• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      害蟲遺傳防治的研究歷史與現(xiàn)狀

      2015-12-16 09:20:42萬方浩
      生物安全學(xué)報(bào) 2015年2期
      關(guān)鍵詞:轉(zhuǎn)座子

      嚴(yán) 盈, 萬方浩

      1中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193; 2Department of Entomology,

      North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA; 3Genetic Engineering

      and Society Center and W. M. Keck Center for Behavioral Biology, North Carolina State University,

      Raleigh, NC 27695-7613, USA; 4農(nóng)業(yè)部外來入侵生物預(yù)防與控制研究中心,北京 100193

      ?

      害蟲遺傳防治的研究歷史與現(xiàn)狀

      嚴(yán)盈1,2,3, 萬方浩1,4*

      1中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2Department of Entomology,

      North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA;3Genetic Engineering

      and Society Center and W. M. Keck Center for Behavioral Biology, North Carolina State University,

      Raleigh, NC 27695-7613, USA;4農(nóng)業(yè)部外來入侵生物預(yù)防與控制研究中心,北京 100193

      摘要:作為防治或根除重大害蟲最為有效的手段之一,害蟲遺傳防治在世界范圍內(nèi)被廣泛采用并取得了巨大成功。本文綜述了不育昆蟲技術(shù)、雌性致死系統(tǒng)和昆蟲顯性致死技術(shù)等經(jīng)典害蟲遺傳防治策略的發(fā)展歷史、技術(shù)特點(diǎn)和應(yīng)用情況。近年來,許多新的分子生物手段被不斷提出并整合到害蟲遺傳防治策略中,包括歸巢核酸內(nèi)切酶基因、鋅指核酸酶、轉(zhuǎn)錄激活因子樣效應(yīng)因子核酸酶、CRISPR/Cas9系統(tǒng)、Medea元件、Killer-Rescue系統(tǒng)、Wolbachia-細(xì)胞質(zhì)不親和性系統(tǒng)等?;谶@些新的工具手段,許多國家已經(jīng)在不同程度上啟動(dòng)了下一代害蟲遺傳防治項(xiàng)目。而我國在該領(lǐng)域的研究相對薄弱,需要在借鑒國外成功經(jīng)驗(yàn)的同時(shí),進(jìn)一步加強(qiáng)害蟲遺傳防治的基礎(chǔ)和應(yīng)用研究,從而實(shí)現(xiàn)本地有害生物的可持續(xù)治理和外來入侵生物的有效狙擊,確保我國未來的糧食和生態(tài)安全。

      關(guān)鍵詞:不育昆蟲技術(shù); 大規(guī)模飼養(yǎng); 染色體移位; 遺傳定性品系; 轉(zhuǎn)座子

      History and status of the genetic control of insect pest

      Ying YAN1,2,3, Fang-hao WAN1,4*

      20世紀(jì)30~40年代,害蟲遺傳防治(Genetic pest management,GPM)的設(shè)想被提出,即將不育性引入野生種群從而通過遺傳手段控制害蟲,當(dāng)時(shí)也稱作不育昆蟲技術(shù)(Sterile insect technique,SIT)。60年代后,SIT被不同國家廣泛使用并在特定區(qū)域內(nèi)防治或根除了多種農(nóng)業(yè)和衛(wèi)生害蟲(Klassen & Curtis,2005)。與此同時(shí),一些區(qū)別于傳統(tǒng)SIT的GPM設(shè)想被不斷提出。如Curtis (1968a)提出“品系替換”(Srain replacement)的概念,認(rèn)為可以通過染色體移位(Chromosome translocations)突變的方法將傳播病原的蚊子品系替換為無法傳播病原的品系;Yen & Barr (1971)提出利用內(nèi)生菌Wolbachia造成的細(xì)胞質(zhì)不親和性(Cytoplasmic incompatibility)使害蟲不育;70年代一批學(xué)者提出性別比定向(Sex ratio distortion)策略,即通過可遺傳的性別比定向子(Sex ratio distorters,通常是性別關(guān)聯(lián)基因)使配子在減數(shù)分裂過程中定向發(fā)育為雄性(Lyttle,1977; Suguna & Curtis,1974; Sugunaetal.,1977);80~90年代,雌性致死系統(tǒng)(Female killing system,FKS)的開發(fā)使單獨(dú)釋放雄蟲成為可能,進(jìn)一步提升了SIT項(xiàng)目的效率 (Fosteretal.,1988; Franzetal.,1997)。然而,由于技術(shù)條件的限制,這些設(shè)想大多數(shù)僅停留在測試階段,無法真正應(yīng)用于實(shí)際中,因此在20世紀(jì)后30年關(guān)于GPM新策略的應(yīng)用研究基本處于停滯階段(Gould & Schliekelman,2004)。21世紀(jì)分子生物學(xué)、細(xì)胞學(xué)、生物信息學(xué)等學(xué)科的快速發(fā)展,使GPM進(jìn)入一個(gè)全新的階段。2000年,“攜帶顯性致死基因昆蟲的釋放技術(shù)”(簡稱為“昆蟲顯性致死技術(shù)”;Release of insects carrying a dominant lethal,RIDL)被開發(fā),通過基因修飾實(shí)現(xiàn)雌性致死的精確調(diào)控(Heinrich & Scott,2000; Thomasetal.,2000)。

