of as-synthesized oil-soluble Fe3O4NPs under the standard conditions.As can be seen,the prepared Fe3O4NPs were spherical-like with an average size of 3.6nm.The relative average derivation was 18.9%based on the calculation for about 100particles.The capping of oleic acid on the surface makes the Fe3O4NPs well-dispersed with a uniform morphology.Figure 1(b)shows the XRD profile,suggesting the production of Fe3O4NPs successfully.

    2.1.2 Vibrating sample magnetometer(VSM)

    The presence of magnetization is proven by the measurement of superconducting quantum interference device magnetometer at room temperature as shown in Fig.2.The magnetite remanence was an S-like curve,while the saturation magnetization was 0.865 emu·g-1with the coercivity of 0 Oe which demonstrated the ferromagnetic behavior of the Fe3O4NPs.The obtained Fe3O4NPs exhibited some certain of deficiency for the relatively weak ferromagnetic behavior compared with other methods.

    2.1.3 Fourier transform infrared spectroscopy(FT-IR)

    Figure 3 exhibits the FT-IR spectrum of Fe3O4NPs obtained under the standard conditions.The characteristic peak corresponding to the stretching vibration of Fe—O bond was 591.74cm-1and the peak at 1 534.44cm-1attributing to the characteristic stretching vibration of the carbonyl unit demonstrated that oleic acid was successfully combined to the surface of Fe3O4NPs.In addition,the 3 445.98cm-1peak may relate to the OH-of unmoved water,resulting from air-slake during the storing.

    Fig.1 TEM image(a)and XRD profile(b)of the oil-soluble Fe3 O4 NPs

    Fig.2 Magnetic hysteresis curve of Fe3O4 NPs

    Fig.3 FT-IR spectrum of Fe3O4 NPs

    2.1.4 Thermogravimetric analyzer(TGA)

    TGA measurement is performed for a typical product as showed in Fig.4together with that of the commercial Fe3O4.The weight loss of Fe3O4NPs was a four-stage process.During the first stage(30-240℃),the loss of weight was mainly caused by the evaporation of water,ethanol,and cyclohexane.In the second stage(300-400 ℃),containing the boiling point of oleic acid,the evaporation of the free oleic acid led to a loss of 11%of the total weight.In the third stage(700-790℃),the weight loss of 6%was corresponding to that of the oleic acid closely combined with Fe3O4NPs.During the final stage(820-900 ℃),the curve rebounded slightly due to the partially oxidizing of Fe3O4.

    Fig.4 TGA curves of Fe3O4NPs

    2.2 Effects of reaction conditions on synthesizing oil-soluble Fe3O4

    2.2.1 Effect of NH3·H2O concentration

    Figure 5(a)demonstrates XRD profiles of solid products obtained under different concentrations of NH3·H2O.The products were changed,accompanied by the changing of NH3·H2O concentration.An unstable intermediate product was firstly formed and could transform into two kinds of substances according to different conditions.The product was mainlyα-FeOOH particles when the concentration of NH3·H2O was lower than 3.0mol/L.While higher concentration of NH3·H2O promoted the products changed to be Fe3O4NPs.The reason may be due to the existence of different precursory complexes for the formation ofα-FeOOH and Fe3O4NPs and the excessive NH3·H2O accelerated the formation of Fe3O4NPs from α-FeOOH.

    The increase in NH3·H2O concentration also resulted in the slightly decreased size of Fe3O4NPs for more crystal nuclei were probably produced as shown in Fig.5(b).As obtained from their TEM images,the particles were spherical-like with the sizes ofα-FeOOH and Fe3O4NPs ranged in 6.9-4.4and 3.9-3.1nm,respectively.NaOH was also used to synthesize Fe3O4NPs but the products were of poor uniformity and dispersion,which was probably due to the too strong alkalinity.

