• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Serial of Applications of Satellite Observations An Introduction to Hyper-spectral Infrared Sounders Onboard Polar-orbiting Meteorological Satellites

    2015-12-20 07:03:14YinMengtaoZouXiaoleiDepartmentofEarthOceanandAtmosphericScienceFloridaStateUniversityUSACenterofDataAssimilationforResearchandApplicationNanjingUniversityofInformationandScienceTechnologyNanjing0044
    關(guān)鍵詞:單位向量波束寬度經(jīng)度

    Yin Mengtao Zou Xiaolei,( Department of Earth, Ocean and Atmospheric Science, Florida State University, USA  Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 0044)

    Serial of Applications of Satellite ObservationsAn Introduction to Hyper-spectral Infrared Sounders Onboard Polar-orbiting Meteorological Satellites

    Yin Mengtao1Zou Xiaolei1,2
    (1Department of Earth, Ocean and Atmospheric Science, Florida State University, USA 2Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 210044)

    Polar-orbiting meteorological satellites circulate above the Earth at about 800-km altitude, completing 14 orbits daily. A single orbit takes about 100 minutes. Each polar-orbiting satellite provides observations on the so-called descending (ascending) node when moving from north (south) to south (north). The local time for all the descending nodes to cross the equator remains constant for a fixed polar-orbiting satellite, although their longitudes are different. The same is true of ascending nodes. Different from a geostationary satellite that provides temporally continuous observations within a limited spatial and spectral domain[1], a polar-orbiting meteorological satellite can provide global coverage in multiple visible, infrared and microwave bands twice daily. Observations from polar-orbiting meteorological satellites have played important roles in numerical weather prediction (NWP), climate study and product retrieval of meteorological variables.

    Polar-orbiting meteorological satellites with infrared sounders onboard are launched into early-morning, morning and afternoon orbits. The descending nodes of early-morning and morning orbits pass the equator at about 6:00 AM and 10:00 AM local equatorial crossing time (LECT), respectively. The LECT of ascending nodes of afternoon orbits is at about 1:00 PM local time①. National Oceanic and Atmospheric Administration (NOAA) started its Polar Orbiting Environmental Satellite (POES) series in 1978. NOAA-13 failed to operate in an afternoon orbit. NOAA-6/8/10/12/15 are earlymorning satellites. NOAA-17 is a morning satellite. The remaining NOAA POES, including NOAA-18/19 and Suomi NPP, are afternoon satellites. Other countries also operated polar-orbiting meteorological satellites. Other countries also operated polar-orbiting meteorological satellites. Two morning-orbiting satellites MetOp-A/ B has been launched by European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) since 2006. The Chinese Fengyun-3 (FY-3) polar-orbiting meteorological satellite series started from 2008 on. FY-3A/B are experimental meteorological satellites, and FY-3C is an operational meteorological satellite. FY-3A/C are morning satellites and were launched in May 2008 and September 2013, respectively. FY-3B is an afternoon satellite and was launched in November 2010. China plans to launch an early-morning-orbiting satellite, FY-3E, in 2018. By then, the FY-3 satellites will provide global observations with three different orbits, i.e., early-morning, morning and afternoon orbits. Table 1 provides a list of the current operational polar-orbiting meteorological satellites with their launch dates, infrared sounders, status and agencies.

    The first High-resolution Infrared Radiometer Sounder (HIRS) was onboard Nimbous-6 satellite, which was launched in 1975. HIRS had 16 infrared channels and one visible channel. The follow-up HIRS instruments, HIRS/2/3/4 onboard the NOAA-6 to 19 had 19 infrared and one visible channel. Table 2 lists the central wavenumbers and the bandwidth at each channel of the first HIRS and HIRS/2/3/4. It is seen that the 1219.51 cm-1channel of the first HIRS was removed from HIRS/2/3/4. Four new infrared channels were added to HIRS/2/3/4 with their central wavenumbers at801.92, 1029.87, 1364.26 and 2500.00 cm-1, respectively.

    Hyper-spectral infrared sounders, include Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration (NASA) Aqua satellite since 2002, Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp-A/B satellite, and Cross-track Infrared Sounder (CrIS) onboard Suomi NPP satellite since 2010, represent the advancement in infrared sounding technology. The spectral resolutions of AIRS, IASI and CrIS are much higher than HIRS instruments. AIRS has 2378 channels covering a spectral range from 650 to 2700 cm-1. IASI provides radiance measurements with 8461 channels that are located in a spectral range from 600 to 2800cm-1. CrIS provides radiance measurements at a total of 1305 channels, which are divided into longwave (650 to 1095 cm-1), midwave(1210 to 1750 cm-1) and shortwave (2155 to 2550 cm-1) bands②. HIRS/2/3/4 only provide radiance measurements at 19 channels from 650 to 2700 cm-1. The above three hyper-spectral infrared sounders have different spectral resolutions. The spectral resolution (Δν) of AIRS increases with increasing central wavenumber (ν) and is inversely proportional to a constant spectral resolving power (R)[2], i.e.:

    where R=1200. IASI has a constant spectral resolution of 0.25cm-1over its entire observing spectral range. CrIS has a constant spectral resolution at each of its three spectral bands. The spectral resolutions of longwave, midwave and shortwave bands are 0.625, 1.25and 2.5 cm-1, respectively. The full spectral resolution (FSR) mode allows CrIS to have a spectral resolution of 0.625 cm-1over the full spectral range of CrIS[3]. The spectral resolution of CrIS shortwave band is much coarser than that of the corresponding IASI band. It was found to be difficult to apply the absolute frequency calibration in the CrIS shortwave band by employing IASI shortwave observations during the post-launch period due to the differences of spectral resolutions between two instruments[4]. By utilizing the FSR mode, the absolute frequency calibration in the CrIS shortwave band becomes straightforward using IASI[5].

