• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of high arsenic groundwater in Hetao Basin,Inner Mongolia,northern China

    2015-12-19 08:39:32YangChunZhuXueYongZhaoMinChenYongQingLuoXinZhou
    Sciences in Cold and Arid Regions 2015年1期

    YangChun Zhu ,XueYong Zhao,Min Chen,YongQing Luo,Xin Zhou

    Naiman Desertification Research Station,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    1 Introduction

    High arsenic groundwater is considered as a serious environmental problem and is widely found all over the world,including India(Sankaret al.,2014),Bangladesh(Chakrabortiet al.,2010),Pakistan(Fatmiet al.,2009),Argentina(Nicolliet al.,2010),and China(Mukherjeeet al.,2009).Many studies have been done on the geological,hydrological,and chemical aspects of high arsenic in groundwater(Mukherjeeet al.,2009).High arsenic groundwater is mostly found in Southeast Asian countries,especially in the Ganges Delta and in China;Bangladesh is considered to be the worst of all.Chakrabortiet al.(2010)had analyzed 52,202 groundwater samples for arsenic in Bangladesh since 1996.Their results showed that 7.5% of the samples contained arsenic above 300 μg/L,and most exceeded the World Health Organization(WHO)recommended value of 10 μg/L for drinking water(50 μg/L for many developing countries).Compared with Bangladesh,India,and China,Pakistan has relatively low levels of arsenic in its groundwater.A Pakistan national survey(Fatmiet al.,2009)reported that arsenic in groundwater was in the range of 0–500μg/L;9% of the drinking water samples had arsenic >10 μg/L and 0.7% of the samples had >50 μg/L.Symptoms of chronic exposure to arsenic in drinking water are certain skin diseases such as skin keratosis,abnormal pigmentation,dermal hyperkeratosis,and skin cancer;several hematological,cardiovascular,renal,neurological,and respiratory diseases;and severe lung,bladder,liver,kidney,and prostate cancers(Guoet al.,2008).Arsenic has also been detected in plant tissues and roots,with corn exhibiting the highest contents(Neidhardtet al.,2012).

    Since 2007,China has lowered the drinking water standard for arsenic from 50 to 10 μg/L.Groundwater with arsenic enrichment has been reported in some areas of northwestern China,especially in Xinjiang(Liuet al.,2013),Shanxi(Xieet al.,2012),and Inner Mongolia(Mukherjeeet al.,2009).Since 1990,about 30,000 people have been exposed to arsenic poisoning in Inner Mongolia.Smedleyet al.(2003)indicated that the arsenic concentration in groundwater from boreholes and wells in the Hohhot Basin of Inner Mongolia,varied from <1 μg/L to 1,480 μg/L.One of the most severely arsenic-polluted areas in Inner Mongolia is the Hetao Basin(the Great Bend of the Yellow River)(Hagiwaraet al.,2011).

    The Hetao Basin,with an area around 13,000 km2(Figure 1),lies in the western part of Inner Mongolia,bounded by the Yellow River to the south and the Langshan and Yinshan mountains to the north.The climate is semi-arid to arid,with a low annual average precipitation of 130–220 mm and high evaporation of 2,000–2,500 mm.The annual average air temperature is 5.6–7.8 °C and the major soil type in this area is anthropogenic-alluvial.Due to strong evapotranspiration,about half of the soils are saline.The groundwater is mainly of Na-Cl-HCO3type and the average depth is only 1–1.5 m due to agriculture irrigation.The groundwater is mostly recharged by precipitation,surface runoff,and water from lateral fractures in bedrock in the Yinshan Mountains in the north;in the south,the recharge is from irrigation return flow from farmland and leakage from the Yellow River.Groundwater is discharged via evapotranspiration and artificial abstraction(Denget al.,2009).

    Figure 1 Map of the Hetao Basin,Inner Mongolia,China

    The Hetao Basin is a fault basin and comprises a sequence of Cenozoic sediments with thickness ranging from 500 to 1,500 m in the southeast and from 7,000 to 8,000 m in the northwest(Zhanget al.,2013).Yinshan Mountain is mainly composed of a metamorphic complex(slate,gneiss,and marble),and its alluvial-lacustrine sediments are composed of silty sand,fine sand,and muddy clay(Guoet al.,2010).The Hetao Basin is a representative area with arsenicosis in China,and its high arsenic generally occurs in shallow groundwater.The most common forms of inorganic arsenic in the basin are As(V)and As(Ш)(Gonget al.,2006).The arsenic concentrations in the shallow groundwater varied greatly,from 0.58 to 572 μg/L(average of 99.73 μg/L),and the As(Ш)ranged from 0.35 to 456 μg/L(average of 79.33 μg/L)(Guoet al.,2008).Notably,inorganic As(Ш)was the predominant species,accounting for 80% of the total As(Guoet al.,2008).Those results were similar to those of Denget al.(2009),who analyzed various arsenic species in the Hetao Basin groundwater.They proposed that methylated arsenic species was relatively minor(less than 2 μg/L),compared to inorganic arsenic(84%–99% of the total soluble arsenic).Additionally,particulate matter comprises a significant fraction of arsenic in the groundwater,and Gonget al.(2006)indicated that acid-leachable particulate arsenic represented approximately 10%–22% of total arsenic in the Hetao Basin groundwater.

    High arsenic groundwater poses significant health risks to local villagers,and arsenic-affected aquifers have special characteristics.The primary objective of the present study was to summarize the spatial distribution of high arsenic groundwater in the Hetao Basin and to analyze its sources and the major influencing factors,with the goal of raising awareness of the arsenicosis problem and seeking possible methods to remove arsenic from the groundwater.