    Fig.5 Products of different concentration of NH3·H2O:(a)XRD profiles and(b)size change

    2.2.2 Effect of oleic acid amount

    The size of Fe3O4NPs decreased at first and then increased with the increase of oleic acid amount as shown in Fig.6.In the beginning,increased amount of oleic acid led to its faster and stronger adsorption on the growing particles,causing their earlier entering into the oil phase and then stopping the growth.Thereafter,size of the formed Fe3O4decreased with the increasing amount of oleic acid.Additionally,with the further increase of oleic acid,more oleate ions were produced,which was combined to the Fe2+in water phase and led to the decrease of free Fe2+ions,resulting in the inhibited nucleation.Therefore,the size of the obtained Fe3O4NPs increased gradually.

    Fig.6 Size change of the products with different amount of oleic acid

    Fig.7 Size change of Fe3O4NPs of time evolution

    2.2.3 Time evolution of Fe3O4NPs As shown in Fig.7,the time longer than 6hdid not have much influence on the growing of Fe3O4NPs with the size between 3.8-4.4nm which went incidence with the TEM results.The NPs formed on the oil-water interface were rapidly capped by oleic acid,causing the controlled growth of Fe3O4NPs.

    2.2.4 Effect of temperature

    Fe3O4NPs were also prepared under different temperatures,but no obvious size distinction was found as shown in Table 1.

    Table 1 Effect of temperature on the size of Fe3O4 NPs

    The reason may be that the reactions happen in the oil-water interface,and the temperature only exerts little influence on the formation and adsorption of oleic acid,as the surfactant adsorption plays an important role in the production of monodispersed inorganic NPs.In addition,the more uniform Fe3O4NPs were obtained at the temperature of 80 ℃for the competition between the adsorption of surfactant and the particle growth.The Fe3O4NPs capped by the surfactant of oleic acid entered into the oil phase swiftly,and then the more uniform Fe3O4NPs were produced at 80 ℃.

    2.3 Formation mechanism of Fe3O4 NPs in the oilwater interface

    The previous studies on the formation of TiO2and ZnS NPs in the oil-water interface have laid deep foundation on the formation mechanism of Fe3O4NPs[17-18].As shown in Fig.8,on the surface of the nuclei,there is a competition between the adsorption of the surfactant and the deposition of Fe3+and Fe2+.After the nucleation takes place,the adsorption of surfactant on the nuclei in oil-water interface goes in two ways,the fast adsorption and the slow adsorption.By the fast one,the nuclei are capped by the surfactant as early as the nucleation occurs in oilwater interface and subsequently enter into oil phase to stop growing and mono-dispersed Fe3O4NPs are produced.By the slow one,the nuclei grow by the deposition of reactants,along with the surfactant adsorption on their surfaces.Once the surfactant adsorption is sufficient to minimize their surface Gibbs free energy,the particles spontaneously enter into the oil phase and then the particle growth stops.Therefore,relatively poly-dispersed Fe3O4NPs are generated as the nucleation takes place continually through the reaction period.

    Fig.8 Formation mechanism of Fe3O4 NPs in the oil-water interface

    3 Conclusions

    Uniform oil-soluble Fe3O4NPs were successfully synthesized by the novel oil-water interface method.The obtained Fe3O4NPs were of an average particle size of 3.9 nm.TEM images and XRD profiles revealed that the most suitable reaction concentration of NH3·H2O,oleic acid/water in volume,reaction temperature and reaction time were 4.5mol/L,50∶1 000,80 ℃and 6 h,respectively.VSM showed that the synthesized Fe3O4NPs were superparamagetic and the saturation magnetization was 0.865 emu·g-1.TGA proved that oleic acid was combined to the surface of Fe3O4NPs closely.The outer loose capping and the inner close capping of oleic acid were 11% and 6%,respectively.The formation mechanism of the nearly monodispersed Fe3O4NPs by the oil-water interface method was proposed to be that the pre-formed Fe3O4nuclei were capped by oleic acid as early as the nucleation occurred and subsequently entered into oil phase to stop growing.Compared with the modification of Fe3O4NPs after aqueousphase synthesis and the other methods,the oil-water interface method exhibits great advantages in low cost,cheap raw materials and good oil-solubility products despite of the defect of a relatively weak ferromagnetic behavior.