    CrIS is the newest hyper-spectral infrared sounder and will be taken as an example for further discussions. CrIS is a cross-track scanning instrument. A single scanline of CrIS consists of 30 fields of regard (FORs), with each FOR consisting of nine fields of view (FOVs). As the satellite Suomi NPP moves in the along-track direction from South to North, the hyper-spectra infrared sounder CrIS observed 30 FORs in the cross-track direction from West to East. The horizontal resolution of CrIS observations is determined mainly by the beam width. The scan angle and the altitude of satellite also have an impact on CrIS data resolution. The beam width for CrIS is 0.963°, corresponding to an FOV with a 14-km diameter at nadir. The sizes and distributions of FOVs and FORs along a single scanline of CrIS near the equator are shown in Figure 1. The footprints of the FOV and the FOR in the figure were calculated based on the center longitude and latitude of a particular FOV, the beam width as well as the zenith angle, the azimuth angle and the altitude of Suomi NPP satellite. A detailed description of the mathematical formula for the calculation of FOR and FOV sizes can be found in the appendix. From Figure 1 it is seen that the sizes of the FOV and the FOR increase with scan angle, confirming that the horizontal resolution of CrIS observations is the highest at nadir and decreases with an increasing scan angle.An overlap is found for CrIS FOVs with large scan angles in the cross-track direction. An enlarged view of the nine FOVs for FORs 1, 15 and 30 in Figure 1 are displayed in Figure 2. FOV 5 isthe center FOV, FOVs 1, 3, 7 and 9 arecorner FOVs, and the FOVs 2, 4, 6 and 8 areside FOVs[3].The corner and side FOVs rotate around the center FOV counter-clockwise from the west to the east for a single scanline. It is reminded that there is no overlap between neighboring FOVs within a single FOR.

    The cross-track and along-track diameters of the nine FOVs along the same scanline of CrIS in Figure 1 are provided in Figure 3. It is worth noticing that the crosstrack diameters of the nine FOVs increase with scan angle more greatly than the along-track diameters. The crosstrack diameters are slightly smaller than the along-track diameters at nadir due to a larger latitudinal distortion of the nine FOVs in the along-track direction. The latitudinal distortion is caused by the larger radius of the Earth at the equator (6378.1 km) than at the pole (6356.8 km). It leads to a higher altitude of the Suomi NPP satellite at higher latitudes than low latitudes such that the FOV observed by the CrIS instrument is larger at higher latitudes. At the largest scan angle, the minimum cross-track and maximum along-track diameter of the FOVs is about 39 and 25 km, respectively.

    Similar to CrIS, all HIRS series and AIRS are crosstrack scanning instruments. There are 42 FOVs and 56 FOVs along a single scanline of the first HIRS and HIRS/2/3/4, respectively. The total number of FOVs for a single scanline of AIRS is 90. It is worth noticing that the horizontal resolution of each generation of HIRS series is different. The horizontal resolution of the first HIRS and HIRS/2 at nadir is 25 and 17.7 km, respectively. The horizontal resolution of visible and infrared shortwave channels of HIRS/3 at nadir is 20.3 km, and that of infrared longwave channels of HIRS/3 is 18.9 km. The nadir resolution of HIRS/4 is 10 km, nearly twice as high as that of the other HIRS instruments. The nadir resolution of AIRS is 13.5 km. A comparison of sizes and distributions of FOVs among AIRS, CrIS and infrared longwave channels of HIRS/3 near nadir is provided in Figure 4. At the same scan angle, the FOV size is the largest for the infrared longwave channels of HIRS/3, the smallest for AIRS, and moderate for CrIS. Differences in FOV sizes of the infrared longwave channels among HIRS/3, AIRS and CrIS arise mainly from differences in the beam widths of the three instruments as well as the altitudes of the corresponding satellite platforms. The beam widths for HIRS/3, AIRS and CrIS are 1.3, 1.1 and0.963°. The altitude of Aqua satellite with AIRS onboard is 705 km, while the altitude of Suomi NPP satellite with CrIS onboard is 834 km. Although the beam width for AIRS is larger than that for CrIS, the FOV size for AIRS is smaller than that for CrIS due to a lower altitude of Aqua than that of Suomi NPP. Near nadir, no overlaps occur between neighboring FOVs for the three instruments in both cross-track and along-track directions. A large space between neighboring FOVs for the infrared longwave channels of HIRS/3 exists in both the cross-track and alongtrack directions. A small space between neighboring FOVs is observed in cross-track directions for AIRS and both cross-track and along-track directions for CrIS.