    2 Spatial distributions

    The Hetao Basin is in the Bayannur Banner of Inner Mongolia,and includes seven counties:Dengkou,Hangjinhouqi,Linhe,Wuyuan,Wulateqianqi,Wulatezhongqi,and Wulatehouqi(Figure 1).High arsenic contents in groundwater primarily appeared in the northern and northwestern parts of the Basin(Neidhardtet al.,2012).Ninget al.(2007)analyzed a large amount of data from well water samples all over the Bayannur Banner,and proposed that the arsenic concentration ranged from non-detectable to 1,200 μg/L.The mean value was 13.2,65.6,34.9,24.9,15.3,37.4 and 22.2 μg/L for Dengkou,Hangjinhouqi,Linhe,Wuyuan,Wulateqianqi,Wulatezhongqi and Wulatehouqi counties,respectively.The highest arsenic concentration was found in Hangjinhouqi County in the western part of the Hetao Basin.Results of isotope and minor element geochemical surveys(Denget al.,2009)in Hangjinhouqi County indicated that the arsenic concentration in more than 70% of the samples exceeded 50 μg/L,and more than 25% of the samples exceeded 400 μg/L,with the maximum up to 1,000 μg/L.Thus,the spatial arsenic concentration in the groundwater in the Hetao Basin increased from southwest to northeast,with the aerobic groundwater decreasing from south to north.Also,Fujinoet al.(2004)measured a high mean arsenic concentration of 158.3 μg/L in groundwater(maximum was up to 197.3 μg/L)in the Wuyuan Prefecture in the northern part of the Hetao Basin.Ninget al.(2007)discovered that the arsenic concentration had a relation with well depth due to different contents of oxygen in aquifers;generally,the arsenic concentration was<50 μg/L in shallow wells(3–10 m),>50 μg/L in deeper wells(10–30 m),and even >300 μg/L in wells deeper than 50 m.

    3 Sources of groundwater arsenic

    Groundwater arsenic in the Hetao Basin mainly comes from natural,rather than anthropogenic processes(Guoet al.,2010).Hagiwaraet al.(2011)indicated that arsenic enrichment in groundwater was due to weathering of some natural solid materials in the sediments.Significant differences of arsenic in sediments were found in the arsenic-free and arsenic-affected areas,implying that sediment type might be a major factor influencing the presence of arsenic in the groundwater in the Hetao Basin(Guoet al.,2008).The direct source of the arsenic in the groundwater is widely believed to be caused by the chemically active arsenic fraction in sediments.For example,Smedleyet al.(2003)observed that the source of the arsenic in the groundwater in Inner Mongolia was very significantly associated with total Fe and with a very low concentration of total S,and furthermore,the presence of arsenic in the oxalate-extractable fraction implied that iron oxides were the main sources of arsenic rather than sulphides in the sediments.The iron oxides adsorbed arsenic through co-precipitation and were subsequently released during weathering of primary minerals under favorable hydrogeochemical conditions(Smedleyet al.,2003).Zhanget al.(2002)reported that arsenic was released from mineral in the Langshan Mountains at higher elevations and transported down gradients into the Basin aquifers.In addition,suspended materials in the Yellow River contain 22.0–24.6 mg/kg arsenic and groundwater receives 14.0–17.0 mg/kg arsenic from irrigation water in Hetao Basin(Hagiwaraet al.,2011).

    4 Influencing factors

    4.1 Reducing environments

    In the Hetao Basin,groundwater arsenic released from sediments is presumed to be caused under reducing conditions(Hagiwaraet al.,2011).In general,redox condition is the main influencing factor in the mobilization of groundwater arsenic.According to Guoet al.(2008),the alluvial sediments in the Basin have extremely low Eh values,indicating a strongly reducing environment.In 63 groundwater samples from the Basin,those researchers indicated that Eh values ranging from-153 to 83 mV,showing moderate oxidizing condition to strong reducing condition.Under inorganic or bacterial processes,such as sulfate-reducing bacteria(SRB),SO42-generates H2S gas and the H2S gas reacts with the Fe2O3to change to FeS.Then arsenic adsorbed to Fe(OH)3dissolves into the groundwater(Hagiwaraet al.,2011).Thus,in the Hetao Basin,the highest arsenic concentration always tends to be observed in groundwater with low SO42-and high dissolved Fe(Denget al.,2009).Therefore,dissolved arsenic occurs as As(Ш)reduced from As(V),and little inorganic arsenic is reduced to methylated arsenic.The main aquifer in the Basin is 14–24 m deep and has fine and medium sand sediment,which is dark gray and black where the groundwater is anaerobic.The color results from high Fe2O3concentrations,and Hagiwaraet al.(2011)found that the arsenic content was high in black sediment under reducing conditions.

    After the groundwater is drawn from wells for irrigation and is exposed to the atmosphere,As(Ш)is rapidly oxidized to As(V)and is potentially adsorbed to sediment constituents,such as iron oxides and organic matter,under oxidizing conditions(Neidhardtet al.,2012).