    [1]Park H Y,Schadt M J,Wang L Y,et al.Fabrication of Magnetic Core@Shell Fe Oxide@ Au Nanoparticles for Interfacial Bioactivity and Bio-separation [J].Langmuir,2007,23(17):9050-9056.

    [2]Wang X Q,Tu Q,Zhao B,et al.Effects of Poly(l-lysine)-modified Fe3O4Nanoparticles on Endogenous Reactive Oxygen Species in Cancer Stem Cells[J].Biomaterials,2013,34(4):1155-1169.

    [3]Yang X W,Jiang W,Li L,et al.One-Step Hydrothermal Synthesis of Highly Water-Soluble Secondary Structural Fe3O4Nanoparticles [J].Journal of Magnetism and Magnetic Materials,2012,324(14):2249-2257.

    [4]Wang Y M,Cao X,Liu G H,et al.Synthesis of Fe3O4Magnetic Fluid Used for Magnetic Resonance Imaging and Hyperthermia [J].Journal of Magnetism and Magnetic Materials,2011,323(23):2953-2959.

    [5]Zhao D L,Zeng X W,Xia Q S,et al.Inductive Heat Property of Fe3O4Nanoparticles in AC Magnetic Field for Local Hyperthermia[J].Rare Metals,2006,25(6):621-625.

    [6]Joseph J,Nishad K K,Sharma M,et al.Fe3O4and CdS Based Bifunctional Core-Shell Nanostructure[J].Materials Research Bulletin,2012,47(6):1471-1477.

    [7]Gunay M,Kavas H,Baykal A.Simple Polyol Route to Synthesize Heptanoic Acid Coated Magnetite (Fe3O4)Nanoparticles[J].Materials Research Bulletin,2013,48(3):1296-1303.

    [8]Hong R Y,Pan T T,Li H Z.Microwave Synthesis of Magnetic Fe3O4Nanoparticles Used as a Precursor of Nanocomposites and Ferrofluids[J].Journal of Magnetism and Magnetic Materials,2006,303(1):60-68.

    [9]Chiu W S,Radiman S,Abdullah M H.One Pot Synthesis of Monodisperse Fe3O4Nanocrystals by Pyrolysis Reaction of Organometallic Compound [J].Materials Chemistry and Physics,2007,106(2/3):231-235.

    [10]Liu Y S,Liu P,Su Z X,et al.Attapulgite-Fe3O4Magnetic Nanoparticles via Co-precipitation Technique [J].Applied Surface Science,2008,255(5):2020-2025.

    [11]Lemine O M,Omri K,Zhang B,et al.Sol-Gel Synthesis of 8 nm Magnetite (Fe3O4)Nanoparticles and Their Magnetic Properties[J].Superlattices and Microstructures,2012,52(4):793-799.

    [12]Lu T, Wang J H,Yin J.Surfactant Effects on the Microstructures of Fe3O4Nanoparticles Synthesized by Microemulsion Method [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,436(5):675-683.

    [13]Alexander N K,Svetlana A V,Anatoly I L,et al.Optical Properties of Cadmium Sulfide Colloidal Dispersions Prepared by Interphase Synthesis[J].Optical Materials,2008,30(8):1304-1309.

    [14]Kasuya A,Sivamohan R,Barnakov Y A,et al.Ultra-stable Nanoparticles of CdSe Revealed from Mass Spectrometry[J].Nature Materials,2004,3(2):99-102.

    [15]Huang X Y,Liu Y G,Zhou X P,et al.Formation of Oil-Soluble Uniform Anatase Titania Nanoparticles and Their Characterization [J ].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,423(20):115-123.

    [16]Du Y X,Zhou X P,Liu Y,et al.Synthesis and Properties of ZnS Quantum Dots by an Oil-Water Interface Method [J].Journal of Nanoscience and Nanotechnology,2012,12(11):8487-8493.

    [17]Fan Y H,Ma C H,Li W G,et al.Synthesis and Properties of Fe3O4/SiO2/TiO2Nanocomposites by Hydrothermal Synthetic Method[J].Materials Science in Semiconductor Processing,2012,15(5):582-585.

