• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Serial of Applications of Satellite Observations An Introduction to Hyper-spectral Infrared Sounders Onboard Polar-orbiting Meteorological Satellites

    2015-12-20 07:03:14YinMengtaoZouXiaoleiDepartmentofEarthOceanandAtmosphericScienceFloridaStateUniversityUSACenterofDataAssimilationforResearchandApplicationNanjingUniversityofInformationandScienceTechnologyNanjing0044
    關(guān)鍵詞:單位向量波束寬度經(jīng)度

    Yin Mengtao Zou Xiaolei,( Department of Earth, Ocean and Atmospheric Science, Florida State University, USA  Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 0044)

    Serial of Applications of Satellite ObservationsAn Introduction to Hyper-spectral Infrared Sounders Onboard Polar-orbiting Meteorological Satellites

    Yin Mengtao1Zou Xiaolei1,2
    (1Department of Earth, Ocean and Atmospheric Science, Florida State University, USA 2Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 210044)

    Polar-orbiting meteorological satellites circulate above the Earth at about 800-km altitude, completing 14 orbits daily. A single orbit takes about 100 minutes. Each polar-orbiting satellite provides observations on the so-called descending (ascending) node when moving from north (south) to south (north). The local time for all the descending nodes to cross the equator remains constant for a fixed polar-orbiting satellite, although their longitudes are different. The same is true of ascending nodes. Different from a geostationary satellite that provides temporally continuous observations within a limited spatial and spectral domain[1], a polar-orbiting meteorological satellite can provide global coverage in multiple visible, infrared and microwave bands twice daily. Observations from polar-orbiting meteorological satellites have played important roles in numerical weather prediction (NWP), climate study and product retrieval of meteorological variables.

    Polar-orbiting meteorological satellites with infrared sounders onboard are launched into early-morning, morning and afternoon orbits. The descending nodes of early-morning and morning orbits pass the equator at about 6:00 AM and 10:00 AM local equatorial crossing time (LECT), respectively. The LECT of ascending nodes of afternoon orbits is at about 1:00 PM local time①. National Oceanic and Atmospheric Administration (NOAA) started its Polar Orbiting Environmental Satellite (POES) series in 1978. NOAA-13 failed to operate in an afternoon orbit. NOAA-6/8/10/12/15 are earlymorning satellites. NOAA-17 is a morning satellite. The remaining NOAA POES, including NOAA-18/19 and Suomi NPP, are afternoon satellites. Other countries also operated polar-orbiting meteorological satellites. Other countries also operated polar-orbiting meteorological satellites. Two morning-orbiting satellites MetOp-A/ B has been launched by European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) since 2006. The Chinese Fengyun-3 (FY-3) polar-orbiting meteorological satellite series started from 2008 on. FY-3A/B are experimental meteorological satellites, and FY-3C is an operational meteorological satellite. FY-3A/C are morning satellites and were launched in May 2008 and September 2013, respectively. FY-3B is an afternoon satellite and was launched in November 2010. China plans to launch an early-morning-orbiting satellite, FY-3E, in 2018. By then, the FY-3 satellites will provide global observations with three different orbits, i.e., early-morning, morning and afternoon orbits. Table 1 provides a list of the current operational polar-orbiting meteorological satellites with their launch dates, infrared sounders, status and agencies.

    The first High-resolution Infrared Radiometer Sounder (HIRS) was onboard Nimbous-6 satellite, which was launched in 1975. HIRS had 16 infrared channels and one visible channel. The follow-up HIRS instruments, HIRS/2/3/4 onboard the NOAA-6 to 19 had 19 infrared and one visible channel. Table 2 lists the central wavenumbers and the bandwidth at each channel of the first HIRS and HIRS/2/3/4. It is seen that the 1219.51 cm-1channel of the first HIRS was removed from HIRS/2/3/4. Four new infrared channels were added to HIRS/2/3/4 with their central wavenumbers at801.92, 1029.87, 1364.26 and 2500.00 cm-1, respectively.

    Hyper-spectral infrared sounders, include Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration (NASA) Aqua satellite since 2002, Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp-A/B satellite, and Cross-track Infrared Sounder (CrIS) onboard Suomi NPP satellite since 2010, represent the advancement in infrared sounding technology. The spectral resolutions of AIRS, IASI and CrIS are much higher than HIRS instruments. AIRS has 2378 channels covering a spectral range from 650 to 2700 cm-1. IASI provides radiance measurements with 8461 channels that are located in a spectral range from 600 to 2800cm-1. CrIS provides radiance measurements at a total of 1305 channels, which are divided into longwave (650 to 1095 cm-1), midwave(1210 to 1750 cm-1) and shortwave (2155 to 2550 cm-1) bands②. HIRS/2/3/4 only provide radiance measurements at 19 channels from 650 to 2700 cm-1. The above three hyper-spectral infrared sounders have different spectral resolutions. The spectral resolution (Δν) of AIRS increases with increasing central wavenumber (ν) and is inversely proportional to a constant spectral resolving power (R)[2], i.e.:

    where R=1200. IASI has a constant spectral resolution of 0.25cm-1over its entire observing spectral range. CrIS has a constant spectral resolution at each of its three spectral bands. The spectral resolutions of longwave, midwave and shortwave bands are 0.625, 1.25and 2.5 cm-1, respectively. The full spectral resolution (FSR) mode allows CrIS to have a spectral resolution of 0.625 cm-1over the full spectral range of CrIS[3]. The spectral resolution of CrIS shortwave band is much coarser than that of the corresponding IASI band. It was found to be difficult to apply the absolute frequency calibration in the CrIS shortwave band by employing IASI shortwave observations during the post-launch period due to the differences of spectral resolutions between two instruments[4]. By utilizing the FSR mode, the absolute frequency calibration in the CrIS shortwave band becomes straightforward using IASI[5].