      1 SIT

      1.1 SIT的發(fā)展歷史與概念

      20世紀(jì),新大陸螺旋蠅Cochliomyiahominivorax(Coquerel)是美洲大陸熱帶和亞熱帶地區(qū)溫血?jiǎng)游?包括人在內(nèi))的主要?dú)⑹?,大量農(nóng)藥用于防治該害蟲的危害。美國農(nóng)業(yè)部的Knipling博士通過對新大陸螺旋蠅交配行為和種群動(dòng)態(tài)的詳細(xì)觀察,認(rèn)為如果將不育性人為引入野生種群將有可能達(dá)到控制目的,但是在當(dāng)時(shí)并沒有行之有效的手段使昆蟲不育。20世紀(jì)40年代H. J. Muller教授發(fā)現(xiàn)輻射能夠?qū)е鹿壊挥?;Bushland (1951) 經(jīng)過詳細(xì)試驗(yàn)證實(shí)了X光對螺旋蠅的不育效應(yīng)。隨后,Knipling (1955)較為系統(tǒng)地闡述了SIT的概念和模型,即通過工廠化大量培養(yǎng)靶標(biāo)害蟲,經(jīng)過特定處理(如60Co-γ射線輻照)使害蟲不育,然后在合適的時(shí)間把不育雄蟲大量釋放到田間與野生型雌蟲交配,使其無法產(chǎn)生后代,如果連續(xù)多代釋放足夠多的不育昆蟲,最終能夠顯著降低甚至根除靶標(biāo)害蟲種群。同時(shí),Knipling (1955)指出實(shí)施SIT必須同時(shí)滿足的5個(gè)條件:目標(biāo)昆蟲可以被大規(guī)模飼養(yǎng);不育雄蟲需要具備一定的擴(kuò)散能力;不育手段不會(huì)顯著降低目標(biāo)昆蟲的交配能力;雌蟲最好只交配一次,如果交配多次,不育雄蟲的精子活力須與野生型雄蟲相當(dāng);目標(biāo)昆蟲的野外種群數(shù)量不能太高,否則需要通過特定手段壓低種群密度,從而確保釋放的不育雄蟲數(shù)量大大超過野生型雄蟲數(shù)量。Knipling指出,釋放不育雄蟲與野生型雄蟲的初始數(shù)量比(釋放比)越高,防治效果越好。由于各種因素的限制,野外昆蟲的生長潛力一般很難達(dá)到最佳狀態(tài),如果釋放比為2∶1,雖然可以在一定程度上降低后代數(shù)量,但存活的幼蟲可能因?yàn)閾碛懈嗟馁Y源和空間而發(fā)育更好,存活率更高,從而抵消了親代數(shù)量下降對子代絕對數(shù)量的影響。因此,Knipling建議采用更高的釋放比(如9∶1)來執(zhí)行不育昆蟲項(xiàng)目(圖1)。

      圖1 不育昆蟲技術(shù)的種群控制理論模型(Knipling,1955)