    [18]Ren L L,Huang S,F(xiàn)an W,et al.One-Step Preparation of Hierarchical Superparamagnetic Iron Oxide/Graphene Composites via Hydrothermal Method [J].Applied Surface Science,2011,258(3):1132-1138.

    [19]Liu Y S,Liu P,Su Z X,et al.Attapulgite-Fe3O4Magnetic Nanoparticles via Co-precipitation Technique [J].Applied Surface Science,2008,255(5):2020-2025.

    [20]Meng J H,Yang G Q,Yan L M,et al.Synthesis and Characterization of Magnetic Nanometer Pigment Fe3O4[J].Dyes and Pigments,2005,66(2):109-113.

    [21]Shen Y F,Tang J,Nie Z H,et al.Tailoring Size and Structural Distortion of Fe3O4Nanoparticles for the Purification of Contaminated Water [J].Bioresource Technology,2009,100(18):4139-4146.

    [22]Lemine O M,Omri K,Zhang B,et al.Sol-Gel Synthesis of 8 nm Magnetite (Fe3O4)Nanoparticles and Their Magnetic Properties[J].Superlattices and Microstructures,2012,52(4):793-799.

    [23]Tang N J,Zhong W,Jiang H Y,et al.Nanostructured Magnetite(Fe3O4)Thin Films Prepared by Sol-Gel Method[J].Journal of Magnetism and Magnetic Materials,2004,282:92-95.