    Under clear-sky conditions, the measured infrared radiance comes from a specific volume of the atmosphere, which is determined by the beam width, the weighting function, and the observing time period. A single CrIS FOR consisting of nine FOVs takes about 0.2 s to observe[3]. As is mentioned above, CrIS provide radiance observations at 1305 channels in the spectral range of 655-2550 cm-1. The radiance observations may come from different atmospheric volumes with significant overlaps. Hence, the radiance observations of CrIS full spectral range contain significantly redundant and thus correlated information. In NWP, a channel selection becomes necessary for CrIS data assimilation in order to avoid error correlations between different channels and to reduce the computational expense. The channel selection for CrIS has two main principles: select channels with high sensitivity to a certain atmospheric species and high vertical resolution. The former is to effectively reduce the redundancy between different channels and the latter is to maximize the vertical resolution of the retrieval product[6]. The vertical resolution of CrIS observations is determined by the weighting function of each channel. The narrower the weighting function is, the higher the vertical resolution is for a specific channel. The atmosphere at the altitude of weighting function peak contributes most to the radiance observed by that channel[7]. The weighting functions of different channels reach the maximum at different altitudes, which is the basis for retrieving the vertical profiles of atmospheric species. In addition, the vertical observing range of channels is also considered in the channel selection for CrIS. Gambacorta et al.[6]select a total of 399 CrIS channels for applications in NWP data assimilation system. This subset of CrIS channels includes 24 surface temperature, 87 temperature, 62 water vapor, 53 ozone, 27 carbon monoxide, 54 methane, 52 carbon dioxide, 24 N2O, 28 HNO3and 24 SO2sounding channels. Figure 5 presents the weighting function profiles of CrIS longwave infrared, shortwave infrared, water vapor and surface temperature channels calculated by the Community Radiative Transfer Model (CRTM)[8]under the US standard atmosphere. The infrared longwave, midwave and shortwave channels are indicated in blue, green and red colors, respectively. Figure 6 provides the distributions of altitudes of weighting function peaks for the 399 CrIS channels. It is seen that temperature channels are distributed in longwave and shortwave bands. The infrared longwave temperature channels (660 to 750 cm-1) are arranged compactly from 1000 to 10 hPa, providing the vertical profile of atmospheric temperature with high vertical resolution. The infrared shortwave temperature channels (2200 to 2420 cm-1) are arranged in a similar pattern to infrared longwave temperature channels but more compactly in the vertical range of 60 to 10 hPa, which can provide more information about the upper atmospheric temperature. Ozone channels are distributed over the spectral range of 990 to 1070 cm-1. The strong vibrational absorption band of ozone is near1041.67 cm-1. About 90% ozone is concentrated in the stratosphere within the altitude range from 10 to 50 km, and the remaining 10% ozone is concentrated near the Earth’s surface③. Water vapor channels are distributed over the following two spectral ranges: 780-1210 cm-1and 1310-1750 cm-1. The longwave water vapor channels (780 to 1210 cm-1) can provide the water vapor information near the surface. The midwave water vapor channels (1310 to 1750 cm-1) are arranged compactly in the vertical range from 800to 200 hPa, enabling the vertical profiling of the atmospheric water vapor. Surface temperature channels are distributed over two spectral ranges of 770-1095 cm-1and 2460-2540 cm-1. It is worth mentioning that the infrared shortwave surface temperature channels (2460 to 2540 cm-1) are not used in the National Centers for Environmental Prediction (NCEP) NWP systems due to a potential contamination of sun glint[9].

    Hurricane Sandy made landfall at Cuba at 0600 UTC October 25, 2012. The sea level pressure and sea surface temperature of NCEP Final (FNL) global analysis at the same time is presented in Figure 7a. The observed brightness temperature of CrIS infrared longwave surface temperature channel 79 from the descending node of Suomi NPP at the same time is provided in Figure 7b and 7c. It is found that Hurricane Sandy is located over a warm sea surface with a low-pressure center of less than 998 hPa (Figure 7a). Compared to microwave, the wavelength of infrared is shorter, implying that the infrared radiance is attenuated in clouds more quickly. If the cloud has a large optical depth, the radiance measuredby CrIS channel 79 mainly comes from the cloud top, otherwise from the Earth surface.The brightness temperatures over cloudy areas are as low as 195 K, while those over clear-sky areas can reach up to 295 K (Figure 7b). A warm anomaly is observed near the Sandy center. The brightness temperatures in Hurricane Sandy’s eye are as high as 260 K, in a great contrast to those in the neighboring environment of lower than 200 K. It reflects a typical warm core structure in the hurricane center with thick clouds within and outside the eye wall. Figure 8a presents the weighting function distributions of 11 CrIS infrared longwave temperature channels. The cross section of brightness temperatures for these 11 CrIS infrared longwave temperature channels through the hurricane center in the along-track direction from the ascending node of Suomi NPP at 0600 UTC October 25, 2012 is provided in Figure 8b. It is seen that the brightness temperature reaches the maximum at the surface within the eye. The brightness temperature difference between the hurricane center and the nearby environment is as high as 60 K. The horizontal and vertical structures of Hurricane Sandy are well captured by CrIS infrared longwave temperature channels.

