• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The response of Caragana microphylla seedlings to water table changes in Horqin Sandy Land,China

    2015-12-19 08:39:30YunHuaMaTongHuiZhangXinPingLiuWeiMaoXiangFeiYue
    Sciences in Cold and Arid Regions 2015年1期

    YunHua Ma ,TongHui Zhang ,XinPing Liu ,Wei Mao ,XiangFei Yue

    1. Naiman Desertification Research Station,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    2. University of Chinese Academy of Sciences,Beijing 100049,China

    1 Introduction

    In the semi-arid Horqin Sandy Land of Northeast China,Caragana microphylla,a perennial leguminous shrub,is the dominant plant species and is widely planted in this region to control soil erosion and land desertification.Shrub establishment plays an important role in rehabilitating desertified ecosystems in this region(Su and Zhao,2003).Water is a key limiting factor for vegetation restoration in the semi-arid areas of China.Groundwater is an important source of water in sandy land,which influences the plant's physiological and ecological characteristics.The plant's main response to changes in soil moisture content is through the root system.Under dry conditions,the root systems show a certain degree of plasticity in their growth(Readeret al.,1993),and changes in root growth,density,surface area and distribution patterns are more sensitive to change than soil nutrients and other physiological parameters of root systems(Jastrow and Miller,1993;Georgeet al.,1997).However,groundwater is one of the main water sources for natural vegetation in arid areas,and changes in the depth of the groundwater table have a profound effect on the growth and morphological distribution of plants.Plants can adapt to environmental changes by adjusting allotment of resources.Roots are the first organ which changes their growth patterns under the condition of a biotic adversity-stress.Water is the key limiting factor for plant growth(Gregory 1989;Sayeret al.,2006)and also greatly affects fine root distribution(Zhou and Shangguan,2007).Thus,plants can adapt to stressful conditions.

    The objective of this study was to monitor the growth response ofC.microphyllato changes of water table controlled artificially in semiarid areas of Horqin Sandy Land.Accurate research on perennialC.microphyllain a natural setting was difficult due to the distribution of a complex root system.Thus,we explored the physiological and ecological characteristics ofC.microphyllaseedlings in an artificially controlled water table.We observed the growth conditions of abovegroundC.microphyllaseedlings over two consecutive years,then removed the root system for further examination.

    2 Material and methods

    2.1 Site description

    This experiment was conducted at the Naiman Desertification Research Station,Chinese Academy of Sciences,located 10 km northeast of Naiman County at Horqin Sandy Land,Inner Mongolia,China(42°55′N,120°42′E;360 m a.s.l.).This region has a semi-arid continental temperate monsoon climate,with windy and dry winter and spring,and warm and comparatively rain-rich summer followed by short and cool autumn.Mean annual precipitation(for 40 years)is 366 mm and mean annual pan evaporation is about 1,935 mm.Rainfall is erratic and shows strong seasonal and annual variability.Annual mean temperature is around 6.4 °C,with the minimum monthly mean temperature of-13.1 °C in January and the maximum of 23.7 °C in July.Annual mean wind velocity ranges 3.2–4.1 m/s,and the directions of prevailing winds are northwest in winter and spring and southwest to south in summer and autumn(Zhu and Chen,1994).The zonal soils are identified as sandy chestnut soils,which are mostly equivalent to the Orthi-Sandic Entisols of sand origin in terms of the FAO-UNESCO system(Suet al.,2006).The degraded sandy grassland is usually covered by weed communities and generally dominated by psammophytes including some grasses(e.g.,Chenopodium acuminatum,Cleistogenes squarrosa(Trin.ex Ledeb.)Keng.,Setaria viridis(L.)P.Beauv.,Phragmites australis(Cav.)Trin.ex Steud.,Digitaria ciliaris(Retz.)Koeler,Leymus chinensis(Trin.)Tzvelev),forbs(e.g.,Mellissitus ruthenicus(L.)C.W.Chang,Salsola collinaPall.,Agriophyllum squrrosum(L.)Moq.,Artemisia scopariaWaldst.Kitma.),shrubs(e.g.,Caragana microphyllaLam.,Lespedeza davurica(Laxm.)Schindl.),and subshrubs(e.g.,Artemisia halodendronTurcz.ex Besser,A.frigidaWilld.).