    猜你喜歡
    興平
    Discreet investors exert greater influence on cooperation in the public goods game
    巴西僑商葉興平:寬厚養(yǎng)大氣,淡泊養(yǎng)志氣
    二次根式如何比較大小
    平行線易錯(cuò)點(diǎn)剖析
    肉丁
    有理數(shù)易錯(cuò)點(diǎn)剖析
    興平辣椒
    揭秘平均數(shù)和方差的變化規(guī)律
    肉丁
    小說月刊(2016年7期)2016-06-29 23:25:22
    揭開心算方根之謎
    成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 性色avwww在线观看| 国产成人欧美在线观看| 搡老熟女国产l中国老女人| 91久久精品电影网| 久久精品影院6| 午夜福利在线观看吧| 99久国产av精品| 少妇的逼水好多| 色哟哟哟哟哟哟| 99久久精品热视频| a在线观看视频网站| 亚洲avbb在线观看| 亚洲专区国产一区二区| 香蕉av资源在线| 欧美在线一区亚洲| 高清在线国产一区| 中文亚洲av片在线观看爽| 免费看a级黄色片| 床上黄色一级片| 国产亚洲精品久久久com| 欧美国产日韩亚洲一区| 精品福利观看| 久久精品国产清高在天天线| 禁无遮挡网站| 日日夜夜操网爽| 国产av一区在线观看免费| 亚洲午夜理论影院| 日本与韩国留学比较| a级毛片a级免费在线| 午夜精品久久久久久毛片777| 国产色爽女视频免费观看| 免费av不卡在线播放| eeuss影院久久| 深爱激情五月婷婷| 色av中文字幕| 麻豆成人av在线观看| 搡女人真爽免费视频火全软件 | 欧美+日韩+精品| 久久精品人妻少妇| 听说在线观看完整版免费高清| 熟女人妻精品中文字幕| 99久久99久久久精品蜜桃| 日韩免费av在线播放| 亚洲av成人av| 在现免费观看毛片| 麻豆一二三区av精品| 1000部很黄的大片| 日本精品一区二区三区蜜桃| 精品人妻熟女av久视频| 精品国内亚洲2022精品成人| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 极品教师在线视频| 亚洲av二区三区四区| 最新中文字幕久久久久| 一边摸一边抽搐一进一小说| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 色哟哟·www| 国产真实乱freesex| 啦啦啦观看免费观看视频高清| 亚洲中文字幕日韩| 国产高清视频在线观看网站| 老司机午夜十八禁免费视频| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 欧美日韩乱码在线| 亚洲男人的天堂狠狠| 婷婷亚洲欧美| 亚洲激情在线av| 久久午夜福利片| 色尼玛亚洲综合影院| 国产黄片美女视频| 亚洲激情在线av| 美女cb高潮喷水在线观看| 男女那种视频在线观看| 亚洲精品在线观看二区| 99久久无色码亚洲精品果冻| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 国产精品日韩av在线免费观看| 18禁黄网站禁片午夜丰满| 小蜜桃在线观看免费完整版高清| 久久国产乱子免费精品| 一区二区三区免费毛片| 精品国内亚洲2022精品成人| 村上凉子中文字幕在线| 日本 欧美在线| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 久9热在线精品视频| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| 18美女黄网站色大片免费观看| 高清在线国产一区| 中文字幕av成人在线电影| 欧美性猛交黑人性爽| 成年免费大片在线观看| 免费看光身美女| 久久这里只有精品中国| 日韩亚洲欧美综合| 亚洲一区二区三区不卡视频| 搡女人真爽免费视频火全软件 | 日韩欧美三级三区| 国产精品美女特级片免费视频播放器| 国产伦在线观看视频一区| 美女大奶头视频| 欧美zozozo另类| www.