    4.2 Groundwater hydraulic gradient

    Previous studies showed that there were some relationships between groundwater arsenic concentration and groundwater hydraulic gradient(Zhanget al.,2013).Zhanget al.(2013)found that a low groundwater hydraulic gradient was important in promoting arsenic enrichment in shallow groundwater.In the Hetao Basin,there are two geomorphic units:the piedmont alluvial-proluvial basin in the north and the Yellow River alluvial-lacustrine basin in the south,with a gently decreasing elevation from 1,060 to 1,007 m.The groundwater is recharged by the Yellow River in the south and from the Langshan and Yinshan mountains in the north.According to Zhanget al.(2013),in the piedmont recharge area in front of the Langshan Mountain(the western part of the Hetao Basin),the groundwater level ranges from 1,031.71 m to 1,053 m,the median hydraulic gradient is 4.68‰,and the total arsenic is the lowest with a median concentration of 2.23 μg/L.In the discharge area,the groundwater level is 1,033.5 m to 1,035 m,the hydraulic gradient ranges from 0.71‰ to 2.54‰,and the total arsenic(the majority is As(Ш))varies from 37.2μg/L to 176.6 μg/L.In the runoff area,the lateral groundwater flows from south to north,but the movement of the groundwater is slow due to the weak hydraulic gradient of 0.003‰ to 1.3‰.Most of the arsenic(97%)is As(Ш),and it ranges widely from 3.3μg/L to 745.7 μg/L.

    In summary,high arsenic groundwater in the Hetao Basin is widely distributed in a region with slow groundwater flow with low hydraulic gradients.Denget al.(2009)gave out an empirical relationship between groundwater arsenic and hydraulic gradient,described by a power function:

    where,yis the median value of total arsenic(μg/L)andxis the median hydraulic gradient(‰).

    But this does not apply to the discharge area,possibly because of reducing conditions.Correspondingly,Eh values in the Basin groundwater decrease from the recharge zone to the down-gradient along the flow path(Guoet al.,2010).Similar results were found in other basins,and a previous study(Guoet al.,2014)reported that arsenic showed an increasing trend from the recharge area to the discharge area in the Songnen Basin in Northeast China.Guoet al.(2010)also showed that up-gradient of the drainage canal in the Hetao Basin,the arsenic concentration drastically decreased from 395 to 2.5 μg/L,and down-gradient of the drainage canal,the arsenic concentration increased and reached 781 μg/L.

    4.3 Organic matter

    In some high arsenic groundwater,organic matter plays an important role in the development of reducing conditions.In the Hetao Basin,high arsenic concentration was found to be coincident with high contents of organic matter(Guoet al.,2011b).In that study,high arsenic groundwater contained 2.65–163 mg/L dissolved organic C in the Hetao Basin,and it could be the main carbon source for microbial metabolism,which was higher than that in high arsenic groundwater from Bangladesh,Cambodia,and West Bengal(Guoet al.,2011b).Organic matter,especially in young,unconsolidated sediments,is fresh and reactive and might be a predominant source of electrons for reduction reactions(Smedleyet al.,2003).Therefore,oxidation of organic matter is widely assumed to be an important contributor in generating anoxic conditions for arsenic in aquifers(Guoet al.,2008).Otherwise,dissolved organic matter would compete with arsenic for adsorption sites on mineral phases(Guoet al.,2011b).Bauer and Blodau(2006)suggested that negatively charged dissolved organic matter enhances desorption of arsenic binding to humic acids through electrostatic effects.

    Also,oxidation of dissolved organic matter is considered as one of major factors in the initiation of reducing conditions(Guoet al.,2008).First,sulfate-reducing bacteria(SRB)act on SO42-and organic matter to generate H2S gas(Hagiwaraet al.,2011).Most importantly,dissolved organic matter increases the quantity of arsenic to bound to Fe(OH)3colloids(Ritteret al.,2006).Thus,high concentrations of arsenic in the Hetao Basin are associated with strong reducing conditions,which are evidenced by high concentrations of dissolved organic matter(Denget al.,2009).

    To sum up,the process of reducing reactions is the oxidative degradation of organic matter.This produces high HCO3-and then generates biogenic CH4through fermentation of microbial processes,creating a favorable reducing environment and facilitating the mobilization of arsenic in aquifers(Guoet al.,2008).

    4.4 pH value

    Many studies have focused on the effect of pH on sorption and desorption for different forms of arsenic and controlling the solubility of arsenic in groundwater(Bordoloiet al.,2013b).Regarding the function of the equilibrium solution pH,Taoet al.(2011)suggested that pH has an essential effect on As(V)sorption,and the optimal As(V)uptake demands a pH range of 6.0–8.0.Guoet al.(2011a)proposed that samples from high arsenic groundwater(<200 μg/L)across the Hetao Basin generally had pH >8.3,indicating that high pH could affect the arsenic mobilization.In contrast,elevated levels of groundwater arsenic in geologically young sedimentary basins like in Bangladesh and West Bengal,India,occur at near-neutral pH(Nakayaet al.,2011).

    Favorable pH can also be utilized to remove arsenic in groundwater by precipitation-coagulation,generally using NaHCO3,KMnO4,and FeCl3as the pH-conditioner(Bordoloiet al.,2013b).The removal mechanisms might form through three major steps:(1)pH above 3.0,As(V)exists in anionic forms of H2AsO4-,HAsO42-or AsO43-;(2)increasing pH around 7.3,Fe(OH)3particles occur and have a net positive charge,and at the same time soluble arsenic species converses to insoluble reaction products;and(3)arsenic is an anion and adsorbs onto positively charged Fe(OH)3particles.But when pH was above 8.0,arsenic removal would decrease.Thus,the optimal pH for arsenic removal is 7.3 or less(Bordoloiet al.,2013a).