    2.2 Experimental design and sampling

    This experiment mainly studied the response ofC.microphyllaseedlings to water supply controlled artificially at different groundwater depths.Considering the actual operability and growth characteristic ofC.microphylla,the groundwater levels were designed for 40,80,120,180 cm and CK(control),and each treatment with three repetitions.Each plant was grown in a 30 cm diameter PVC(Poly Vinyl Chloride)bucket.The PVC buckets of the four treatments contained bottoms,while the PVC buckets of CK contained no bottom.The experiment started in April 2011 and ended in September 2012.First,the buried PVC buckets of the four treatments and CK had heights of 0.6,1.0,0.6,2.0,2.0 m,respectively.Secondly,the treatment buckets were filled with stones(diameter<10 mm)and coarse sand to a height of 20 cm,thus forming a free surface layer in the bottom,then backfilled with undisturbed soil into the buckets,and each bucket had a buried water pipe for the water supply.Thirdly,C.microphyllaseeds were placed into the soil on May 1,2011.An 8 mm of water was applied every other day until germination.Finally,Mariotte bottles were installed to control groundwater depth and record the amount of supplied water.Mariotte bottles were not installed in CK buckets,which accepted only natural precipitation.

    The local underground depth is 7 m,thus,CK seedlings ofC.microphyllahas no access to the groundwater.The soil water dynamic content was measured by the portable monitoring soil moisture measuring instrument TRIME-FM-P3(IMKO Micromodultechnik,Ettlingen,Germany)during the period of growth.Measured plant height and canopy of annual seedlings occurred in September 2011,and measured plant height and canopy of two year seedlings,above-ground biomass,root biomass and length occurred in September 2012.The roots in each bucket were excavated every 20 cm with a pointed shovel,trying not to damage the roots.All the roots for each 20 cm sample were removed,then washed with distilled water and divided into two parts,thick roots with a diameter of >2 mm and fine roots with a diameter of<2 mm.The roots were dried at 80 °C for 48 hours,then weighed and data recorded.In this paper the data of all indices are for individual plants.

    2.3 Data analysis

    Differences in vegetation characteristics and biomass were compared using the multiple comparison and one-way analysis of variance(ANOVA)procedures.The LSD tests were performed to determine the differences between treatment means atP<0.05.The descriptive statistical parameters and significance test were calculated by SPSS(version 17.0).

    3 Results and discussion

    3.1 Dynamics of soil water content

    The monitoring results of soil water content in Figure 1 shows that soil moisture is closely correlated to groundwater depths.The soil volumetric water in the upper 0–20 cm of soil is close to the saturated state when groundwater depth is 40 cm.The soil moisture trend is similar when groundwater depth is 80,120 and 180 cm,which increased at 0–50 cm of soil and then decreased gradually after the peak,and then increased rapidly when close to water sources and finally stabilized in a saturated state.The soil moisture trend of CK is different from other treatments,which increased gradually at 0–50 cm of soil,then decreased at 50–70 cm of soil and finally stabilized around 4% at 70–160 cm.This suggests that the ecological and physiological characteristics ofC.microphyllacan adapt to different soil environments.

    Figure 1 The soil volumetric water content at different water tables

    3.2 Ecological characteristics of aboveground parts

    As presented in Figure 2a,one-year seedling height in the 40 cm treatment was 5 cm which was the smallest under all treatments,then increased with deeper underground water,and the maximum value of 15 cm appeared in the 120 cm treatment,then decreased to around 10 cm in the 180 cm treatment and CK.The height trend was similar in both years,but two-year seedling height was much higher than that of one-year seedlings.The smallest height was 13.2 cm in the 40 cm treatment,and the maximum value of 75 cm appeared in the 120 cm treatment.The other three treatments are around 60 cm,with no significant difference.

    The canopy trend of consecutive years are similar as presented in Figure 2b,where the curves are unimodal according to groundwater depth.The canopy was the smallest for 5 cm2and 232 cm2in 2011 and 2012 separately for the 40 cm treatment,and then increased with groundwater depth.The maximum value was 30 cm2and 1,436 cm2in the 120 cm treatment,and then decrease in the 180 cm treatment and CK.

    These results suggest that shallow groundwater at 80 cm restrain the aboveground growth ofC.microphyllaseedlings,and the most suitable water was at 120 cm for plant height and canopy growth ofC.microphyllaseedlings during the first two years.