熟女人妻精品国产| 欧美日韩黄片免| 有码 亚洲区| 国产淫片久久久久久久久 | 久久久久久久久中文| 亚洲国产高清在线一区二区三| 久久国产乱子伦精品免费另类| 中文资源天堂在线| 日本撒尿小便嘘嘘汇集6| 老司机午夜福利在线观看视频| 中文在线观看免费www的网站| 看十八女毛片水多多多| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清| 国产成人aa在线观看| 国产高清三级在线| 亚洲成人免费电影在线观看| 亚洲av.av天堂| 亚洲aⅴ乱码一区二区在线播放| 女人被狂操c到高潮| 真人做人爱边吃奶动态| 在线天堂最新版资源| 久久久久久九九精品二区国产| 好男人电影高清在线观看| 无遮挡黄片免费观看| 美女免费视频网站| 久久精品国产清高在天天线| 国产午夜精品久久久久久一区二区三区 | 天堂√8在线中文| 长腿黑丝高跟| 一区福利在线观看| 日本 av在线| 国产精品自产拍在线观看55亚洲| 99在线视频只有这里精品首页| 又爽又黄无遮挡网站| 日本五十路高清| 免费电影在线观看免费观看| 在线观看美女被高潮喷水网站 | 久久久久久久亚洲中文字幕 | 国产精品久久久久久精品电影| 99在线人妻在线中文字幕| 99国产综合亚洲精品| 99热6这里只有精品| a级毛片a级免费在线| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 亚洲内射少妇av| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 亚洲国产高清在线一区二区三| 天堂动漫精品| 精品熟女少妇八av免费久了| 成人美女网站在线观看视频| 两个人的视频大全免费| АⅤ资源中文在线天堂| 欧美xxxx性猛交bbbb| 色综合婷婷激情| 亚洲成人免费电影在线观看| 此物有八面人人有两片| 香蕉av资源在线| 欧美一区二区国产精品久久精品| 久久久久久久精品吃奶| 国产精品精品国产色婷婷| 毛片女人毛片| 又爽又黄a免费视频| 国产精品电影一区二区三区| 18美女黄网站色大片免费观看| 亚洲精品影视一区二区三区av| 国产国拍精品亚洲av在线观看| 亚州av有码| 麻豆国产av国片精品| 中文字幕久久专区| 日本免费一区二区三区高清不卡| 亚洲内射少妇av| 无人区码免费观看不卡| 麻豆一二三区av精品| 久久精品人妻少妇| 色哟哟·www| 亚洲五月婷婷丁香| 男人和女人高潮做爰伦理| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | bbb黄色大片| 如何舔出高潮| 黄色日韩在线| 久久这里只有精品中国| 久久久久久大精品| 国产精品精品国产色婷婷| 一本一本综合久久| 午夜久久久久精精品| 亚洲电影在线观看av| 免费av毛片视频| 一区二区三区四区激情视频 | 国产综合懂色| 精品福利观看| 久久这里只有精品中国| 51午夜福利影视在线观看| aaaaa片日本免费| 18+在线观看网站| 我的老师免费观看完整版| 久久婷婷人人爽人人干人人爱| 亚洲黑人精品在线| 在线播放国产精品三级| 成人国产综合亚洲| 国产探花极品一区二区| 老熟妇仑乱视频hdxx| 97超视频在线观看视频| 嫩草影院新地址| 性欧美人与动物交配| 搞女人的毛片| 久久国产乱子伦精品免费另类| 欧美性感艳星| 亚洲国产色片| 一级毛片久久久久久久久女| 国产精品亚洲av一区麻豆| 精品99又大又爽又粗少妇毛片 | 国产乱人伦免费视频| 天堂动漫精品| 美女高潮的动态| 午夜两性在线视频| 亚洲av电影在线进入| 欧美日韩亚洲国产一区二区在线观看| 熟女电影av网| 国产精品爽爽va在线观看网站| 日韩欧美在线二视频| 精品人妻偷拍中文字幕| 亚洲av熟女| 亚洲三级黄色毛片| 亚洲欧美日韩无卡精品| 午夜老司机福利剧场| 国产av一区在线观看免费| av天堂中文字幕网| 美女免费视频网站| 免费看美女性在线毛片视频| 婷婷丁香在线五月| 又黄又爽又免费观看的视频| 亚洲片人在线观看| 国模一区二区三区四区视频| 性色av乱码一区二区三区2| 亚洲av日韩精品久久久久久密| 国模一区二区三区四区视频| 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 黄片小视频在线播放| 成人av在线播放网站| 一个人观看的视频www高清免费观看| 美女cb高潮喷水在线观看| 又黄又爽又刺激的免费视频.| 男人舔奶头视频| 最近最新免费中文字幕在线| 尤物成人国产欧美一区二区三区| 永久网站在线| 美女xxoo啪啪120秒动态图 | 中文字幕av在线有码专区| 看十八女毛片水多多多| 色噜噜av男人的天堂激情| 成人特级av手机在线观看| 久久午夜福利片| 给我免费播放毛片高清在线观看| 级片在线观看| 日本成人三级电影网站| 欧美潮喷喷水| 日韩欧美在线二视频| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久一区二区三区 | 国产黄a三级三级三级人| 欧美成人性av电影在线观看| 久久久久久久午夜电影| 国产三级在线视频| 欧美性感艳星| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 免费看a级黄色片| 久久久久久九九精品二区国产| 亚洲最大成人av| 99热这里只有精品一区| 三级男女做爰猛烈吃奶摸视频| 亚洲天堂av无毛| 在线观看av片永久免费下载| xxx大片免费视频| 热re99久久精品国产66热6| 久久这里有精品视频免费| 日韩欧美 国产精品| 亚洲欧美日韩卡通动漫| 