    4.5 Evapotranspiration and soil texture

    Hydrochemical and hydrogen and oxygen isotope geochemical studies have shown that evapotranspiration is also an important process in controlling the enrichment of Na,Cl,and trace elements such as arsenic in groundwater(Denget al.,2009).Especially in arid and semi-arid climates,evapotranspiration contributes to further increase the arsenic concentration in waters(Nicolliet al.,2010).Some studies showed that high Na+water had high Cl-but did not contain high arsenic,but high TDS(total dissolved solids)groundwater contained high arsenic(Guoet al.,2011a).This indicated that arsenic enrichment was independent on evaporation,and evaporation would elevate arsenic concentration in groundwater.

    The textures of sediments in the Hetao Basin range from fine sand to clay,and their color varies from brown to grey to black in boreholes(Guoet al.,2008).The results of X-ray diffraction analyzed by Guoet al.(2008)showed that sediments in arsenic-affected areas exhibited various contents of calcite and dolomite,while the fine sand was mainly composed of quartz and the clay sediment contained considerable amounts of clay minerals.The black color,full of siderite and pyrite,was found in silty clay sediments,indicating that it developed in a strongly reductive environment;higher percentages of arsenic concentration also occurred in the black clay sediment.The possible reason was that argillaceous materials might have restricted diffusion of atmospheric oxygen into the aquifers.On the other hand,clay soil was responsible for more organic carbon and required higher cation exchange capacity in soil compared to coarse soil.The direct result would be the marked differences in soil microbial activity for combination with heavy metals(Patel and Patra,2014).

    5 Conclusions

    1)The spatial arsenic concentration in the groundwater in the Hetao Basin increases from southwest to northeast,and the high arsenic concentrations were found in Hangjinhouqi and Wuyuan counties in the western and northern part of the Hetao Basin.This is believed to be caused by different contents of oxygen in aquifers in south and north.

    2)The direct source of the arsenic in the groundwater is originated from the chemically active arsenic fraction in sediments such as iron oxides.

    3)The redox condition is the main influencing factor in the mobilization of groundwater arsenic in the Hetao Basin.Dissolved arsenic occurs as As(Ш)reduced from As(V),and little inorganic arsenic is reduced to methylated arsenic under reducing conditions.

    4)High arsenic groundwater in the Hetao Basin is widely distributed in a region with slow groundwater flow with low hydraulic gradients.

    5)In the Hetao Basin,high arsenic concentration was found to be coincident with high contents of organic matter and the process of reducing reactions is the oxidative degradation of organic matter.

    6)pH has an essential effect on As(V)sorption and favorable pH can also be utilized to remove arsenic in groundwater by precipitation-coagulation.

    7)The higher evaporation and the texture of sediments in the Hetao Basin contribute to further increase the arsenic concentration in the groundwater.

    The authors wish to thank all the members of Naiman Desertification Research Station and Water Conservancy Bureau of Bayannur League(Inner Mongolia,China).This study was financially supported by the research projects 2011BAC07B02,XDA05050201-04-01,and 31170413.

    Bauer M,Blodau C,2006.Mobilization of arsenic by dissolved organic matter from iron oxides,soils and sediments.Science of the Total Environment,354:179–190.DOI:10.1016/j.scitotenv.2005.01.027.

    Bordoloi S,Nath M,Dutta RK,2013a.pH-conditioning for simultaneous removal of arsenic and iron ions from groundwater.Process Safety and Environmental Protection,91:405–414.DOI:10.1016/j.psep.2012.10.002.

    Bordoloi S,Nath SK,Gogoi S,et al.,2013b.Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH:Laboratory and field studies.Journal of Hazardous Materials,260:618–626.DOI:10.1016/j.jhazmat.2013.06.017.

    Chakraborti D,Rahman MM,Das B,et al.,2010.Status of groundwater arsenic contamination in Bangladesh:A 14-year study report.Water Research,44:5789–5802.DOI:10.1016/j.watres.2010.06.051.

    Deng YM,Wang YX,Ma T,2009.Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi,the Hetao Plain,Inner Mongolia,24:587–599.DOI:10.1016/j.apgeochem.2008.12.018.

    Fatmi Z,Azam I,Ahmed F,et al.,2009.Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan:Is river the source? Environmental Research,109:575–581.DOI:10.1016/j.envres.2009.04.002.

    Fujino Y,Guo XJ,Liu J,et al.,2004.Japan Inner Mongolia Arsenic Pollution Study Group:Mental health burden amongst inhabitants of an arsenic-affected area in Inner Mongolia,China.Social Science &Medicine,59:1969–1973.DOI:10.1016/j.socscimed.2004.02.031.

    Gong ZL,Lu XF,Watt C,et al.,2006.Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic.Analytica Chimica Acta,555:181–187.DOI:10.1016/j.aca.2005.08.062.

    Guo HM,Yang SZ,Tang XH,et al.,2008.Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin,Inner Mongolia.Science of the Total Environment,393:131–144.DOI:10.1016/j.scitotenv.2007.12.025.

    Guo HM,Zhang B,Li Y,et al.,2011a.Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao Basin,Inner Mongolia.Environmental Pollution,159:876–883.DOI:10.1016/j.envpol.2010.12.029.

    Guo HM,Zhang B,Wang GC,et al.,2010.Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin,Inner Mongolia.Chemical Geology,270:117–125.DOI:10.1016/j.chemgeo.2009.11.010.

    Guo HM,Zhang B,Zhang Y,2011b.Control of organic and iron colloids on arsenic partition and transport in high arsenic groundwaters in the Hetao Basin,Inner Mongolia.Applied Geochemistry,26(3):360–370.DOI:10.1016/j.apgeochem.2010.12.009.