    3.3 Ecological characteristics of underground parts

    As presented in Figure 3a,the root biomass of two-year seedlings under the 40 cm treatment was 2.5 g,which is the smallest among all treatments.then the root biomass increased with deeper underground water,and the peak was 52 g under the 120 cm treatment and then declined to 41 g and 26 g under the 180 cm treatment and CK,respectively.The root biomass was 28 g under the 80 cm treatment,with no significant difference in CK.

    Root length of two-year seedlings increased gradually from 0.72 to 116 m with increased groundwater depth of 40 to 180 cm in Figure 3b,and all treatments have significant differences.Root length under CK was 24.24 m,54 m under the 80 cm treatment,with significant difference in CK.

    These results show that groundwater shallower than 80 cm would restrain the root growth of two-yearC.microphyllaseedlings.The most suitable groundwater was 120 cm for the root biomass and 180 cm for root length during the first two years.

    The root biomass was 28 g under the 80 cm treatment,with no significant difference in CK which was 26 g.Root length was 54 m under the 80 cm treatment,with significant differences in CK which was 24.24 m.This suggests that the number of finer roots forC.microphyllaseedlings increased under shallow groundwater at 80 cm than in a natural drought environment.The fine root biomass under the 80 cm treatment and CK was 14.14 g and 2.81 g,respectively,while root length under the 80 cm treatment and CK was 5,195.53 cm and 2,159.50 cm,respectively.These results are presented in Table 1.

    Figure 2 Plant height(a)and canopy breadth(b)of Caragana microphylla in 2011 and 2012 at different water tables.Abscissa 40,80,120,180 cm for manual control of underground water depth,compared to CK.Different letters indicate statistical differences among different groundwater treatments(P<0.05)

    Table 1 Root ecological characteristics of a single Caragana microphyllaplant in 2012

    In general,Table 1 shows that thick roots are the determinate factor for root biomass while fine roots are the determinate factor for root length.Table 1 also shows that the minimum value of root length density appeared in the 40 cm treatment,suggesting that shallow groundwater of 40 cm restrains the root length density of two-yearC.microphyllaseedlings.The maximum value of thick root length density appeared in CK,which suggest that thick root growth increases in a natural drought environment.The maximum value of fine root length density appeared in the 80 cm treatment and there was no significant difference in fine root length density between treatments of 80,120 and 180 cm.The fine root length density was much smaller than the other treatments above,which suggests that adding groundwater to the water supply can promote the growth of fine root length density.

    3.4 Root-shoot ratio

    As presented in Figure 4,the order of root-shoot ratio for different treatments is 80>120>180>CK>40 cm.

    The root-shoot ratio under the 40 cm treatment was 0.37,which is the smallest among all treatments;the peak value appeared in the 80 cm treatment,then the root-shoot ratio decreased with deeper underground water depth.Previous studies have found that the root-shoot ratio ofBrassica napusL.(Wanget al.,2013)and winter wheat(Songet al.,2009)increased as the soil became drier.The different trend of the root-shoot ratio between this paper research and previous studies is explained in Figure 5.

    Information on root distribution is very important for a better understanding of hydrology and the root system.As presented in Figure 5a,all the root biomass is distributed in the 0–20 cm soil layer under the 40 cm treatment.The root biomass distribution is more than 30% in the 0–20 cm soil layer under the 80,120 and 180 cm treatments,and can reach up to 60% in the 0–20 cm soil layer in CK.The root biomass distribution is 30% in the 20–60 cm soil layer,which becomes smaller layer by layer in the 20–40 and 40–60 cm soil layers under the 80,120,180 cm treatments and CK.There was no root biomass distribution in the 60–80 cm soil layer in CK.The final 30% of root biomass distributed in the soil layer was close to the groundwater under 80,120 and 180 cm treatments.This is more intuitive in Figure 5b where root length distribution is more than 50% under the 80,120 and 180 cm treatments,and the production of fine roots due to groundwater.

    Here,we explain why the root-shoot ratio is smaller in the drought soil of CK than in the wet environment of the 80,120 and 180 cm treatments.The soil water content in 60 cm is the maximum in CK(Figure 1).That is because of that the infiltration of rainwater and a lack of underground water promotes horizontal root growth in the 0–60 cm soil.Studies in Horqin Sandy Land(Niuet al.,2013)show that the roots of perennialC.microphyllais mainly distributed in the 0–60 cm soil layer in natural environment.In this paper,roots ofC.microphylla,planted in buckets,could not access water from the surrounding environment,so the horizontal growth of roots was limited in the drought soil of CK.