    CrIS is the newest hyper-spectral infrared sounder and will be taken as an example for further discussions. CrIS is a cross-track scanning instrument. A single scanline of CrIS consists of 30 fields of regard (FORs), with each FOR consisting of nine fields of view (FOVs). As the satellite Suomi NPP moves in the along-track direction from South to North, the hyper-spectra infrared sounder CrIS observed 30 FORs in the cross-track direction from West to East. The horizontal resolution of CrIS observations is determined mainly by the beam width. The scan angle and the altitude of satellite also have an impact on CrIS data resolution. The beam width for CrIS is 0.963°, corresponding to an FOV with a 14-km diameter at nadir. The sizes and distributions of FOVs and FORs along a single scanline of CrIS near the equator are shown in Figure 1. The footprints of the FOV and the FOR in the figure were calculated based on the center longitude and latitude of a particular FOV, the beam width as well as the zenith angle, the azimuth angle and the altitude of Suomi NPP satellite. A detailed description of the mathematical formula for the calculation of FOR and FOV sizes can be found in the appendix. From Figure 1 it is seen that the sizes of the FOV and the FOR increase with scan angle, confirming that the horizontal resolution of CrIS observations is the highest at nadir and decreases with an increasing scan angle.An overlap is found for CrIS FOVs with large scan angles in the cross-track direction. An enlarged view of the nine FOVs for FORs 1, 15 and 30 in Figure 1 are displayed in Figure 2. FOV 5 isthe center FOV, FOVs 1, 3, 7 and 9 arecorner FOVs, and the FOVs 2, 4, 6 and 8 areside FOVs[3].The corner and side FOVs rotate around the center FOV counter-clockwise from the west to the east for a single scanline. It is reminded that there is no overlap between neighboring FOVs within a single FOR.

    The cross-track and along-track diameters of the nine FOVs along the same scanline of CrIS in Figure 1 are provided in Figure 3. It is worth noticing that the crosstrack diameters of the nine FOVs increase with scan angle more greatly than the along-track diameters. The crosstrack diameters are slightly smaller than the along-track diameters at nadir due to a larger latitudinal distortion of the nine FOVs in the along-track direction. The latitudinal distortion is caused by the larger radius of the Earth at the equator (6378.1 km) than at the pole (6356.8 km). It leads to a higher altitude of the Suomi NPP satellite at higher latitudes than low latitudes such that the FOV observed by the CrIS instrument is larger at higher latitudes. At the largest scan angle, the minimum cross-track and maximum along-track diameter of the FOVs is about 39 and 25 km, respectively.

    Similar to CrIS, all HIRS series and AIRS are crosstrack scanning instruments. There are 42 FOVs and 56 FOVs along a single scanline of the first HIRS and HIRS/2/3/4, respectively. The total number of FOVs for a single scanline of AIRS is 90. It is worth noticing that the horizontal resolution of each generation of HIRS series is different. The horizontal resolution of the first HIRS and HIRS/2 at nadir is 25 and 17.7 km, respectively. The horizontal resolution of visible and infrared shortwave channels of HIRS/3 at nadir is 20.3 km, and that of infrared longwave channels of HIRS/3 is 18.9 km. The nadir resolution of HIRS/4 is 10 km, nearly twice as high as that of the other HIRS instruments. The nadir resolution of AIRS is 13.5 km. A comparison of sizes and distributions of FOVs among AIRS, CrIS and infrared longwave channels of HIRS/3 near nadir is provided in Figure 4. At the same scan angle, the FOV size is the largest for the infrared longwave channels of HIRS/3, the smallest for AIRS, and moderate for CrIS. Differences in FOV sizes of the infrared longwave channels among HIRS/3, AIRS and CrIS arise mainly from differences in the beam widths of the three instruments as well as the altitudes of the corresponding satellite platforms. The beam widths for HIRS/3, AIRS and CrIS are 1.3, 1.1 and0.963°. The altitude of Aqua satellite with AIRS onboard is 705 km, while the altitude of Suomi NPP satellite with CrIS onboard is 834 km. Although the beam width for AIRS is larger than that for CrIS, the FOV size for AIRS is smaller than that for CrIS due to a lower altitude of Aqua than that of Suomi NPP. Near nadir, no overlaps occur between neighboring FOVs for the three instruments in both cross-track and along-track directions. A large space between neighboring FOVs for the infrared longwave channels of HIRS/3 exists in both the cross-track and alongtrack directions. A small space between neighboring FOVs is observed in cross-track directions for AIRS and both cross-track and along-track directions for CrIS.