    The prior hyper-spectral infrared sounders including AIRS and IASI have been widely used in NWP data assimilation system. McNally et al.[10]designed two experiments to explore the impact of AIRS data assimilation using only clear-sky observations. One experiment was to assimilate the clear-sky radiance from a single instrument (AIRS, HIRS and AMSU-A) in the ECMWF four-dimensional variational data assimilation system. AIRS data assimilation was found to outperform the assimilation of data from other two instruments with lower spectral resolutions (HIRS and AMSU-A).Another experiment was to add AIRS clear-sky observations into the ECMWF operational data assimilation system. It was found that AIRS had a positive impact on ECMWF operational forecasts. Guidard et al.[11]studied the impact of IASI data assimilation using both clear-sky and cloudy observations. The IASI clear-sky measurements were found to improve the model forecasts, while the IASI cloudy measurements had a neutral influence on the model forecasts due to the shortage of an effective method which can retrieve cloud parameters of high precision. The applications of the newest hyper-spectral infrared sounder (CrIS) in NWP have not yet to be demonstrated. On the other hand, all three hyper-spectral infrared sounders have been applied in the retrieval of meteorological variables and climate research. The AIRS/Advanced Microwave Sounding Unit (AMSU) retrieval product processing system has been running since 2002. IASI, AMSU and Microwave Humidity Sounder (MHS) have constituted the trace gas product processing system since 2008. The CrIS/Advanced Technology Microwave Sounder (ATMS) processing system has been operational since 2013. Gambacorta et al.[12]compared the accuracy of retrieval products from AIRS/AMSU, IASI/AMSU/MHS and CrIS/ATMS systems using NOAA Center for Satellite Applications and Research (STAR) Operational Hyper Spectral Retrieval Algorithm. Their results showed that the CrIS/ATMS system could provide vertical profiles of atmospheric temperature and water vapor with the same accuracy as those from the other two retrieval systems, except for the temperature in the lower troposphere and the water vapor in the middle troposphere. Under the FSR mode, which enables high spectral resolution of 0.625 cm-1across the full spectral range of CrIS, the vertical profile of carbon monoxide provided by CrIS/ATMS system is comparable in accuracy to the existing carbon monoxide retrievals from AIRS/AMSU and IASI/AMSU/MHS systems. In summary, the CrIS/ATMS processing system already satisfies the requirements for meteorological product retrieval and climate research. The values of CrIS hyper-spectral infrared radiance measurements and their retrieval products in NWP and climate research could be fully realized only when significant improvements in bias correction, quality control and cloud detection and retrieval algorithm for CrIS measurements are made.

    注釋

    ① http://nsmc.cma.gov.cn/NewSite/NSMC/Channels/100351.html

    ② http://www.wmo-sat.info/oscar/instruments/view/93

    ③ http://www.ozonelayer.noaa.gov/science/basics.htm

    ④http://www.nasa.gov/mission_pages/hurricanes/archives/2012/ h2012_Sandy.html#4

    [1]達(dá)成, 鄒曉蕾. GOES成像儀資料簡介. 氣象科技進(jìn)展, 2014, 4(4): 52-61.

    [2]Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens, 2003, 41: 253-264.

    [3]Han Y, Revercomb H, Cromp M, et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J Geophys Res Atmos, 2013, 118: 12734-12748.

    [4]Strow L L,Motteler H,Tobin D, et al. Spectral calibration and validation of the Cross-track Infrared Sounder (CrIS) on the Suomi NPP satellite. J Geophys Res Atmos, 2013, 118: 12486-12496.

    [5]Esplin M, Strow L L, Bingham G, et al. CrIS full spectral resolution test results. 92nd AMS Annual Meeting, New Orleans, LA, January 2012.

    [6]Gambacorta A, Barnet C D. Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans Geosci Remote Sens, 2013, 51: 3207-3216.

    [7]Petty G W. A First Course in Atmospheric Radiation. Madison,Wisconsin: Sundog Publishing, 2006.

    [8]Weng F. Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci, 2007, 64: 3799-3807.

    [9]Chen Y, Han Y, Delst P V, et al. Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the community radiative transfer model using IASI data. J Atmos Oceanic Technol, 2013, 30: 2152-2160.

    [10]McNally A P, Watts P D, Smith J A, et al. The assimilation of AIRS radiance data at ECMWF. Q J R Meteorol Soc, 2006, 132: 935-957.

    [11]Guidard V, Fourrié N, Brousseau P, et al. Impact of IASI assimilation at global and convective scales and challenges for the assimilation of cloudy scenes. Q J R Meteorol Soc, 2011, 137: 1975-1987.

    [12]Gambacorta A, Barnet C D, Wolf W, et al. The NOAA Operational Hyper Spectral Retrieval Algorithm: A crosscomparison among the CrIS, IASI and AIRS processing systems. International TOVS Study Conference. Jeju Island, Korea, March 2014.

    附錄

    已知CrIS瞬時(shí)視場中心(P)的經(jīng)度λP、緯度φP、儀器波束寬度ω及Suomi NPP衛(wèi)星(S)天頂角μs、方位角φs、與地球之間的距離h。將φP轉(zhuǎn)換為地心緯度(geocentric latitude)γP:

    式中,α是地球的扁率,它與地球赤道半徑(ra)和極地半徑(rb)的關(guān)系為:

    地球中心由O表示,已知γP,可求出O與P之間的距離(dOP):

    進(jìn)一步利用λP可求出P點(diǎn)在笛卡爾坐標(biāo)系里的三維坐標(biāo)即向量OP:

    已知dOP、γP、μs、h,可利用正弦定理求出S與P之間的距離(dPS):

    rOP為向量OP的單位向量,還已知μs、φs,利用旋轉(zhuǎn)矩陣可求出單位向量rPS:

    已知向量OS、OP,可求出向量SP和單位向量rSP,還已知ω,利用旋轉(zhuǎn)矩陣可求出單位向量rSF1,F(xiàn)1為瞬時(shí)視場軌跡上一點(diǎn):