    Guo HM,Zhang D,Wen DG,et al.,2014.Arsenic mobilization in aquifers of the southwest Songnen Basin,P.R.China:Evidences from chemical and isotopic characteristics.Science of the Total Environment,490:590–602.DOI:10.1016/j.scitotenv.2014.05.050.

    Hagiwara H,Akai J,Terasaki K,et al.,2011.Black colored sandy sediments caused by bacterial action,and the mechanism for arsenic enrichment of groundwater in Inner Mongolia.Applied Geochemistry,26:380–393.DOI:10.1016/j.apgeochem.2010.12.011.

    Liu FF,Wang JP,Zheng YJ,et al.,2013.Biomarkers for the evaluation of population health status 16 years after the intervention of arsenic-contaminated groundwater in Xinjiang,China.Journal of Hazardous Materials,262:1159–1166.DOI:10.1016/j.jhazmat.2013.03.058.

    Mukherjee A,Bhattacharya P,Shi F,et al.,2009.Chemical evolution in the high arsenic groundwater of the Huhhot Basin(Inner Mongolia,PR China)and its difference from the Western Bengal Basin(India).Applied Geochemistry,24:1835–1851.DOI:10.1016/j.apgeochem.2009.06.005.

    Nakaya S,Natsume H,Masuda H,et al.,2011.Effect of groundwater flow on forming arsenic contaminated groundwater in Sonargaon,Bangladesh.Journal of Hydrology,409:724–736.DOI:10.1016/j.jhydrol.2011.09.006.

    Neidhardt H,Norra S,Tang X,et al.,2012.Impact of irrigation with high arsenic burdened groundwater on the soil-plant system:Results from a case study in Inner Mongolia,China.Environmental Pollution,163:8–13.DOI:10.1016/j.envpol.2011.12.033.

    Nicolli HB,Bundschuh J,García JW,et al.,2010.Sources and controls for the mobility of arsenic in oxidizing groundwater from loess-type sediments in arid/semi-arid dry climates:Evidence from the Chaco-Pampean plain(Argentina).Water Research,44:5589–5604.DOI:10.1016/j.watres.2010.09.029.

    Ning ZX,Lobdell DT,Kwok RK,et al.,2007.Residential exposure to drinking water arsenic in Inner Mongolia,China.Toxicology and Applied Pharmacology,222:351–356.DOI:10.1016/j.taap.2007.02.012.

    Patel A,Patra DD,2014.Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth ofTagetes minuta,an essential oil bearing crop.Chemosphere,112:323–332.DOI:10.1016/j.chemosphere.2014.04.063.

    Ritter K,Aiken G,Ranville J,et al.,2006.Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III).Environmental Science &Technology,40:5380–5387.

    Sankar MS,Vega MA,Defoe PP,et al.,2014.Elevated arsenic and manganese in groundwaters of Murshidabad,West Bengal,India.Science of the Total Environment,488–489:570–579.DOI:10.1016/j.scitotenv.2014.02.077.

    Smedley PL,Zhang M,Zhang G,et al.,2003.Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin,Inner Mongolia,18:1453–1477.DOI:10.1016/s0883-2927(03)00062-3.

    Tao WT,Li AM,Long C,et al.,2011.Preparation,characterization and application of a copper(II)-bound polymeric ligand exchanger for selective removal of arsenate from water.Journal of Hazardous Materials,193:149–155.DOI:10.1016/j.jhazmat.2011.07.041.

    Xie XJ,Wang YX,Su CL,et al.,2012.Influence of irrigation practices on arsenic mobilization:Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin,northern China.Journal of Hydrology,424–425:37–47.DOI:10.1016/j.jhydrol.2011.12.017.

    Zhang H,Ma DS,Hu XX,2002.Arsenic pollution in groundwater from Hetao area,China.Environmental Geology,41:638–643.DOI:10.1007/s002540100442.

    Zhang YL,Cao WG,Wang WZ,et al.,2013.Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain,Northern China.Journal of Geochemical Exploration,135:31–39.DOI:10.1016/j.gexplo.2012.12.004.