    Under clear-sky conditions, the measured infrared radiance comes from a specific volume of the atmosphere, which is determined by the beam width, the weighting function, and the observing time period. A single CrIS FOR consisting of nine FOVs takes about 0.2 s to observe[3]. As is mentioned above, CrIS provide radiance observations at 1305 channels in the spectral range of 655-2550 cm-1. The radiance observations may come from different atmospheric volumes with significant overlaps. Hence, the radiance observations of CrIS full spectral range contain significantly redundant and thus correlated information. In NWP, a channel selection becomes necessary for CrIS data assimilation in order to avoid error correlations between different channels and to reduce the computational expense. The channel selection for CrIS has two main principles: select channels with high sensitivity to a certain atmospheric species and high vertical resolution. The former is to effectively reduce the redundancy between different channels and the latter is to maximize the vertical resolution of the retrieval product[6]. The vertical resolution of CrIS observations is determined by the weighting function of each channel. The narrower the weighting function is, the higher the vertical resolution is for a specific channel. The atmosphere at the altitude of weighting function peak contributes most to the radiance observed by that channel[7]. The weighting functions of different channels reach the maximum at different altitudes, which is the basis for retrieving the vertical profiles of atmospheric species. In addition, the vertical observing range of channels is also considered in the channel selection for CrIS. Gambacorta et al.[6]select a total of 399 CrIS channels for applications in NWP data assimilation system. This subset of CrIS channels includes 24 surface temperature, 87 temperature, 62 water vapor, 53 ozone, 27 carbon monoxide, 54 methane, 52 carbon dioxide, 24 N2O, 28 HNO3and 24 SO2sounding channels. Figure 5 presents the weighting function profiles of CrIS longwave infrared, shortwave infrared, water vapor and surface temperature channels calculated by the Community Radiative Transfer Model (CRTM)[8]under the US standard atmosphere. The infrared longwave, midwave and shortwave channels are indicated in blue, green and red colors, respectively. Figure 6 provides the distributions of altitudes of weighting function peaks for the 399 CrIS channels. It is seen that temperature channels are distributed in longwave and shortwave bands. The infrared longwave temperature channels (660 to 750 cm-1) are arranged compactly from 1000 to 10 hPa, providing the vertical profile of atmospheric temperature with high vertical resolution. The infrared shortwave temperature channels (2200 to 2420 cm-1) are arranged in a similar pattern to infrared longwave temperature channels but more compactly in the vertical range of 60 to 10 hPa, which can provide more information about the upper atmospheric temperature. Ozone channels are distributed over the spectral range of 990 to 1070 cm-1. The strong vibrational absorption band of ozone is near1041.67 cm-1. About 90% ozone is concentrated in the stratosphere within the altitude range from 10 to 50 km, and the remaining 10% ozone is concentrated near the Earth’s surface③. Water vapor channels are distributed over the following two spectral ranges: 780-1210 cm-1and 1310-1750 cm-1. The longwave water vapor channels (780 to 1210 cm-1) can provide the water vapor information near the surface. The midwave water vapor channels (1310 to 1750 cm-1) are arranged compactly in the vertical range from 800to 200 hPa, enabling the vertical profiling of the atmospheric water vapor. Surface temperature channels are distributed over two spectral ranges of 770-1095 cm-1and 2460-2540 cm-1. It is worth mentioning that the infrared shortwave surface temperature channels (2460 to 2540 cm-1) are not used in the National Centers for Environmental Prediction (NCEP) NWP systems due to a potential contamination of sun glint[9].

    Hurricane Sandy made landfall at Cuba at 0600 UTC October 25, 2012. The sea level pressure and sea surface temperature of NCEP Final (FNL) global analysis at the same time is presented in Figure 7a. The observed brightness temperature of CrIS infrared longwave surface temperature channel 79 from the descending node of Suomi NPP at the same time is provided in Figure 7b and 7c. It is found that Hurricane Sandy is located over a warm sea surface with a low-pressure center of less than 998 hPa (Figure 7a). Compared to microwave, the wavelength of infrared is shorter, implying that the infrared radiance is attenuated in clouds more quickly. If the cloud has a large optical depth, the radiance measuredby CrIS channel 79 mainly comes from the cloud top, otherwise from the Earth surface.The brightness temperatures over cloudy areas are as low as 195 K, while those over clear-sky areas can reach up to 295 K (Figure 7b). A warm anomaly is observed near the Sandy center. The brightness temperatures in Hurricane Sandy’s eye are as high as 260 K, in a great contrast to those in the neighboring environment of lower than 200 K. It reflects a typical warm core structure in the hurricane center with thick clouds within and outside the eye wall. Figure 8a presents the weighting function distributions of 11 CrIS infrared longwave temperature channels. The cross section of brightness temperatures for these 11 CrIS infrared longwave temperature channels through the hurricane center in the along-track direction from the ascending node of Suomi NPP at 0600 UTC October 25, 2012 is provided in Figure 8b. It is seen that the brightness temperature reaches the maximum at the surface within the eye. The brightness temperature difference between the hurricane center and the nearby environment is as high as 60 K. The horizontal and vertical structures of Hurricane Sandy are well captured by CrIS infrared longwave temperature channels.