    S點(diǎn)與F1點(diǎn)的距離為dSF1,則:

    F1點(diǎn)在地球表面,滿足橢球體公式:

    整理(11),可得:

    式(12)為dSF1的一元二次方程。若方程有兩個(gè)不同實(shí)數(shù)解,取較小值;若方程有兩個(gè)相同實(shí)數(shù)解,取該值;若方程無解,則向量OF1不與地球表面相交。進(jìn)一步可求出F1的緯度φF1和經(jīng)度λF1。利用旋轉(zhuǎn)矩陣將rSF1繞SP逆時(shí)針旋轉(zhuǎn)度=10i,i=1,2,3,…,36)可求出單位向量rSFi:

    再根據(jù)式(9)-(12)可算出dSFi,進(jìn)一步可求出Fi的緯度φFi和經(jīng)度λFi。

    每9個(gè)CrIS瞬時(shí)視場組成一個(gè)CrIS能視場。每個(gè)能視場內(nèi),瞬時(shí)視場5被稱為中心瞬時(shí)視場,瞬時(shí)視場1、3、7、9被稱為對角瞬時(shí)視場。已知OS、OP、OPj(j=1,3,7,9),可求出SP5和SPj,進(jìn)一步可求出能視場對應(yīng)的波束寬度θ:

    已知SP5和θ,可求出單位向量rSP5,再根據(jù)式(7)-(12)可求出能視場軌跡的緯度和經(jīng)度

    猜你喜歡
    單位向量波束寬度經(jīng)度
    巧用四步法 妙解地方時(shí)
    巧用四步法 妙解地方時(shí)
    聚焦單位向量的常見題型
    毫米波信道中波束成形矢量的波束寬度
    CINRAD/SA雷達(dá)天饋系統(tǒng)關(guān)鍵參數(shù)測量方法研究
    單位向量用途大
    可編程超聲波測距系統(tǒng)的設(shè)計(jì)
    科技視界(2018年9期)2018-07-27 11:28:30
    基于調(diào)度間隔與波束寬度良好匹配的最優(yōu)V2V毫米波通信
    汽車文摘(2017年9期)2017-12-06 05:09:19
    不容忽視的基本概念—單位向量
    平分集與球面的交集的連通性及其應(yīng)用
    免费观看人在逋| 色综合色国产| 你懂的网址亚洲精品在线观看 | www.色视频.com| 男女边吃奶边做爰视频| 欧美激情在线99| 欧美在线一区亚洲| 蜜臀久久99精品久久宅男| av在线亚洲专区| 国产色爽女视频免费观看| 最近的中文字幕免费完整| 亚洲成人久久爱视频| 欧美zozozo另类| 欧美人与善性xxx| 国内精品久久久久精免费| 午夜久久久久精精品| 老师上课跳d突然被开到最大视频| 精品久久久久久成人av| 亚洲人成网站在线播| 成年av动漫网址| 好男人在线观看高清免费视频| 午夜老司机福利剧场| 好男人视频免费观看在线| 中国美女看黄片| 禁无遮挡网站| 精品一区二区三区视频在线| 国产高清视频在线观看网站| 色哟哟哟哟哟哟| 国产精品野战在线观看| 精品欧美国产一区二区三| 成年女人永久免费观看视频| 亚洲av免费在线观看| 久久久精品欧美日韩精品| 一个人免费在线观看电影| 有码 亚洲区| 亚州av有码| 波野结衣二区三区在线| 午夜免费男女啪啪视频观看| 美女被艹到高潮喷水动态| av在线老鸭窝| 午夜免费男女啪啪视频观看| 亚洲国产日韩欧美精品在线观看| 老师上课跳d突然被开到最大视频| 欧美另类亚洲清纯唯美| 桃色一区二区三区在线观看| 免费黄网站久久成人精品| 青春草国产在线视频 | 精品久久久噜噜| 在线免费十八禁| 一级黄片播放器| АⅤ资源中文在线天堂| 特级一级黄色大片| 国产单亲对白刺激| 国产乱人偷精品视频| 亚洲四区av| 国产高清有码在线观看视频| 一级毛片电影观看 | 精品不卡国产一区二区三区| 亚洲精品久久久久久婷婷小说 | av女优亚洲男人天堂| 日本免费一区二区三区高清不卡| 午夜视频国产福利| 尾随美女入室| 大又大粗又爽又黄少妇毛片口| 欧美最黄视频在线播放免费| 日日干狠狠操夜夜爽| 一边摸一边抽搐一进一小说| 日本爱情动作片www.在线观看| 色吧在线观看| 免费看美女性在线毛片视频| 色播亚洲综合网| 午夜福利在线观看吧| 欧美一区二区亚洲| 欧美一区二区亚洲| 午夜亚洲福利在线播放| 18禁在线播放成人免费| 亚洲欧洲日产国产| 精品久久久久久久末码| 好男人在线观看高清免费视频| 一级毛片我不卡| a级毛片a级免费在线| 亚洲欧美中文字幕日韩二区| 国产日本99.免费观看| 久久国内精品自在自线图片| 搡老妇女老女人老熟妇| 国产一区亚洲一区在线观看| 别揉我奶头 嗯啊视频| 中文字幕免费在线视频6| 亚洲国产精品久久男人天堂| 级片在线观看| 亚洲精品色激情综合| 欧美日韩在线观看h| av在线观看视频网站免费| 欧美日韩综合久久久久久| 亚洲精品自拍成人| 亚洲激情五月婷婷啪啪| 少妇高潮的动态图| 亚洲三级黄色毛片| 亚洲va在线va天堂va国产| 亚洲成a人片在线一区二区| 91精品国产九色| 国产亚洲av片在线观看秒播厂 | 丝袜美腿在线中文| 亚洲aⅴ乱码一区二区在线播放| 99热6这里只有精品| 国产高清三级在线| 亚洲一区二区三区色噜噜| 国产精品一区二区在线观看99 | 国产伦精品一区二区三区视频9| 国产午夜精品论理片| 中文字幕制服av| 嫩草影院精品99| 国内少妇人妻偷人精品xxx网站| 看黄色毛片网站| 亚洲在线自拍视频| 非洲黑人性xxxx精品又粗又长| 亚洲一级一片aⅴ在线观看| 国产精品国产高清国产av| 久久99热6这里只有精品| 久久久久网色| 18禁在线播放成人免费| 最近视频中文字幕2019在线8| 99九九线精品视频在线观看视频| 免费大片18禁| 中文精品一卡2卡3卡4更新| 国产一区二区在线观看日韩| 亚洲av中文av极速乱| 国产一级毛片七仙女欲春2| 国产精品麻豆人妻色哟哟久久 | 成人午夜精彩视频在线观看| 午夜精品国产一区二区电影 | 日日撸夜夜添| 一个人观看的视频www高清免费观看| 高清毛片免费看| 国产黄片美女视频| 亚洲18禁久久av| 国产真实乱freesex| 一级毛片aaaaaa免费看小| 日韩一本色道免费dvd| 哪里可以看免费的av片| 国产亚洲欧美98| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 国产成人a∨麻豆精品| 国产中年淑女户外野战色| 黄色视频,在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲自偷自拍三级| 99久久精品热视频| 寂寞人妻少妇视频99o| 亚洲,欧美,日韩| 一个人看视频在线观看www免费| 成人三级黄色视频| 一本久久中文字幕| 日韩成人伦理影院| www.色视频.com| 国产亚洲精品久久久com| 啦啦啦韩国在线观看视频| 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 成人综合一区亚洲| 亚洲成人中文字幕在线播放| 亚洲四区av| 精品久久久久久久人妻蜜臀av| 此物有八面人人有两片| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 国产成年人精品一区二区| 亚洲国产精品成人久久小说 | 久久久成人免费电影| 中国国产av一级| 欧美一区二区精品小视频在线| 欧美成人免费av一区二区三区| 男人和女人高潮做爰伦理| 亚洲最大成人手机在线| 美女xxoo啪啪120秒动态图| 国国产精品蜜臀av免费| 最近手机中文字幕大全| 欧美日本视频| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 只有这里有精品99| 亚洲精品影视一区二区三区av| 国产高清三级在线| 97人妻精品一区二区三区麻豆| 日韩高清综合在线| 国产伦理片在线播放av一区 | 99热6这里只有精品| 