    Figure 4 Root-shoot ratio of Caragana microphylla in 2012 at different water tables.Different letters indicate statistical differences among different groundwater treatments(P<0.05)

    Figure 5 The percentage of root biomass(a)and root length(b)in different soil layers in 2012 at different water tables

    4 Conclusion

    Caragana microphyllaseedlings adapted to different water table depths in the Horqin Sandy Land of China by changes in the plants ecological characteristics.The shallow groundwater of 40 cm restrained the growth ofC.microphyllaseedlings and the most suitable water was 120 cm for plant height and canopy growth ofC.microphyllaseedlings during the first two years.The growth of vertical roots is positively correlated with groundwater depth;a thick root is the determinate factor for root biomass while the fine root is the determinate factor for root length.The access of groundwater promotes the growth of fine roots and the root-shoot ratio decreases as the underground water deepens from 80 to 180 cm.If there was a need to produce more root of medicinal plant,the method in this paper can provide reference.

    We thank all technicians for their help with field investigation.This research was funded by the Chinese National Key Projects for Basic Scientific Research(No.2009CB421303),the Chinese National Support Projects of Science and Technology(No.2011BAC07B02),the Strategic Leading Science and Technology Project of Chinese Academy of Sciences(No.XDA05050201-04-01)and the Chinese National Science Foundation(No.41371053).

    George E,Seith B,Schaeffer C,et al.,1997.Responses ofPicea,PinusandPseudotsugaroots to heterogeneous nutrient distribution in soil.Tree Physiology,17(1):39–45.DOI:10.1093/treephys/17.1.39.

    Gregory PJ,1989.Water-use efficiency of crops in the semi-arid tropics.In:Soil,Crop and Water Management Systems for Rainfed Agriculture in the Sudano-Sahelian Zone,Niamey,Niger.International Crops Research Institute for the Semi-Arid Tropics(ICRISAT),Patancheru,A.P.502324,India,pp.85–98.

    Jastrow JD,Miller RM,1993.Neighbor influences on root morphology and mycorrhizal fungus colonization in tall grass prairie plants.Ecology,74(2):561–569.DOI:org/10.2307/1939316.

    Niu CY,Alamusa,Zong Q,et al.,2013.Allocation patterns of above-and below-ground biomass ofCaragana microphyllain Horqin Sandy Land,North China.Chinese Journal of Ecology,32(8):1980–1986.http://www.cje.net.cn/CN/Y2013/V32/I8/1980.

    Reader RJ,Jalili A,Grime JP,et al.,1993.A comparative study of plasticity in seedling rooting depth in drying soil.Journal of Ecology,81(3):543–550.http://www.jstor.org/stable/2261532.

    Sayer EJ,Tanner EVJ,Cheesman AW,2006.Increased litter fall changes fine root distribution in a moist tropical forest.Plant Soil,281:5–13.DOI:10.1007/s11104-005-6334-x.

    Song FP,Hu LY,Zhou GS,et al.,2009.Effects of water table on rapeseed(Brassica napusL.):Growth and yield.Acta Agronomica Sinica,35(8):1508–1515.DOI:10.3724/SP.J.1006.2009.01508.

    Su YZ,Li YL,Zhao HL,2006.Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration,Inner Mongolia,northern China.Biogeochemistry,79:297–314.DOI:10.1007/s10533-005-5273-1.

    Su YZ,Zhao HL,2003.Soil properties and plant species in an age sequence ofCaragana microphyllaplantations in the Horqin Sandy Land,north China.Ecological Engineering,20:223–235.DOI:10.1016/S0925-8574(03)00042-9.

    Wang YZ,Liu XW,Sun HY,et al.,2013.Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat.Chinese Journal of Eco-Agriculture,21(3):282–289.DOI:10.3724/SP.J.1011.2013.00282.

    Zhou ZC,Shangguan ZP,2007.Vertical distribution of fine roots in relation to soil factors inPinus tabulaeformisCarr.forest of the Loess Plateau of China.Plant Soil,291:119–129.DOI:10.1007/s11104-006-9179-z.