    av又黄又爽大尺度在线免费看| 一区在线观看完整版| 久久久亚洲精品成人影院| 各种免费的搞黄视频| 日日摸夜夜添夜夜爱| 色婷婷久久久亚洲欧美| 99久久精品国产国产毛片| 午夜av观看不卡| 日韩一本色道免费dvd| 超色免费av| 欧美人与性动交α欧美精品济南到 | 蜜臀久久99精品久久宅男| 丝袜人妻中文字幕| 一区二区三区精品91| av播播在线观看一区| 午夜福利网站1000一区二区三区| 久久久久久久久久人人人人人人| 久久久久国产网址| 看免费成人av毛片| 欧美人与善性xxx| 黄色配什么色好看| 看十八女毛片水多多多| 国产成人精品在线电影| 纵有疾风起免费观看全集完整版| 街头女战士在线观看网站| 精品一区二区免费观看| 美女视频免费永久观看网站| 热99久久久久精品小说推荐| 纵有疾风起免费观看全集完整版| 免费播放大片免费观看视频在线观看| 男男h啪啪无遮挡| 在线观看免费高清a一片| 久久久久久久久久人人人人人人| 黄色一级大片看看| www.av在线官网国产| 日本免费在线观看一区| 男女啪啪激烈高潮av片| 欧美日韩精品成人综合77777| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 国产精品一区www在线观看| 国产成人精品一,二区| 99国产精品免费福利视频| 夫妻性生交免费视频一级片| 免费人妻精品一区二区三区视频| 一级毛片 在线播放| av卡一久久| 国产欧美日韩一区二区三区在线| 日本黄色日本黄色录像| 搡女人真爽免费视频火全软件| 啦啦啦视频在线资源免费观看| 亚洲av综合色区一区| 国产伦理片在线播放av一区| 欧美日韩视频精品一区| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 欧美激情 高清一区二区三区| 美女大奶头黄色视频| 国产精品免费大片| 国产精品99久久99久久久不卡 | av不卡在线播放| 国产色爽女视频免费观看| 国产高清不卡午夜福利| 少妇的逼好多水| 99久国产av精品国产电影| 少妇精品久久久久久久| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 黄网站色视频无遮挡免费观看| 亚洲精品一二三| 国产精品国产三级专区第一集| 久久午夜综合久久蜜桃| 九九爱精品视频在线观看| 波野结衣二区三区在线| 亚洲欧洲国产日韩| 欧美 亚洲 国产 日韩一| 欧美精品高潮呻吟av久久| av.在线天堂| 在线观看三级黄色| 人妻系列 视频| 久久av网站| 制服诱惑二区| 成人无遮挡网站| 新久久久久国产一级毛片| 日本-黄色视频高清免费观看| 亚洲精品乱久久久久久| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 18在线观看网站| 久久热在线av| 丝瓜视频免费看黄片| 欧美最新免费一区二区三区| 一级片'在线观看视频| 欧美日韩av久久| 国产av一区二区精品久久| 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 亚洲美女搞黄在线观看| 男女下面插进去视频免费观看 | 亚洲国产日韩一区二区| 一级毛片 在线播放| www日本在线高清视频| 精品国产一区二区三区四区第35| 国产极品天堂在线| xxxhd国产人妻xxx| 高清毛片免费看| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 卡戴珊不雅视频在线播放| 亚洲欧美日韩另类电影网站| 少妇熟女欧美另类| 涩涩av久久男人的天堂| 亚洲精华国产精华液的使用体验| 99精国产麻豆久久婷婷| 观看av在线不卡| 亚洲内射少妇av| 最后的刺客免费高清国语| 亚洲欧美色中文字幕在线| 边亲边吃奶的免费视频| 亚洲国产精品一区三区| 国产精品国产三级国产专区5o| 侵犯人妻中文字幕一二三四区| 国产精品无大码| 秋霞伦理黄片| 亚洲国产欧美日韩在线播放| 亚洲第一av免费看| 不卡视频在线观看欧美| 日韩人妻精品一区2区三区| 精品一区二区免费观看| 国产综合精华液| 婷婷色av中文字幕| 久久人妻熟女aⅴ| 色哟哟·www| 国产69精品久久久久777片| 三级国产精品片| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 精品少妇内射三级| av线在线观看网站| a级毛片在线看网站| 国产成人av激情在线播放| av线在线观看网站| 交换朋友夫妻互换小说| 黄色毛片三级朝国网站| av在线老鸭窝| 一边摸一边做爽爽视频免费| 草草在线视频免费看| 久久综合国产亚洲精品| 欧美最新免费一区二区三区| 考比视频在线观看| 蜜桃国产av成人99| 免费黄色在线免费观看| 美国免费a级毛片| 欧美日韩国产mv在线观看视频| 久久热在线av| 91在线精品国自产拍蜜月| 最近中文字幕高清免费大全6| 日韩欧美精品免费久久| 精品少妇内射三级| 亚洲国产毛片av蜜桃av| 亚洲av中文av极速乱| 丰满乱子伦码专区| 老熟女久久久| 一级,二级,三级黄色视频| 午夜久久久在线观看| 免费黄色在线免费观看| 免费高清在线观看日韩| 一级a做视频免费观看| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| 在线观看三级黄色| 香蕉精品网在线| 成人亚洲欧美一区二区av| 久久久久视频综合| 超碰97精品在线观看| 亚洲av电影在线进入| 自拍欧美九色日韩亚洲蝌蚪91| 一二三四在线观看免费中文在 | 国产精品一区二区在线不卡| 99久久人妻综合| 亚洲欧美精品自产自拍| 两个人看的免费小视频| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 欧美人与性动交α欧美软件 | 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 日本黄大片高清| 丰满迷人的少妇在线观看| 99热网站在线观看| 夫妻性生交免费视频一级片| 欧美精品亚洲一区二区| 一级毛片电影观看| 中国国产av一级| av国产精品久久久久影院| 9191精品国产免费久久| 热re99久久国产66热| 亚洲婷婷狠狠爱综合网| 亚洲国产色片| 成人二区视频| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 国产成人精品久久久久久| 日韩一本色道免费dvd| 日韩不卡一区二区三区视频在线| 人妻少妇偷人精品九色| 亚洲中文av在线| 黑人高潮一二区| 久久99热6这里只有精品| 波野结衣二区三区在线| 国产精品女同一区二区软件| 国产一区有黄有色的免费视频| 欧美日韩成人在线一区二区| 人妻人人澡人人爽人人| 国产在线视频一区二区| 777米奇影视久久| 性色av一级| 久久国产精品大桥未久av| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| 22中文网久久字幕| 国产av国产精品国产| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 欧美人与性动交α欧美精品济南到 | 蜜桃在线观看..