    The prior hyper-spectral infrared sounders including AIRS and IASI have been widely used in NWP data assimilation system. McNally et al.[10]designed two experiments to explore the impact of AIRS data assimilation using only clear-sky observations. One experiment was to assimilate the clear-sky radiance from a single instrument (AIRS, HIRS and AMSU-A) in the ECMWF four-dimensional variational data assimilation system. AIRS data assimilation was found to outperform the assimilation of data from other two instruments with lower spectral resolutions (HIRS and AMSU-A).Another experiment was to add AIRS clear-sky observations into the ECMWF operational data assimilation system. It was found that AIRS had a positive impact on ECMWF operational forecasts. Guidard et al.[11]studied the impact of IASI data assimilation using both clear-sky and cloudy observations. The IASI clear-sky measurements were found to improve the model forecasts, while the IASI cloudy measurements had a neutral influence on the model forecasts due to the shortage of an effective method which can retrieve cloud parameters of high precision. The applications of the newest hyper-spectral infrared sounder (CrIS) in NWP have not yet to be demonstrated. On the other hand, all three hyper-spectral infrared sounders have been applied in the retrieval of meteorological variables and climate research. The AIRS/Advanced Microwave Sounding Unit (AMSU) retrieval product processing system has been running since 2002. IASI, AMSU and Microwave Humidity Sounder (MHS) have constituted the trace gas product processing system since 2008. The CrIS/Advanced Technology Microwave Sounder (ATMS) processing system has been operational since 2013. Gambacorta et al.[12]compared the accuracy of retrieval products from AIRS/AMSU, IASI/AMSU/MHS and CrIS/ATMS systems using NOAA Center for Satellite Applications and Research (STAR) Operational Hyper Spectral Retrieval Algorithm. Their results showed that the CrIS/ATMS system could provide vertical profiles of atmospheric temperature and water vapor with the same accuracy as those from the other two retrieval systems, except for the temperature in the lower troposphere and the water vapor in the middle troposphere. Under the FSR mode, which enables high spectral resolution of 0.625 cm-1across the full spectral range of CrIS, the vertical profile of carbon monoxide provided by CrIS/ATMS system is comparable in accuracy to the existing carbon monoxide retrievals from AIRS/AMSU and IASI/AMSU/MHS systems. In summary, the CrIS/ATMS processing system already satisfies the requirements for meteorological product retrieval and climate research. The values of CrIS hyper-spectral infrared radiance measurements and their retrieval products in NWP and climate research could be fully realized only when significant improvements in bias correction, quality control and cloud detection and retrieval algorithm for CrIS measurements are made.

    注釋

    ① http://nsmc.cma.gov.cn/NewSite/NSMC/Channels/100351.html

    ② http://www.wmo-sat.info/oscar/instruments/view/93

    ③ http://www.ozonelayer.noaa.gov/science/basics.htm

    ④http://www.nasa.gov/mission_pages/hurricanes/archives/2012/ h2012_Sandy.html#4

    [1]達(dá)成, 鄒曉蕾. GOES成像儀資料簡介. 氣象科技進(jìn)展, 2014, 4(4): 52-61.

    [2]Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens, 2003, 41: 253-264.

    [3]Han Y, Revercomb H, Cromp M, et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J Geophys Res Atmos, 2013, 118: 12734-12748.

    [4]Strow L L,Motteler H,Tobin D, et al. Spectral calibration and validation of the Cross-track Infrared Sounder (CrIS) on the Suomi NPP satellite. J Geophys Res Atmos, 2013, 118: 12486-12496.

    [5]Esplin M, Strow L L, Bingham G, et al. CrIS full spectral resolution test results. 92nd AMS Annual Meeting, New Orleans, LA, January 2012.

    [6]Gambacorta A, Barnet C D. Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans Geosci Remote Sens, 2013, 51: 3207-3216.

    [7]Petty G W. A First Course in Atmospheric Radiation. Madison,Wisconsin: Sundog Publishing, 2006.

    [8]Weng F. Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci, 2007, 64: 3799-3807.

    [9]Chen Y, Han Y, Delst P V, et al. Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the community radiative transfer model using IASI data. J Atmos Oceanic Technol, 2013, 30: 2152-2160.

    [10]McNally A P, Watts P D, Smith J A, et al. The assimilation of AIRS radiance data at ECMWF. Q J R Meteorol Soc, 2006, 132: 935-957.

    [11]Guidard V, Fourrié N, Brousseau P, et al. Impact of IASI assimilation at global and convective scales and challenges for the assimilation of cloudy scenes. Q J R Meteorol Soc, 2011, 137: 1975-1987.

    [12]Gambacorta A, Barnet C D, Wolf W, et al. The NOAA Operational Hyper Spectral Retrieval Algorithm: A crosscomparison among the CrIS, IASI and AIRS processing systems. International TOVS Study Conference. Jeju Island, Korea, March 2014.