日韩视频在线欧美| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 成年版毛片免费区| 大码成人一级视频| 久久99热6这里只有精品| 久久久久国产网址| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 我的老师免费观看完整版| 高清日韩中文字幕在线| 丝袜美腿在线中文| 精品一区二区三区视频在线| 国产v大片淫在线免费观看| www.av在线官网国产| 午夜福利在线观看免费完整高清在| 成人综合一区亚洲| 久久女婷五月综合色啪小说 | 日日啪夜夜爽| 久久久欧美国产精品| 麻豆久久精品国产亚洲av| 色哟哟·www| 国产亚洲一区二区精品| 国产欧美亚洲国产| 久久精品久久久久久噜噜老黄| 欧美激情在线99| 性色av一级| 精品少妇久久久久久888优播| 97精品久久久久久久久久精品| 亚洲性久久影院| 成人亚洲精品av一区二区| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 亚洲人与动物交配视频| 91狼人影院| 国产成年人精品一区二区| 一级av片app| 亚洲国产高清在线一区二区三| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久电影| 成人漫画全彩无遮挡| 直男gayav资源| 黄色日韩在线| 精品国产露脸久久av麻豆| 亚洲av二区三区四区| 一边亲一边摸免费视频| 性色av一级| 插逼视频在线观看| 久久久久久久午夜电影| 亚洲图色成人| 精品人妻偷拍中文字幕| 能在线免费看毛片的网站| 午夜精品一区二区三区免费看| 22中文网久久字幕| 国产免费一区二区三区四区乱码| 人人妻人人爽人人添夜夜欢视频 | 午夜激情久久久久久久| 一本一本综合久久| 日韩在线高清观看一区二区三区| 国产综合懂色| 亚洲精品国产av蜜桃| 肉色欧美久久久久久久蜜桃 | 18禁动态无遮挡网站| 国产av码专区亚洲av| a级毛片免费高清观看在线播放| 成年av动漫网址| 汤姆久久久久久久影院中文字幕| 天天躁日日操中文字幕| av专区在线播放| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的 | 亚洲精品影视一区二区三区av| 又黄又爽又刺激的免费视频.| 观看免费一级毛片| 亚洲欧洲日产国产| 久久6这里有精品| 日韩电影二区| 3wmmmm亚洲av在线观看| 亚洲欧美一区二区三区国产| 久久久久久久久久久免费av| 日韩欧美精品v在线| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频 | 麻豆久久精品国产亚洲av| 嫩草影院精品99| av在线app专区| 婷婷色麻豆天堂久久| 97热精品久久久久久| 欧美潮喷喷水| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 人妻一区二区av| 草草在线视频免费看| a级毛色黄片| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久av不卡| 精品国产露脸久久av麻豆| 3wmmmm亚洲av在线观看| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 1000部很黄的大片| 精品久久久久久电影网| 男女边吃奶边做爰视频| 日本午夜av视频| 少妇人妻久久综合中文| 啦啦啦中文免费视频观看日本| 大香蕉97超碰在线| 极品少妇高潮喷水抽搐| 黄色一级大片看看| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 国产淫语在线视频| 欧美日韩在线观看h| 久久ye,这里只有精品| 一个人观看的视频www高清免费观看| 久久人人爽人人片av| 国产高清三级在线| 国产黄片美女视频| 国产精品福利在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久精品欧美日韩精品| 午夜福利视频1000在线观看| 女人被狂操c到高潮| 成人欧美大片| 亚洲成色77777| 亚洲怡红院男人天堂| 一区二区三区四区激情视频| 免费在线观看成人毛片| 在线观看一区二区三区激情| 国产伦在线观看视频一区| 一区二区三区精品91| 大码成人一级视频| 联通29元200g的流量卡| 又黄又爽又刺激的免费视频.| 日韩av在线免费看完整版不卡| 午夜福利视频精品| 日日啪夜夜爽| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品自产自拍| 国产成人福利小说| 欧美日韩亚洲高清精品| 精品熟女少妇av免费看| 欧美一区二区亚洲| 香蕉精品网在线| 国产精品.