| 亚洲美女视频黄频| 性色av一级| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| 少妇精品久久久久久久| 街头女战士在线观看网站| 国产在视频线精品| 女性生殖器流出的白浆| 久久热在线av| 两个人免费观看高清视频| 日韩精品有码人妻一区| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 免费在线观看完整版高清| 一本—道久久a久久精品蜜桃钙片| 韩国高清视频一区二区三区| 美女大奶头黄色视频| 卡戴珊不雅视频在线播放| h视频一区二区三区| 亚洲av成人精品一二三区| 99热6这里只有精品| 大陆偷拍与自拍| 精品第一国产精品| 18+在线观看网站| 最新的欧美精品一区二区| 久久午夜福利片| 亚洲,欧美精品.| 少妇人妻久久综合中文| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 久久久久精品性色| 全区人妻精品视频| 精品少妇内射三级| 九草在线视频观看| 人人澡人人妻人| 精品一区二区三卡| 一级毛片 在线播放| 热re99久久精品国产66热6| 免费女性裸体啪啪无遮挡网站| 观看美女的网站| 久久婷婷青草| 大片电影免费在线观看免费| 国产亚洲精品第一综合不卡 | 丝袜喷水一区| 少妇人妻 视频| 黄网站色视频无遮挡免费观看| 男女免费视频国产| 又黄又粗又硬又大视频| 夫妻性生交免费视频一级片| 午夜福利视频精品| 精品人妻熟女毛片av久久网站| 国产亚洲欧美精品永久| 在线观看人妻少妇| 亚洲av男天堂| 老熟女久久久| 一区二区av电影网| 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 国精品久久久久久国模美| 国产不卡av网站在线观看| 一本色道久久久久久精品综合| 女的被弄到高潮叫床怎么办| 亚洲美女黄色视频免费看| 久久久久精品性色| 人成视频在线观看免费观看| 2021少妇久久久久久久久久久| 久久久国产精品麻豆| 免费av中文字幕在线| 国产乱来视频区| 免费高清在线观看日韩| 日日爽夜夜爽网站| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到 | 一区二区三区乱码不卡18| 国产一区二区三区综合在线观看 | videosex国产| 高清不卡的av网站| 欧美日本中文国产一区发布| 在线观看美女被高潮喷水网站| 精品人妻在线不人妻| 精品午夜福利在线看| 国产乱人偷精品视频| 69精品国产乱码久久久| 黄网站色视频无遮挡免费观看| 精品人妻偷拍中文字幕| 狂野欧美激情性bbbbbb| 国产精品 国内视频| 久久 成人 亚洲| 欧美激情国产日韩精品一区| 日韩成人av中文字幕在线观看| 赤兔流量卡办理| 亚洲内射少妇av| 在线观看人妻少妇| 国产欧美另类精品又又久久亚洲欧美| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 麻豆乱淫一区二区| 蜜臀久久99精品久久宅男| 欧美日韩av久久| 免费观看av网站的网址| 中文字幕精品免费在线观看视频 | 国产精品99久久99久久久不卡 | 最近中文字幕2019免费版| 高清不卡的av网站| 不卡视频在线观看欧美| 制服人妻中文乱码| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 成人影院久久| 又黄又爽又刺激的免费视频.| 男女边摸边吃奶| 亚洲情色 制服丝袜| 中文字幕免费在线视频6| 久久国产精品大桥未久av| 2018国产大陆天天弄谢| 婷婷色av中文字幕| 精品熟女少妇av免费看| 搡老乐熟女国产| 老熟女久久久| 1024视频免费在线观看| 亚洲,一卡二卡三卡| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 亚洲欧美成人精品一区二区| av片东京热男人的天堂| 丰满饥渴人妻一区二区三| 国产免费福利视频在线观看| videossex国产| 亚洲人成77777在线视频| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 午夜老司机福利剧场| 99视频精品全部免费 在线| 最后的刺客免费高清国语| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| av.在线天堂| 高清欧美精品videossex| 免费观看av网站的网址| 曰老女人黄片| 男女啪啪激烈高潮av片| 黄网站色视频无遮挡免费观看| 超色免费av| 人妻系列 视频| 免费人妻精品一区二区三区视频| 婷婷色av中文字幕| 最新中文字幕久久久久| 国产乱人偷精品视频| 女人精品久久久久毛片| 丝袜喷水一区| 一级a做视频免费观看| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx在线观看| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 欧美老熟妇乱子伦牲交| 91在线精品国自产拍蜜月| 国产一区二区激情短视频 | 18禁观看日本| 桃花免费在线播放| 久久国产精品男人的天堂亚洲 | 亚洲,欧美,日韩| xxxhd国产人妻xxx| 亚洲av电影在线进入| 午夜老司机福利剧场| 肉色欧美久久久久久久蜜桃| 曰老女人黄片| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 街头女战士在线观看网站| 国产成人欧美| 亚洲国产av新网站| 久久久a久久爽久久v久久| 18禁裸乳无遮挡动漫免费视频| 日本欧美视频一区| 欧美国产精品一级二级三级| 