    附錄

    已知CrIS瞬時(shí)視場中心(P)的經(jīng)度λP、緯度φP、儀器波束寬度ω及Suomi NPP衛(wèi)星(S)天頂角μs、方位角φs、與地球之間的距離h。將φP轉(zhuǎn)換為地心緯度(geocentric latitude)γP:

    式中,α是地球的扁率,它與地球赤道半徑(ra)和極地半徑(rb)的關(guān)系為:

    地球中心由O表示,已知γP,可求出O與P之間的距離(dOP):

    進(jìn)一步利用λP可求出P點(diǎn)在笛卡爾坐標(biāo)系里的三維坐標(biāo)即向量OP:

    已知dOP、γP、μs、h,可利用正弦定理求出S與P之間的距離(dPS):

    rOP為向量OP的單位向量,還已知μs、φs,利用旋轉(zhuǎn)矩陣可求出單位向量rPS:

    已知向量OS、OP,可求出向量SP和單位向量rSP,還已知ω,利用旋轉(zhuǎn)矩陣可求出單位向量rSF1,F(xiàn)1為瞬時(shí)視場軌跡上一點(diǎn):

    S點(diǎn)與F1點(diǎn)的距離為dSF1,則:

    F1點(diǎn)在地球表面,滿足橢球體公式:

    整理(11),可得:

    式(12)為dSF1的一元二次方程。若方程有兩個(gè)不同實(shí)數(shù)解,取較小值;若方程有兩個(gè)相同實(shí)數(shù)解,取該值;若方程無解,則向量OF1不與地球表面相交。進(jìn)一步可求出F1的緯度φF1和經(jīng)度λF1。利用旋轉(zhuǎn)矩陣將rSF1繞SP逆時(shí)針旋轉(zhuǎn)度=10i,i=1,2,3,…,36)可求出單位向量rSFi:

    再根據(jù)式(9)-(12)可算出dSFi,進(jìn)一步可求出Fi的緯度φFi和經(jīng)度λFi。

    每9個(gè)CrIS瞬時(shí)視場組成一個(gè)CrIS能視場。每個(gè)能視場內(nèi),瞬時(shí)視場5被稱為中心瞬時(shí)視場,瞬時(shí)視場1、3、7、9被稱為對角瞬時(shí)視場。已知OS、OP、OPj(j=1,3,7,9),可求出SP5和SPj,進(jìn)一步可求出能視場對應(yīng)的波束寬度θ:

    已知SP5和θ,可求出單位向量rSP5,再根據(jù)式(7)-(12)可求出能視場軌跡的緯度和經(jīng)度

    猜你喜歡
    單位向量波束寬度經(jīng)度
    巧用四步法 妙解地方時(shí)
    巧用四步法 妙解地方時(shí)
    聚焦單位向量的常見題型
    毫米波信道中波束成形矢量的波束寬度
    CINRAD/SA雷達(dá)天饋系統(tǒng)關(guān)鍵參數(shù)測量方法研究
    單位向量用途大
    可編程超聲波測距系統(tǒng)的設(shè)計(jì)
    科技視界(2018年9期)2018-07-27 11:28:30
    基于調(diào)度間隔與波束寬度良好匹配的最優(yōu)V2V毫米波通信
    汽車文摘(2017年9期)2017-12-06 05:09:19
    不容忽視的基本概念—單位向量
    平分集與球面的交集的連通性及其應(yīng)用
    大香蕉久久成人网| av视频免费观看在线观看| 中文欧美无线码| 丝袜在线中文字幕| 女人精品久久久久毛片| 99国产精品一区二区蜜桃av | 国产成人影院久久av| 大香蕉久久网| 国产在线视频一区二区| 亚洲,欧美精品.| 18禁观看日本| 老司机靠b影院| 午夜福利影视在线免费观看| 视频区图区小说| 十八禁网站免费在线| 中文字幕制服av| 性色av一级| 亚洲国产精品成人久久小说| 精品一区在线观看国产| 桃红色精品国产亚洲av| 欧美日韩亚洲综合一区二区三区_| 99精品欧美一区二区三区四区| 男人添女人高潮全过程视频| av欧美777| 每晚都被弄得嗷嗷叫到高潮| 国产精品熟女久久久久浪| 国产av国产精品国产| √禁漫天堂资源中文www| 久久人妻福利社区极品人妻图片| 国产av又大| 国产精品国产av在线观看| 91精品国产国语对白视频| 国产成人精品在线电影| 日日爽夜夜爽网站| 视频在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 国产在视频线精品| 日本av免费视频播放| 嫩草影视91久久| 男女床上黄色一级片免费看| 亚洲熟女毛片儿| 搡老乐熟女国产| 久久天躁狠狠躁夜夜2o2o| 天堂俺去俺来也www色官网| 欧美日韩国产mv在线观看视频| 热99国产精品久久久久久7| 一区二区三区激情视频| 久久久久久久国产电影| 精品一区在线观看国产| 另类亚洲欧美激情| 在线观看一区二区三区激情| 亚洲自偷自拍图片 自拍| 国产99久久九九免费精品| 搡老岳熟女国产| 两性夫妻黄色片| 日本精品一区二区三区蜜桃| 另类亚洲欧美激情| 国产亚洲一区二区精品| 99国产精品99久久久久| 亚洲专区字幕在线| 窝窝影院91人妻| 正在播放国产对白刺激| 久久性视频一级片| 精品国产乱码久久久久久男人| 欧美老熟妇乱子伦牲交| 亚洲一区中文字幕在线| 丰满迷人的少妇在线观看| 国产极品粉嫩免费观看在线| av超薄肉色丝袜交足视频| 日韩视频一区二区在线观看| 男女床上黄色一级片免费看| 男女无遮挡免费网站观看| 精品亚洲乱码少妇综合久久| 精品国产超薄肉色丝袜足j| 9191精品国产免费久久| 欧美另类亚洲清纯唯美| 亚洲国产av影院在线观看| 欧美激情极品国产一区二区三区| 伊人久久大香线蕉亚洲五| 狂野欧美激情性bbbbbb| 国产精品99久久99久久久不卡| 欧美激情久久久久久爽电影 | 麻豆乱淫一区二区| 亚洲欧美日韩高清在线视频 | 91国产中文字幕| 免费观看av网站的网址| 中文字幕人妻丝袜制服| 亚洲av日韩精品久久久久久密| 日韩电影二区| 日本欧美视频一区| 日韩视频在线欧美| av欧美777| 1024香蕉在线观看| 他把我摸到了高潮在线观看 | 在线观看www视频免费| 欧美人与性动交α欧美软件| 高清欧美精品videossex| 女警被强在线播放| 欧美激情久久久久久爽电影 | 777米奇影视久久| 国产欧美日韩一区二区精品| 国产福利在线免费观看视频| 亚洲中文av在线| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 亚洲一区二区三区欧美精品| 极品人妻少妇av视频| 国产人伦9x9x在线观看| 一本大道久久a久久精品| 少妇精品久久久久久久| 一级片免费观看大全| svipshipincom国产片| 亚洲专区国产一区二区| 亚洲精品美女久久av网站| 美女主播在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品第一综合不卡| 中国美女看黄片| 青青草视频在线视频观看| 黄色 视频免费看| 美女高潮到喷水免费观看| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 淫妇啪啪啪对白视频 | 色精品久久人妻99蜜桃| 一级毛片精品| 男人添女人高潮全过程视频| 亚洲熟女精品中文字幕| 无限看片的www在线观看| 国产真人三级小视频在线观看| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 久久久久久免费高清国产稀缺| 亚洲国产日韩一区二区| 夜夜夜夜夜久久久久| 亚洲自偷自拍图片 自拍| av欧美777| 大香蕉久久成人网| 国产在视频线精品| 国产伦理片在线播放av一区| 老司机午夜十八禁免费视频| 亚洲欧美精品综合一区二区三区| 国产精品.久久久| 国产成人免费观看mmmm| 一级a爱视频在线免费观看| 黄片小视频在线播放| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| av视频免费观看在线观看| 中文欧美无线码| 国产成人精品久久二区二区免费| 午夜免费观看性视频| 91国产中文字幕| 男男h啪啪无遮挡| 男女午夜视频在线观看| 十八禁人妻一区二区| 国产1区2区3区精品| 十八禁高潮呻吟视频| 狠狠狠狠99中文字幕| 中文字幕最新亚洲高清| 国产一区二区在线观看av| 少妇人妻久久综合中文| 老司机深夜福利视频在线观看 | 国产精品一区二区在线不卡| 97在线人人人人妻| 国产成人精品久久二区二区91| 久久ye,这里只有精品| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 青春草亚洲视频在线观看| 另类精品久久| 少妇被粗大的猛进出69影院| 在线 av 中文字幕| 欧美黑人欧美精品刺激| 国产区一区二久久| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 爱豆传媒免费全集在线观看| 老司机靠b影院| 91av网站免费观看| 亚洲av电影在线观看一区二区三区| 午夜视频精品福利| 亚洲av欧美aⅴ国产| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| 亚洲天堂av无毛| 99久久99久久久精品蜜桃| 日韩视频在线欧美| 一区二区av电影网| 