    Zhu ZD,Chen GT,1994.The Sandy Desertification in China.Beijing:Science Press,pp.7–268.(in Chinese)

    欧美激情久久久久久爽电影| 久久精品夜色国产| 成人漫画全彩无遮挡| 国国产精品蜜臀av免费| 在线观看三级黄色| 少妇被粗大猛烈的视频| 久久99精品国语久久久| 亚洲欧美日韩无卡精品| 欧美bdsm另类| 天美传媒精品一区二区| 如何舔出高潮| 色综合色国产| 99热国产这里只有精品6| 噜噜噜噜噜久久久久久91| av女优亚洲男人天堂| 国产大屁股一区二区在线视频| 久久鲁丝午夜福利片| 亚洲真实伦在线观看| 亚洲欧洲日产国产| 人妻系列 视频| 99久久精品一区二区三区| 永久网站在线| 日本猛色少妇xxxxx猛交久久| 久久久久九九精品影院| 天堂网av新在线| 全区人妻精品视频| 亚州av有码| 日韩欧美精品免费久久| 免费少妇av软件| 亚洲电影在线观看av| 精品久久久久久电影网| 99久久精品国产国产毛片| 又爽又黄a免费视频| 国产高清不卡午夜福利| 亚洲精品乱久久久久久| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 两个人的视频大全免费| 五月伊人婷婷丁香| 爱豆传媒免费全集在线观看| 日本wwww免费看| 精品一区二区免费观看| 精品国产三级普通话版| 少妇人妻一区二区三区视频| 久久热精品热| 蜜臀久久99精品久久宅男| 两个人的视频大全免费| 自拍偷自拍亚洲精品老妇| 精华霜和精华液先用哪个| 亚洲av免费在线观看| 国产精品福利在线免费观看| 亚洲av国产av综合av卡| 2022亚洲国产成人精品| 久久精品人妻少妇| 中文字幕av成人在线电影| 免费观看av网站的网址| 欧美精品人与动牲交sv欧美| 亚洲av中文av极速乱| 亚洲真实伦在线观看| 国产真实伦视频高清在线观看| 日韩伦理黄色片| 一级a做视频免费观看| 精品久久久精品久久久| 干丝袜人妻中文字幕| 伊人久久国产一区二区| 国产一区有黄有色的免费视频| 波野结衣二区三区在线| 黑人高潮一二区| 美女cb高潮喷水在线观看| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 一级二级三级毛片免费看| 韩国高清视频一区二区三区| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 国产黄片视频在线免费观看| 亚洲精品乱码久久久v下载方式| 白带黄色成豆腐渣| 亚洲精品色激情综合| 2021少妇久久久久久久久久久| 国产高清三级在线| 亚洲av欧美aⅴ国产| 大码成人一级视频| 99热这里只有是精品在线观看| 亚洲精华国产精华液的使用体验| 26uuu在线亚洲综合色| av在线播放精品| 久久久久久久国产电影| 老司机影院毛片| 少妇人妻久久综合中文| 精品一区二区三区视频在线| 欧美变态另类bdsm刘玥| 亚洲成人精品中文字幕电影| 97热精品久久久久久| 涩涩av久久男人的天堂| 亚洲精品aⅴ在线观看| 有码 亚洲区| 国产美女午夜福利| 欧美高清成人免费视频www| 国产精品偷伦视频观看了| 69人妻影院| 蜜桃久久精品国产亚洲av| 99精国产麻豆久久婷婷| 国国产精品蜜臀av免费| 亚洲精品456在线播放app| 亚洲最大成人中文| 视频区图区小说| 亚洲国产精品成人综合色| 亚洲图色成人| av网站免费在线观看视频| 欧美国产精品一级二级三级 | 欧美日韩视频精品一区| 成人无遮挡网站| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 国产精品精品国产色婷婷| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 国产精品一二三区在线看| 特级一级黄色大片| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 国产精品国产av在线观看| 亚洲欧美精品专区久久| 能在线免费看毛片的网站| 国产亚洲av片在线观看秒播厂| 午夜福利网站1000一区二区三区| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| 免费观看av网站的网址| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办| 国产免费福利视频在线观看| 日本av手机在线免费观看| 国产欧美日韩一区二区三区在线 | 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 一级毛片我不卡| 国产免费又黄又爽又色| 国产极品天堂在线| 男男h啪啪无遮挡| 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 