国产精品国产高清国产av| 亚洲av免费在线观看| 51国产日韩欧美| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 岛国毛片在线播放| 在线观看66精品国产| 国产午夜精品论理片| 亚洲电影在线观看av| 99在线人妻在线中文字幕| 国产视频内射| 欧美最新免费一区二区三区| 国产一区二区三区在线臀色熟女| 老师上课跳d突然被开到最大视频| 成人毛片a级毛片在线播放| 偷拍熟女少妇极品色| 99热6这里只有精品| 丰满乱子伦码专区| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 亚洲av男天堂| 午夜精品在线福利| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 精品99又大又爽又粗少妇毛片| 小说图片视频综合网站| 色噜噜av男人的天堂激情| 久久精品国产亚洲av香蕉五月| 菩萨蛮人人尽说江南好唐韦庄 | 日本五十路高清| 久久精品影院6| 18禁裸乳无遮挡免费网站照片| 真实男女啪啪啪动态图| 全区人妻精品视频| АⅤ资源中文在线天堂| 亚洲欧美中文字幕日韩二区| 精品久久久噜噜| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播| 夫妻性生交免费视频一级片| 日韩欧美一区二区三区在线观看| 国产一区二区三区在线臀色熟女| 午夜精品国产一区二区电影 | 亚洲精华国产精华液的使用体验 | 最近2019中文字幕mv第一页| 国产精品久久电影中文字幕| 国产午夜精品论理片| 99久久久亚洲精品蜜臀av| 国产高清视频在线观看网站| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 国产免费一级a男人的天堂| 久久欧美精品欧美久久欧美| av又黄又爽大尺度在线免费看 | 丰满乱子伦码专区| 桃色一区二区三区在线观看| 国产毛片a区久久久久| 久久婷婷人人爽人人干人人爱| 能在线免费看毛片的网站| 国内精品久久久久精免费| 亚洲精品久久久久久婷婷小说 | 国产精品三级大全| 久久久久网色| a级一级毛片免费在线观看| 边亲边吃奶的免费视频| 天堂√8在线中文| 久久国内精品自在自线图片| 大又大粗又爽又黄少妇毛片口| 亚洲成人av在线免费| 国产蜜桃级精品一区二区三区| 亚洲最大成人av| 最近的中文字幕免费完整| 一级毛片aaaaaa免费看小| 2021天堂中文幕一二区在线观| 久久综合国产亚洲精品| 日韩 亚洲 欧美在线| 又爽又黄无遮挡网站| www.av在线官网国产| av免费在线看不卡| 在现免费观看毛片| 成人永久免费在线观看视频| 在线观看一区二区三区| 久久6这里有精品| 亚洲国产精品国产精品| 三级国产精品欧美在线观看| 嫩草影院精品99| 中文字幕免费在线视频6| 欧美区成人在线视频| 国产精品一及| 亚洲欧美日韩高清专用| 中文字幕av在线有码专区| 国产爱豆传媒在线观看| 国产高清视频在线观看网站| 国产精品美女特级片免费视频播放器| 久久久久久久亚洲中文字幕| 精品不卡国产一区二区三区| 男女做爰动态图高潮gif福利片| 女人十人毛片免费观看3o分钟| 欧美成人免费av一区二区三区| 天天一区二区日本电影三级| 搡女人真爽免费视频火全软件| 性色avwww在线观看| 天堂网av新在线| 国产午夜精品久久久久久一区二区三区| av女优亚洲男人天堂| 欧美高清成人免费视频www| 日本色播在线视频| 99热这里只有是精品在线观看| 我的老师免费观看完整版| 国产精品久久久久久av不卡| 成人永久免费在线观看视频| 深爱激情五月婷婷| 在线播放无遮挡| 亚洲国产欧美在线一区| 在线播放国产精品三级| 少妇丰满av| 一级黄片播放器| 全区人妻精品视频| 国产成人影院久久av| 日韩成人伦理影院| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 国产成人精品婷婷| 国产在线精品亚洲第一网站| 久久这里只有精品中国| 亚洲久久久久久中文字幕| 中文欧美无线码| 午夜精品在线福利| 亚洲中文字幕一区二区三区有码在线看| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 国产亚洲精品久久久com| 欧美+日韩+精品| 国产国拍精品亚洲av在线观看| 一进一出抽搐动态| 久久亚洲国产成人精品v| 午夜福利高清视频| 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 婷婷六月久久综合丁香| 1024手机看黄色片| 日韩成人伦理影院| 国产高清激情床上av| 国产亚洲av嫩草精品影院| 中国美白少妇内射xxxbb| 久久精品综合一区二区三区| 国产激情偷乱视频一区二区| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 欧美另类亚洲清纯唯美| 3wmmmm亚洲av在线观看| 人妻久久中文字幕网| 黄片无遮挡物在线观看| 国产精品伦人一区二区| 久久国产乱子免费精品| 午夜福利成人在线免费观看| 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 内射极品少妇av片p| 国产成人精品婷婷| 十八禁国产超污无遮挡网站| 91麻豆精品激情在线观看国产| 尤物成人国产欧美一区二区三区| 99久久中文字幕三级久久日本| 成年av动漫网址| 哪个播放器可以免费观看大片| 一级黄片播放器| 久久精品人妻少妇| 久99久视频精品免费| 熟女电影av网| 亚洲最大成人手机在线| 我的老师免费观看完整版| 毛片女人毛片| 色哟哟哟哟哟哟| 国产亚洲精品久久久com| 国产熟女欧美一区二区| 国产成人影院久久av| 99视频精品全部免费 在线| 夜夜爽天天搞| 99久久九九国产精品国产免费| 亚洲av第一区精品v没综合| 亚洲,欧美,日韩| 欧美性感艳星| 91精品一卡2卡3卡4卡| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 九九久久精品国产亚洲av麻豆| 男女边吃奶边做爰视频| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄 | 免费看美女性在线毛片视频| 久99久视频精品免费| 亚洲成人久久性| 久久久国产成人免费| 在线a可以看的网站| 变态另类丝袜制服| 欧美色欧美亚洲另类二区| 久久鲁丝午夜福利片| 黑人高潮一二区| 欧美成人精品欧美一级黄| 国产一级毛片七仙女欲春2| 日韩在线高清观看一区二区三区| 欧美成人精品欧美一级黄| 