考比视频在线观看| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区| 亚洲欧美日韩卡通动漫| 久久久久久久久久人人人人人人| 在线 av 中文字幕| 这个男人来自地球电影免费观看 | 人妻少妇偷人精品九色| 日本与韩国留学比较| 国产一级毛片在线| 国产一区二区在线观看av| 97在线人人人人妻| 亚洲内射少妇av| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 欧美日韩综合久久久久久| 在线天堂最新版资源| 一本大道久久a久久精品| 久久99一区二区三区| 97精品久久久久久久久久精品| 国产黄频视频在线观看| 欧美成人午夜免费资源| 精品午夜福利在线看| 80岁老熟妇乱子伦牲交| 久久综合国产亚洲精品| 色94色欧美一区二区| 我要看黄色一级片免费的| 永久免费av网站大全| 97精品久久久久久久久久精品| 91国产中文字幕| 午夜精品国产一区二区电影| 亚洲av男天堂| 成年动漫av网址| 久久午夜综合久久蜜桃| 日韩熟女老妇一区二区性免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美一区二区三区黑人 | 久久亚洲国产成人精品v| 亚洲 欧美一区二区三区| 免费av不卡在线播放| 老司机亚洲免费影院| 男的添女的下面高潮视频| 亚洲欧美一区二区三区国产| 蜜臀久久99精品久久宅男| 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| 国产精品久久久av美女十八| 久久久久人妻精品一区果冻| 精品酒店卫生间| 一级a做视频免费观看| av在线老鸭窝| 国产成人91sexporn| av在线app专区| 免费久久久久久久精品成人欧美视频 | 亚洲av日韩在线播放| 最近2019中文字幕mv第一页| 一区在线观看完整版| 乱人伦中国视频| 久久久国产一区二区| 色5月婷婷丁香| 毛片一级片免费看久久久久| 欧美xxⅹ黑人| 性色av一级| 日韩制服骚丝袜av| 男女无遮挡免费网站观看| 9色porny在线观看| 国产av精品麻豆| 中文乱码字字幕精品一区二区三区| 这个男人来自地球电影免费观看 | 丰满饥渴人妻一区二区三| 一区二区av电影网| 午夜福利乱码中文字幕| 久久97久久精品| 狠狠婷婷综合久久久久久88av| a 毛片基地| 哪个播放器可以免费观看大片| 亚洲少妇的诱惑av| 精品一区在线观看国产| 色94色欧美一区二区| 男人爽女人下面视频在线观看| 国产黄频视频在线观看| videos熟女内射| 丰满乱子伦码专区| 赤兔流量卡办理| 男女国产视频网站| a级片在线免费高清观看视频| 久久影院123| 五月开心婷婷网| 国内精品宾馆在线| 免费人妻精品一区二区三区视频| 国产乱人偷精品视频| 欧美国产精品一级二级三级| 伦理电影大哥的女人| 精品一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕 | 最新中文字幕久久久久| 国产淫语在线视频| 两个人看的免费小视频| 你懂的网址亚洲精品在线观看| 侵犯人妻中文字幕一二三四区| 欧美人与性动交α欧美精品济南到 | 国产 精品1| 成人毛片a级毛片在线播放| 欧美国产精品va在线观看不卡| 看免费成人av毛片| 亚洲av电影在线观看一区二区三区| 亚洲精品久久成人aⅴ小说| 五月玫瑰六月丁香| 久久久国产欧美日韩av| 18禁裸乳无遮挡动漫免费视频| 在线观看一区二区三区激情| 美女国产视频在线观看| 十八禁高潮呻吟视频| 日本vs欧美在线观看视频| 涩涩av久久男人的天堂| 国产精品国产三级国产av玫瑰| av在线老鸭窝| 午夜激情久久久久久久| 秋霞伦理黄片| 成人影院久久| 国产成人一区二区在线| 免费大片18禁| 日韩,欧美,国产一区二区三区| 一二三四中文在线观看免费高清| 久久精品人人爽人人爽视色| 久久午夜福利片| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 国产一级毛片在线| 高清av免费在线| 国产一区二区激情短视频 | 18+在线观看网站| 国产免费一区二区三区四区乱码| 最新的欧美精品一区二区| 精品人妻一区二区三区麻豆| 久久午夜综合久久蜜桃| 欧美日韩一区二区视频在线观看视频在线| 久久精品久久久久久久性| 免费不卡的大黄色大毛片视频在线观看| 亚洲性久久影院| av不卡在线播放| av免费观看日本| 免费人成在线观看视频色| 国产免费视频播放在线视频| 日韩av在线免费看完整版不卡| 久久精品国产a三级三级三级| 亚洲欧洲精品一区二区精品久久久 | av女优亚洲男人天堂| 日本午夜av视频| 免费少妇av软件| 国精品久久久久久国模美| 伊人亚洲综合成人网| 国产精品久久久久久久久免| 亚洲内射少妇av| 亚洲经典国产精华液单| 下体分泌物呈黄色| 国产一区二区在线观看av| 中国美白少妇内射xxxbb| 一本久久精品| 日本午夜av视频| 一区二区日韩欧美中文字幕 | 成年人免费黄色播放视频| 国产精品嫩草影院av在线观看| 欧美bdsm另类| 国产成人午夜福利电影在线观看| 亚洲精品国产av成人精品| 香蕉国产在线看| 国产又爽黄色视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品日韩在线中文字幕| 一个人免费看片子| 亚洲 欧美一区二区三区| a级毛片在线看网站| 亚洲国产精品国产精品| 在线观看美女被高潮喷水网站| 永久免费av网站大全| 老熟女久久久| 黄片播放在线免费| 精品福利永久在线观看| 自线自在国产av| 亚洲国产精品一区三区| 大话2 男鬼变身卡| 日韩制服丝袜自拍偷拍| 搡老乐熟女国产| 男女免费视频国产| 国产深夜福利视频在线观看| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区黑人 | 大陆偷拍与自拍| 婷婷成人精品国产| 多毛熟女@视频| 一级毛片黄色毛片免费观看视频| 女的被弄到高潮叫床怎么办| 精品一区在线观看国产| 成年美女黄网站色视频大全免费| 飞空精品影院首页| 亚洲精品国产色婷婷电影| 免费观看av网站的网址| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品一区三区| 纵有疾风起免费观看全集完整版| 亚洲图色成人| 天美传媒精品一区二区| 母亲3免费完整高清在线观看 | 尾随美女入室|