国产成人免费无遮挡视频| 涩涩av久久男人的天堂| 日韩人妻高清精品专区| 亚洲色图综合在线观看| 一级爰片在线观看| 免费高清在线观看视频在线观看| av国产久精品久网站免费入址| 国产亚洲av片在线观看秒播厂| 久久热精品热| 少妇猛男粗大的猛烈进出视频 | 青春草亚洲视频在线观看| 国产爽快片一区二区三区| 最近中文字幕2019免费版| 一级a做视频免费观看| 女人被狂操c到高潮| 国产黄片美女视频| 欧美另类一区| 伊人久久国产一区二区| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 一本一本综合久久| 亚洲国产日韩一区二区| 亚洲国产欧美在线一区| 国产欧美日韩一区二区三区在线 | 麻豆乱淫一区二区| 九九在线视频观看精品| 综合色丁香网| 成人综合一区亚洲| 国产真实伦视频高清在线观看| 精品久久久精品久久久| 熟女av电影| 精品一区二区免费观看| 99热这里只有是精品在线观看| 老司机影院毛片| 欧美国产精品一级二级三级 | 国产av不卡久久| 久久精品久久精品一区二区三区| 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 麻豆成人午夜福利视频| 成年版毛片免费区| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 国产极品天堂在线| 性插视频无遮挡在线免费观看| 国产日韩欧美在线精品| 欧美bdsm另类| 少妇 在线观看| 精品酒店卫生间| 久久久久久伊人网av| 亚洲成人久久爱视频| 91精品伊人久久大香线蕉| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 午夜亚洲福利在线播放| 久久99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 欧美成人精品欧美一级黄| 欧美xxxx性猛交bbbb| 国产69精品久久久久777片| 国产综合懂色| 亚洲精华国产精华液的使用体验| 免费大片黄手机在线观看| 国产爱豆传媒在线观看| 美女主播在线视频| av一本久久久久| 国产 精品1| av线在线观看网站| 黄色配什么色好看| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产成人久久av| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 日本一二三区视频观看| 国产黄片美女视频| 久久久精品欧美日韩精品| 日日啪夜夜爽| 黄片无遮挡物在线观看| 在现免费观看毛片| 久久女婷五月综合色啪小说 | 国产在线一区二区三区精| 国产精品国产三级专区第一集| 成人无遮挡网站| 亚洲国产精品999| 久久久久久久久大av| 美女高潮的动态| 亚洲电影在线观看av| 亚洲精品久久午夜乱码| 中文字幕久久专区| 男女下面进入的视频免费午夜| 丝袜脚勾引网站| 国产男女超爽视频在线观看| 国产黄片视频在线免费观看| 日韩成人伦理影院| 亚洲精品色激情综合| 欧美日韩亚洲高清精品| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 精品酒店卫生间| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 美女国产视频在线观看| 欧美成人午夜免费资源| 精品久久久久久久久亚洲| 久久久久国产精品人妻一区二区| 边亲边吃奶的免费视频| 亚洲精品国产av成人精品| 在线精品无人区一区二区三 | 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 久久精品夜色国产| 搞女人的毛片| 亚洲精品视频女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费视频播放在线视频| 下体分泌物呈黄色| 亚洲美女搞黄在线观看| 精品酒店卫生间| 1000部很黄的大片| 久久精品久久久久久噜噜老黄| 最近中文字幕高清免费大全6| 欧美日韩亚洲高清精品| h日本视频在线播放| 亚洲成人精品中文字幕电影| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 亚洲人成网站高清观看| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久精品一区二区三区| 男人狂女人下面高潮的视频| 人妻一区二区av| 国产高潮美女av| 免费大片18禁| 极品教师在线视频| 在线精品无人区一区二区三 | 欧美日韩在线观看h| 国产精品久久久久久av不卡| 国产综合懂色| 菩萨蛮人人尽说江南好唐韦庄| 嘟嘟电影网在线观看| 在线观看av片永久免费下载| 午夜爱爱视频在线播放| 纵有疾风起免费观看全集完整版| 