久久久| 亚洲精品乱久久久久久| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花 | 大陆偷拍与自拍| 亚洲伊人久久精品综合| 一区二区三区免费毛片| av在线app专区| 国产永久视频网站| 成人免费观看视频高清| 日本黄大片高清| 中国国产av一级| 晚上一个人看的免费电影| 亚洲第一区二区三区不卡| 精品一区在线观看国产| 亚洲人成网站在线播| 免费观看在线日韩| 久久久精品欧美日韩精品| 高清在线视频一区二区三区| 亚洲精品日韩在线中文字幕| 日韩免费高清中文字幕av| 国产欧美亚洲国产| 免费大片18禁| av专区在线播放| 哪个播放器可以免费观看大片| 欧美成人a在线观看| 高清毛片免费看| 欧美最新免费一区二区三区| 黑人高潮一二区| 少妇 在线观看| 日韩国内少妇激情av| 美女主播在线视频| 日日摸夜夜添夜夜爱| 免费少妇av软件| 久久99蜜桃精品久久| 激情 狠狠 欧美| 亚洲欧美日韩另类电影网站 | 少妇人妻久久综合中文| 国产 精品1| 亚洲无线观看免费| 精品国产三级普通话版| 老司机影院成人| 久久久久国产网址| 97超视频在线观看视频| 国产 精品1| 国产成人精品福利久久| 免费不卡的大黄色大毛片视频在线观看| 高清欧美精品videossex| 国产成人a区在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 别揉我奶头 嗯啊视频| 肉色欧美久久久久久久蜜桃 | 精品99又大又爽又粗少妇毛片| 少妇高潮的动态图| 国产精品国产三级国产av玫瑰| 国产淫片久久久久久久久| 97超碰精品成人国产| 少妇丰满av| 亚洲av免费高清在线观看| 一级毛片aaaaaa免费看小| 国产午夜精品久久久久久一区二区三区| 午夜亚洲福利在线播放| 亚洲不卡免费看| 欧美精品人与动牲交sv欧美| 最近中文字幕高清免费大全6| 中文字幕人妻熟人妻熟丝袜美| 91久久精品电影网| 亚洲精品久久午夜乱码| 亚洲人成网站在线播| 美女脱内裤让男人舔精品视频| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 熟女av电影| 久久99热这里只有精品18| 久久久久国产精品人妻一区二区| 99久久九九国产精品国产免费| 在线观看三级黄色| 美女高潮的动态| 国产男女超爽视频在线观看| 超碰av人人做人人爽久久| 老师上课跳d突然被开到最大视频| 2021天堂中文幕一二区在线观| 男男h啪啪无遮挡| 精品一区二区三卡| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看 | 一级毛片我不卡| 国产伦在线观看视频一区| 2018国产大陆天天弄谢| 又黄又爽又刺激的免费视频.| 亚洲怡红院男人天堂| 在线亚洲精品国产二区图片欧美 | 久久久精品欧美日韩精品| 国产高清三级在线| 一级片'在线观看视频| 最近最新中文字幕大全电影3| 视频区图区小说| 女人被狂操c到高潮| 日韩av在线免费看完整版不卡| 亚洲国产色片| 亚洲av日韩在线播放| 一区二区三区乱码不卡18| 黄色一级大片看看| 欧美zozozo另类| 欧美人与善性xxx| 欧美性感艳星| 午夜免费观看性视频| 亚洲国产欧美在线一区| av在线app专区| av免费在线看不卡| 亚洲美女搞黄在线观看| 国内揄拍国产精品人妻在线| 青春草国产在线视频| 男女啪啪激烈高潮av片| 2021少妇久久久久久久久久久| 人体艺术视频欧美日本| 亚洲精品影视一区二区三区av| 十八禁网站网址无遮挡 | 成人一区二区视频在线观看| 精品久久国产蜜桃| 国产精品国产av在线观看| 国产亚洲91精品色在线| 久久精品熟女亚洲av麻豆精品| 在线观看三级黄色| 男女无遮挡免费网站观看| 最近最新中文字幕免费大全7| 国产91av在线免费观看| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 久久久久久九九精品二区国产| 久久久久九九精品影院| 日本-黄色视频高清免费观看| 国语对白做爰xxxⅹ性视频网站| .国产精品久久| 久久久久九九精品影院| 亚洲第一区二区三区不卡| 在线免费十八禁| 天天躁夜夜躁狠狠久久av| 中文乱码字字幕精品一区二区三区| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| freevideosex欧美| 日韩一区二区三区影片| 免费高清在线观看视频在线观看| 成年免费大片在线观看| 免费高清在线观看视频在线观看| 麻豆乱淫一区二区| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| av国产免费在线观看| 香蕉精品网在线| 少妇人妻 视频| 夜夜爽夜夜爽视频| 各种免费的搞黄视频| 99热这里只有是精品50| 国产男女内射视频| 国产精品国产av在线观看| 国产黄片视频在线免费观看| 精品酒店卫生间| 18禁裸乳无遮挡免费网站照片|