国产视频一区二区在线看| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 精品乱码久久久久久99久播| 老司机午夜十八禁免费视频| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 欧美另类一区| 久久久国产欧美日韩av| 大香蕉久久成人网| 男人爽女人下面视频在线观看| 一本一本久久a久久精品综合妖精| 极品人妻少妇av视频| 老司机在亚洲福利影院| 日韩欧美一区视频在线观看| 成人手机av| 国产免费一区二区三区四区乱码| 精品亚洲乱码少妇综合久久| 男女下面插进去视频免费观看| xxxhd国产人妻xxx| 国产真人三级小视频在线观看| 国产欧美日韩一区二区精品| 久久国产精品影院| 欧美xxⅹ黑人| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 亚洲欧美精品综合一区二区三区| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码| 亚洲精品在线美女| a级毛片在线看网站| 国产免费视频播放在线视频| 人妻一区二区av| 狂野欧美激情性xxxx| 999久久久精品免费观看国产| 欧美日韩亚洲综合一区二区三区_| 国产日韩一区二区三区精品不卡| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 亚洲自偷自拍图片 自拍| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 国产亚洲av片在线观看秒播厂| 最近最新免费中文字幕在线| 99九九在线精品视频| 久久亚洲国产成人精品v| 国产区一区二久久| 久久久久久久大尺度免费视频| 黄频高清免费视频| 99久久综合免费| 久久天堂一区二区三区四区| 国产亚洲欧美精品永久| av在线app专区| 国产精品成人在线| 水蜜桃什么品种好| 香蕉丝袜av| 看免费av毛片| 欧美黄色片欧美黄色片| 亚洲欧洲日产国产| 搡老岳熟女国产| 亚洲人成电影免费在线| 不卡一级毛片| 国产成人精品无人区| 91精品国产国语对白视频| 亚洲视频免费观看视频| 法律面前人人平等表现在哪些方面 | 1024香蕉在线观看| 亚洲avbb在线观看| 亚洲成人免费av在线播放| 麻豆国产av国片精品| 九色亚洲精品在线播放| 国产免费福利视频在线观看| 99久久99久久久精品蜜桃| 欧美黄色片欧美黄色片| 国产高清videossex| 午夜福利视频在线观看免费| 亚洲欧美成人综合另类久久久| 国产视频一区二区在线看| 精品免费久久久久久久清纯 | 成人影院久久| avwww免费| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 1024视频免费在线观看| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 国产99久久九九免费精品| 少妇被粗大的猛进出69影院| 成年av动漫网址| 男女无遮挡免费网站观看| 国产欧美日韩一区二区精品| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 我要看黄色一级片免费的| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| 汤姆久久久久久久影院中文字幕| 精品福利观看| 男女免费视频国产| 老司机深夜福利视频在线观看 | 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 美国免费a级毛片| av国产精品久久久久影院| 精品视频人人做人人爽| 色综合欧美亚洲国产小说| www.自偷自拍.com| 99热国产这里只有精品6| 性色av一级| 一级片免费观看大全| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 精品国产一区二区三区四区第35| 亚洲国产欧美在线一区| 日本欧美视频一区| 777米奇影视久久| 国产亚洲精品第一综合不卡| 桃花免费在线播放| videos熟女内射| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 日韩中文字幕欧美一区二区| 国产精品偷伦视频观看了| 九色亚洲精品在线播放| 亚洲精华国产精华精| 国产精品久久久久成人av| 日韩熟女老妇一区二区性免费视频| 黄色a级毛片大全视频| 蜜桃在线观看..| 午夜久久久在线观看| 午夜福利视频在线观看免费| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃| 久久这里只有精品19| 国产成人欧美| 最黄视频免费看| 热re99久久精品国产66热6| 亚洲av国产av综合av卡| 日韩一区二区三区影片| 91国产中文字幕| 一边摸一边做爽爽视频免费| 国产黄色免费在线视频| av免费在线观看网站| 交换朋友夫妻互换小说| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区黑人| 99国产精品一区二区三区| 亚洲性夜色夜夜综合| 亚洲成人手机| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 国产欧美亚洲国产| 免费一级毛片在线播放高清视频 | 国产免费福利视频在线观看| www日本在线高清视频| 肉色欧美久久久久久久蜜桃| 欧美人与性动交α欧美软件| 亚洲av日韩在线播放| 高清欧美精品videossex| 丝袜美腿诱惑在线| 高清欧美精品videossex| 香蕉丝袜av| 美国免费a级毛片| 精品国产一区二区三区久久久樱花| 国产成人精品久久二区二区免费| 欧美日韩中文字幕国产精品一区二区三区 | 叶爱在线成人免费视频播放| av电影中文网址| 国产av精品麻豆| netflix在线观看网站| 午夜福利免费观看在线| 美国免费a级毛片| 丝袜美腿诱惑在线| 岛国在线观看网站| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 韩国高清视频一区二区三区| 久久香蕉激情| 亚洲av成人不卡在线观看播放网 | 久久亚洲精品不卡| 制服人妻中文乱码| 深夜精品福利| av在线播放精品| 国产一区二区激情短视频 | 99国产精品一区二区蜜桃av | av电影中文网址| 欧美激情高清一区二区三区| 国产老妇伦熟女老妇高清| 大型av网站在线播放| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区91| 美女国产高潮福利片在线看| 久久精品成人免费网站| 超碰97精品在线观看| 波多野结衣一区麻豆| 久久人妻熟女aⅴ| 久久精品国产综合久久久| 国产av精品麻豆| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| av免费在线观看网站| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 国产一区二区在线观看av| 国产野战对白在线观看| 熟女少妇亚洲综合色aaa.| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| 日韩欧美一区二区三区在线观看 | 亚洲五月婷婷丁香| 欧美日韩亚洲高清精品| 99久久精品国产亚洲精品| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 黄片小视频在线播放| 日本av手机在线免费观看| 国产精品九九99| 黑人操中国人逼视频| 国产亚洲精品久久久久5区| 在线 av 中文字幕| 国产成人影院久久av| 婷婷色av中文字幕| 黄色片一级片一级黄色片| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 97在线人人人人妻| 免费久久久久久久精品成人欧美视频| 亚洲第一青青草原| 久久 成人 亚洲| 99国产综合亚洲精品| 欧美精品啪啪一区二区三区 | 日韩免费高清中文字幕av| a 毛片基地| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 亚洲成人免费电影在线观看| 狠狠狠狠99中文字幕| 精品少妇内射三级| 国产伦理片在线播放av一区| 欧美日韩亚洲国产一区二区在线观看 | 国产男女超爽视频在线观看| 午夜久久久在线观看| 免费少妇av软件| 国产激情久久老熟女| 日本欧美视频一区| 777米奇影视久久| 国产精品国产av在线观看| 精品一区二区三区av网在线观看 | 免费观看av网站的网址| 亚洲专区国产一区二区| 美女主播在线视频| 丝袜喷水一区| 伦理电影免费视频| 美女高潮到喷水免费观看| 午夜福利影视在线免费观看| 欧美精品人与动牲交sv欧美| 美女视频免费永久观看网站| 女人精品久久久久毛片| 午夜福利一区二区在线看| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 女性被躁到高潮视频| 丝袜人妻中文字幕| 欧美+亚洲+日韩+国产| 精品久久蜜臀av无| 久久久欧美国产精品| av国产精品久久久久影院| 国产av精品麻豆| 老司机在亚洲福利影院| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 一级片'在线观看视频| 久久av网站| 国产成人免费无遮挡视频| 国产av精品麻豆| 手机成人av网站| 国产精品偷伦视频观看了| 韩国精品一区二区三区| 欧美中文综合在线视频| 十八禁网站免费在线| 人妻人人澡人人爽人人| 亚洲精品日韩在线中文字幕| 伊人久久大香线蕉亚洲五| 色综合欧美亚洲国产小说| 欧美黄色片欧美黄色片| 欧美乱码精品一区二区三区| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 久久久久久亚洲精品国产蜜桃av| 久久天堂一区二区三区四区| 热re99久久国产66热| 国产福利在线免费观看视频| 欧美亚洲日本最大视频资源| 爱豆传媒免费全集在线观看| 免费在线观看完整版高清| 亚洲av成人一区二区三| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 亚洲成人国产一区在线观看| 精品国产国语对白av| av超薄肉色丝袜交足视频| 老熟妇仑乱视频hdxx| 老司机午夜福利在线观看视频 | 黄片小视频在线播放| 99久久综合免费| 老鸭窝网址在线观看| 黄色 视频免费看| 少妇的丰满在线观看| 久久av网站| 天天躁日日躁夜夜躁夜夜| 视频在线观看一区二区三区| 999久久久国产精品视频| 久久久国产一区二区| www.999成人在线观看| 咕卡用的链子| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 亚洲色图 男人天堂 中文字幕| 精品亚洲成国产av| 男女高潮啪啪啪动态图| 女人久久www免费人成看片| av不卡在线播放| 在线观看免费日韩欧美大片| 国产野战对白在线观看| 丰满迷人的少妇在线观看| 成人18禁高潮啪啪吃奶动态图| 一个人免费在线观看的高清视频 | 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品久久久久5区| 男女之事视频高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产97色在线日韩免费| 99国产精品一区二区三区| av在线app专区| 欧美激情高清一区二区三区| 色婷婷av一区二区三区视频| 中文字幕高清在线视频| 亚洲伊人色综图| 丝袜喷水一区| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 国产成人精品无人区| 在线观看一区二区三区激情| 又大又爽又粗| 亚洲欧美激情在线| 十八禁人妻一区二区| 九色亚洲精品在线播放| 亚洲七黄色美女视频| 亚洲情色 制服丝袜| 午夜免费成人在线视频| 纵有疾风起免费观看全集完整版| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 天天影视国产精品| 久久久久国内视频| 在线观看舔阴道视频| kizo精华| 99久久精品国产亚洲精品| 精品福利观看| 91成年电影在线观看| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 亚洲情色 制服丝袜| 三上悠亚av全集在线观看| 免费观看人在逋| 男女国产视频网站| 丝瓜视频免费看黄片| 啪啪无遮挡十八禁网站| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 日本av免费视频播放| 天天躁日日躁夜夜躁夜夜| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 另类精品久久| 亚洲av日韩在线播放| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 极品人妻少妇av视频| 国产野战对白在线观看| 精品久久蜜臀av无| 在线观看人妻少妇| 亚洲五月婷婷丁香| a级毛片黄视频| 在线天堂中文资源库| 精品欧美一区二区三区在线| 亚洲专区中文字幕在线| 国产精品 国内视频| 91精品伊人久久大香线蕉| av视频免费观看在线观看| 日韩有码中文字幕| 一边摸一边抽搐一进一出视频| 日本黄色日本黄色录像| 狂野欧美激情性xxxx| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 免费在线观看日本一区| 精品一区二区三卡| 18禁黄网站禁片午夜丰满| 97精品久久久久久久久久精品| 久久人妻福利社区极品人妻图片| 久久99热这里只频精品6学生| 青春草视频在线免费观看| 精品国产一区二区久久| 亚洲欧美激情在线| av超薄肉色丝袜交足视频| 精品久久久精品久久久| 日本精品一区二区三区蜜桃|