一本一本综合久久| 国产成人精品久久久久久| 精品久久久久久久末码| 久久久久久伊人网av| 亚洲av不卡在线观看| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 日本一二三区视频观看| 欧美三级亚洲精品| 大香蕉97超碰在线| 夜夜看夜夜爽夜夜摸| 18禁在线无遮挡免费观看视频| 免费看光身美女| 舔av片在线| 亚洲av中文字字幕乱码综合| 亚洲内射少妇av| 老女人水多毛片| 日韩制服骚丝袜av| 精品人妻一区二区三区麻豆| 亚洲美女视频黄频| 亚洲国产精品国产精品| 免费av毛片视频| 欧美极品一区二区三区四区| 欧美日韩视频精品一区| 国产v大片淫在线免费观看| 亚洲精品,欧美精品| 亚洲成人久久爱视频| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 国产老妇伦熟女老妇高清| 99精国产麻豆久久婷婷| 美女内射精品一级片tv| 波野结衣二区三区在线| 日韩欧美精品免费久久| 日本免费在线观看一区| 国产精品熟女久久久久浪| 一级毛片黄色毛片免费观看视频| 国产亚洲av嫩草精品影院| 国产精品一区二区在线观看99| 女人十人毛片免费观看3o分钟| 亚洲在久久综合| 亚洲av一区综合| 97超碰精品成人国产| 欧美国产精品一级二级三级 | 高清在线视频一区二区三区| 美女国产视频在线观看| 真实男女啪啪啪动态图| 一级毛片 在线播放| 别揉我奶头 嗯啊视频| 欧美bdsm另类| 国产在线一区二区三区精| 亚洲av成人精品一二三区| 亚洲人成网站在线播| 少妇丰满av| 狠狠精品人妻久久久久久综合| 亚洲熟女精品中文字幕| 热re99久久精品国产66热6| 国产亚洲5aaaaa淫片| 少妇 在线观看| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| 麻豆久久精品国产亚洲av| 男人和女人高潮做爰伦理| 永久网站在线| 精品人妻熟女av久视频| 国产精品国产三级专区第一集| 久久人人爽人人片av| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 2021天堂中文幕一二区在线观| 青春草国产在线视频| 亚洲av中文av极速乱| 99热6这里只有精品| 男女边摸边吃奶| 少妇人妻精品综合一区二区| 国产精品成人在线| 成人亚洲精品av一区二区| 99热国产这里只有精品6| 亚洲人成网站在线播| 一区二区av电影网| 又爽又黄a免费视频| av免费在线看不卡| 亚洲在线观看片| 国产国拍精品亚洲av在线观看| 国产成人精品一,二区| 中文精品一卡2卡3卡4更新| 精品久久久噜噜| 少妇的逼好多水| 午夜视频国产福利| 久久综合国产亚洲精品| 99久久九九国产精品国产免费| 免费观看无遮挡的男女| 九九在线视频观看精品| 国产片特级美女逼逼视频| 国内少妇人妻偷人精品xxx网站| 人妻少妇偷人精品九色| av在线观看视频网站免费| 国产视频内射| 哪个播放器可以免费观看大片| 中文字幕亚洲精品专区| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 国产精品一及| 国产欧美日韩精品一区二区| 99九九线精品视频在线观看视频| www.av在线官网国产| 大片免费播放器 马上看| 熟女电影av网| 国产 精品1| 久久久午夜欧美精品| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 亚洲av男天堂| 成人一区二区视频在线观看| 国产高清国产精品国产三级 | 婷婷色综合大香蕉| 97在线人人人人妻| 中国三级夫妇交换| 久热这里只有精品99| 听说在线观看完整版免费高清| 国产伦理片在线播放av一区| 欧美激情在线99| h日本视频在线播放| 久久久久九九精品影院| 1000部很黄的大片| 天堂俺去俺来也www色官网| 婷婷色综合大香蕉| 乱码一卡2卡4卡精品| 一级片'在线观看视频| 亚洲人成网站在线观看播放| 69人妻影院| 欧美最新免费一区二区三区| 亚洲最大成人手机在线| 日韩一本色道免费dvd| 熟女人妻精品中文字幕| 精品人妻视频免费看| 狠狠精品人妻久久久久久综合| 久久久久久伊人网av| 日韩视频在线欧美| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 亚洲av免费高清在线观看| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 哪个播放器可以免费观看大片| 99久久人妻综合| 亚洲av福利一区| 99久久精品一区二区三区| 青青草视频在线视频观看| 五月开心婷婷网| 亚洲国产最新在线播放| 在线观看av片永久免费下载| 国产v大片淫在线免费观看| 国产精品久久久久久精品电影| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 