在线观看免费视频日本深夜| 国产精品国产三级国产av玫瑰| 秋霞在线观看毛片| 亚洲av二区三区四区| 亚洲av成人av| 中文字幕免费在线视频6| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 国产成人午夜福利电影在线观看| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 久久中文看片网| 成熟少妇高潮喷水视频| 五月伊人婷婷丁香| 亚洲图色成人| 爱豆传媒免费全集在线观看| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 18+在线观看网站| 欧美性猛交╳xxx乱大交人| 国产精品不卡视频一区二区| 深爱激情五月婷婷| 欧美不卡视频在线免费观看| 99久久精品国产国产毛片| 熟妇人妻久久中文字幕3abv| 看非洲黑人一级黄片| 日韩一本色道免费dvd| or卡值多少钱| 中文字幕制服av| 国产极品精品免费视频能看的| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 99久久中文字幕三级久久日本| 欧美成人免费av一区二区三区| 在线观看av片永久免费下载| 日韩av在线大香蕉| 成人永久免费在线观看视频| 亚洲内射少妇av| 国产大屁股一区二区在线视频| 99视频精品全部免费 在线| 又粗又硬又长又爽又黄的视频 | 亚洲欧美精品综合久久99| www.av在线官网国产| 欧美bdsm另类| 桃色一区二区三区在线观看| 3wmmmm亚洲av在线观看| 尤物成人国产欧美一区二区三区| av免费在线看不卡| 亚洲三级黄色毛片| 欧美一区二区国产精品久久精品| 欧美激情国产日韩精品一区| 嫩草影院新地址| 看免费成人av毛片| 午夜福利在线观看吧| 波野结衣二区三区在线| 给我免费播放毛片高清在线观看| 国产精品久久久久久亚洲av鲁大| 中出人妻视频一区二区| 丰满的人妻完整版| 成人欧美大片| 综合色丁香网| 一级黄色大片毛片| 亚洲欧美日韩高清专用| 91aial.com中文字幕在线观看| 免费看日本二区| 热99在线观看视频| 99热这里只有是精品50| a级毛片a级免费在线| 色5月婷婷丁香| 日本爱情动作片www.在线观看| 在线观看66精品国产| av女优亚洲男人天堂| 国产av在哪里看| 女的被弄到高潮叫床怎么办| 国产精品久久久久久精品电影| 欧美一级a爱片免费观看看| 少妇的逼好多水| 久久亚洲国产成人精品v| 欧美在线一区亚洲| 亚洲欧美精品自产自拍| 欧美xxxx性猛交bbbb| 成人毛片60女人毛片免费| 最后的刺客免费高清国语| 国产精品1区2区在线观看.| 中国美女看黄片| 色综合色国产| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 欧美bdsm另类| 国产单亲对白刺激| 欧美+亚洲+日韩+国产| av女优亚洲男人天堂| 国产极品精品免费视频能看的| 午夜老司机福利剧场| 波野结衣二区三区在线| 在线免费十八禁| 久久人人精品亚洲av| av黄色大香蕉| 久久久久久国产a免费观看| 人妻制服诱惑在线中文字幕| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 亚洲一区高清亚洲精品| 日韩欧美三级三区| 日韩成人伦理影院| 国产精品久久视频播放| 国内少妇人妻偷人精品xxx网站| 亚洲精品456在线播放app| 色吧在线观看| 亚洲国产日韩欧美精品在线观看| 乱人视频在线观看| 亚洲无线观看免费| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 别揉我奶头 嗯啊视频| 国产精品久久久久久亚洲av鲁大| 人妻少妇偷人精品九色| av.在线天堂| 男人的好看免费观看在线视频| h日本视频在线播放| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 国产一区二区三区在线臀色熟女| 色综合色国产| 最近2019中文字幕mv第一页| 看非洲黑人一级黄片| 国产成人a区在线观看| 综合色av麻豆| 一级黄色大片毛片| 日韩一区二区三区影片| 99久久精品热视频| 日韩欧美在线乱码| 天天躁日日操中文字幕| 日本免费一区二区三区高清不卡| 精品久久久久久成人av| 天堂√8在线中文| 日韩,欧美,国产一区二区三区 | 性欧美人与动物交配| 久久久久久久久大av| 人人妻人人看人人澡| 好男人视频免费观看在线| 国产乱人视频| 精品一区二区三区视频在线| 高清午夜精品一区二区三区 | 97热精品久久久久久| 免费无遮挡裸体视频| 日本免费a在线| 一个人看视频在线观看www免费| 免费看美女性在线毛片视频| 久久精品国产亚洲av涩爱 | 欧美+日韩+精品| 我要搜黄色片| 少妇高潮的动态图| 日本爱情动作片www.在线观看| 一个人看视频在线观看www免费| 91久久精品国产一区二区成人| 国内精品一区二区在线观看| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 美女内射精品一级片tv| 中文亚洲av片在线观看爽| 久久久色成人| 亚洲精品日韩在线中文字幕 | 午夜福利在线在线| 桃色一区二区三区在线观看| 哪个播放器可以免费观看大片| 男女那种视频在线观看| а√天堂www在线а√下载| 天堂中文最新版在线下载 | 91久久精品电影网| 极品教师在线视频| 九色成人免费人妻av| 亚洲最大成人中文| 日韩 亚洲 欧美在线| 精品一区二区免费观看| 久久这里有精品视频免费| 性插视频无遮挡在线免费观看| 欧美又色又爽又黄视频| 国产综合懂色| 校园人妻丝袜中文字幕| 一进一出抽搐gif免费好疼| 精品99又大又爽又粗少妇毛片| 97在线视频观看| 小说图片视频综合网站| 久久精品久久久久久久性| 又粗又硬又长又爽又黄的视频 | 一个人免费在线观看电影| 色哟哟哟哟哟哟| 成人亚洲精品av一区二区| 国产精品爽爽va在线观看网站| 国产伦一二天堂av在线观看| 一区二区三区四区激情视频 | 欧美丝袜亚洲另类| 啦啦啦啦在线视频资源| 久久中文看片网| 亚洲,欧美,日韩| 好男人在线观看高清免费视频| 日韩中字成人| 中文字幕av在线有码专区| 一级毛片我不卡| 精品人妻视频免费看| 成人综合一区亚洲| 国产成人a∨麻豆精品| 免费看a级黄色片| 99精品在免费线老司机午夜| 嫩草影院入口| 久久人人精品亚洲av| 免费人成在线观看视频色| 亚洲国产精品成人综合色| 国产亚洲5aaaaa淫片| 天堂网av新在线| 夜夜爽天天搞| 亚洲成人精品中文字幕电影| 久久久精品大字幕|