成人亚洲精品一区在线观看 | 在线观看av片永久免费下载| 免费在线观看成人毛片| 日韩伦理黄色片| 国产 一区 欧美 日韩| 国产亚洲午夜精品一区二区久久 | 18禁裸乳无遮挡免费网站照片| 你懂的网址亚洲精品在线观看| 黄色视频在线播放观看不卡| 少妇人妻一区二区三区视频| 乱码一卡2卡4卡精品| 男女边吃奶边做爰视频| 亚洲在久久综合| 欧美成人一区二区免费高清观看| 22中文网久久字幕| 国产一级毛片在线| 亚洲av.av天堂| 人妻 亚洲 视频| 免费大片18禁| 久久久久久久久久人人人人人人| av女优亚洲男人天堂| 黄片无遮挡物在线观看| 新久久久久国产一级毛片| 夫妻午夜视频| 国产一区二区三区综合在线观看 | 成人美女网站在线观看视频| 美女xxoo啪啪120秒动态图| 亚洲av二区三区四区| 一本一本综合久久| 91aial.com中文字幕在线观看| av线在线观看网站| 国产一区二区亚洲精品在线观看| 岛国毛片在线播放| 色婷婷久久久亚洲欧美| 国产 一区精品| 国产 一区 欧美 日韩| 亚洲精品国产成人久久av| 少妇高潮的动态图| 亚洲国产精品成人久久小说| 日本午夜av视频| 一级爰片在线观看| 一级毛片久久久久久久久女| 色网站视频免费| 久久久久国产精品人妻一区二区| 成人国产麻豆网| 精品视频人人做人人爽| 日本av手机在线免费观看| 夜夜看夜夜爽夜夜摸| 韩国av在线不卡| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 免费观看无遮挡的男女| 交换朋友夫妻互换小说| 欧美极品一区二区三区四区| 亚洲内射少妇av| 九草在线视频观看| 亚洲欧美中文字幕日韩二区| 26uuu在线亚洲综合色| 亚洲三级黄色毛片| 一区二区三区四区激情视频| 亚洲精品一二三| 国产精品久久久久久av不卡| 日韩人妻高清精品专区| 午夜精品国产一区二区电影 | 涩涩av久久男人的天堂| 亚洲av电影在线观看一区二区三区 | 美女脱内裤让男人舔精品视频| 亚洲精品第二区| 男女下面进入的视频免费午夜| 精品视频人人做人人爽| 卡戴珊不雅视频在线播放| 欧美精品人与动牲交sv欧美| 狠狠精品人妻久久久久久综合| 一边亲一边摸免费视频| 99久久九九国产精品国产免费| 久久久久精品性色| 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 嫩草影院新地址| 国产免费一级a男人的天堂| 国产精品蜜桃在线观看| 国产成人福利小说| 一个人看的www免费观看视频| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| 午夜免费观看性视频| 亚洲色图综合在线观看| 国产爱豆传媒在线观看| 亚洲不卡免费看| 男女边吃奶边做爰视频| av天堂中文字幕网| 国产精品一二三区在线看| 18禁裸乳无遮挡动漫免费视频 | 国模一区二区三区四区视频| 亚洲精品视频女| 新久久久久国产一级毛片| 欧美性感艳星| 国产免费福利视频在线观看| 亚洲av不卡在线观看| 国产亚洲午夜精品一区二区久久 | 视频中文字幕在线观看| 亚洲色图av天堂| 日本色播在线视频| 国产精品嫩草影院av在线观看| 日韩一本色道免费dvd| 秋霞在线观看毛片| 国产 一区精品| 亚洲人成网站在线播| 久久久成人免费电影| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| 久久人人爽av亚洲精品天堂 | 深爱激情五月婷婷| 老女人水多毛片| 欧美精品国产亚洲| 亚洲av中文字字幕乱码综合| 欧美性猛交╳xxx乱大交人| 在线播放无遮挡| 激情五月婷婷亚洲| 日韩视频在线欧美| 黑人高潮一二区| av在线app专区| 我的女老师完整版在线观看| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 最近2019中文字幕mv第一页| 1000部很黄的大片| 99久国产av精品国产电影| 精品国产露脸久久av麻豆| 亚洲国产最新在线播放| 大陆偷拍与自拍| 18禁裸乳无遮挡免费网站照片| 九九在线视频观看精品| 久久久久网色| 欧美xxⅹ黑人| 狂野欧美激情性bbbbbb| 国产午夜精品久久久久久一区二区三区| 一级av片app| 九九久久精品国产亚洲av麻豆| 丝袜喷水一区| 欧美另类一区| 欧美人与善性xxx| 国产免费一区二区三区四区乱码| 国产免费福利视频在线观看| 久久人人爽人人片av| 精品国产乱码久久久久久小说| 国产高清三级在线| 综合色av麻豆| 五月开心婷婷网| 老司机影院成人| av在线观看视频网站免费| 亚洲美女搞黄在线观看| xxx大片免费视频| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 国产午夜福利久久久久久| 亚洲婷婷狠狠爱综合网|