      1.2 SIT的應(yīng)用

      1956年,美國農(nóng)業(yè)部開始在佛羅里達(dá)州籌備基于SIT的新大陸螺旋蠅根除項(xiàng)目,1957年一個(gè)大型飼養(yǎng)工廠在錫布靈市的空軍基地竣工,該工廠每周可以生產(chǎn)螺旋蠅6000萬頭。自1958年5月起,數(shù)以千萬的不育螺旋蠅被運(yùn)往佛羅里達(dá)及附近各州進(jìn)行野外釋放,1959年2月新大陸螺旋蠅在整個(gè)佛羅里達(dá)州被根除。1962年在德克薩斯州米申市修建了第2個(gè)大型飼養(yǎng)工廠,并在美國西南各州釋放不育螺旋蠅,1964年德克薩斯州和新墨西哥州的新大陸螺旋蠅被根除,1966年美國農(nóng)業(yè)部宣布新大陸螺旋蠅從整個(gè)美國被根除。為了防止該蠅從南部邊界重新傳入,美國農(nóng)業(yè)部與多國相關(guān)部門協(xié)作,將SIT項(xiàng)目向南推進(jìn),1991年新大陸螺旋蠅從整個(gè)墨西哥被根除,2006年從整個(gè)中美洲被根除(Klassen & Curtis,2005)。2006年,美國農(nóng)業(yè)部與巴拿馬政府在帕科拉市(Pacora)合作修建了不育昆蟲工廠,該工廠每周可生產(chǎn)新大陸螺旋蠅2000~4000萬頭。這些螺旋蠅經(jīng)輻射后在巴拿馬與哥倫比亞的邊界被釋放,建立了生物隔離帶(Biological barrier),以防止其從南美洲重新入侵?;赟IT的新大陸螺旋蠅根除項(xiàng)目給整個(gè)北美和中美洲畜牧業(yè)帶來的直接收益高達(dá)每年15億美元,而整個(gè)項(xiàng)目在半個(gè)多世紀(jì)來的投資不到10億美元(Klassen & Curtis,2005);同時(shí)顯著減少了農(nóng)藥的使用,極大地保障了當(dāng)?shù)匦竽翗I(yè)和環(huán)境的健康發(fā)展(圖2)。

      圖2 利用SIT在美國及中美洲國家根除新大陸螺旋蠅的路線圖(改自Robinson,2002)

      1976~1977年,危地馬拉、墨西哥和美國簽署了一項(xiàng)名為“實(shí)蠅計(jì)劃”(Programa Moscamed)的協(xié)議,該協(xié)議的主要內(nèi)容是采用SIT將地中海實(shí)蠅Ceratitiscapitata限制在危地馬拉,防止其傳入墨西哥和美國,共同保護(hù)3個(gè)國家的種植業(yè)。在該計(jì)劃的初期(1977~1982年),墨西哥采用SIT結(jié)合綜合檢疫、化學(xué)防治、機(jī)械防治、農(nóng)業(yè)防治等措施,將地中海實(shí)蠅從南部的恰帕斯州(危害面積6400 km2)根除(Villaseoretal.,2000),一條不育雄蟲形成的隔離帶由此建立,阻止了該害蟲向北擴(kuò)散。目前,危地馬拉設(shè)立了全世界最大的不育昆蟲培育基地,每周釋放超過25億頭不育昆蟲,使地中海實(shí)蠅的危害降到最低。此外,在中美洲和巴拿馬地區(qū),薩爾瓦多、哥斯達(dá)黎加、危地馬拉、洪都拉斯、尼加拉瓜、巴拿馬等國農(nóng)業(yè)部也共同制定了SIT項(xiàng)目。

      20世紀(jì)60年代馬里亞納群島應(yīng)用SIT成功根除了橘小實(shí)蠅Bactroceradorsalis(Steineretal.,1965);70年代薩爾瓦多每天釋放100萬頭不育淡色按蚊Anophelesalbimanus,有效降低了其在太平洋沿岸的種群數(shù)量(Dameetal.,1981);90年代日本沖繩和鹿兒島等地也采用該技術(shù)成功根除了瓜實(shí)蠅Bactroceracucurbitae和橘小實(shí)蠅(Liu,1993; Shiga,1992);澳大利亞西部應(yīng)用該技術(shù)成功根除了昆士蘭實(shí)蠅Dacustryroni(Jessupetal.,2007);美國和加拿大在90年代分別采用SIT防治鱗翅目害蟲棉紅鈴蟲Pectinophoragossypiella(Waltersetal.,2000) 和蘋果蠹蛾Cydiapomonella(Bloem & Bloem,2000),都取得了理想的效果。至今,全世界不同地區(qū)已應(yīng)用SIT成功防治或根除了多種農(nóng)業(yè)和衛(wèi)生害蟲(表1)。

      1.3 SIT的特點(diǎn)與缺陷

      SIT具有幾個(gè)防治特點(diǎn):(1)對象高度專一,由于釋放的不育昆蟲只會(huì)與同種野生型昆蟲交配,從而特異地造成目標(biāo)害蟲種群數(shù)量下降;(2)生態(tài)環(huán)境友好,SIT可以降低農(nóng)藥的使用,從而有效避免害蟲抗性、農(nóng)藥殘留、環(huán)境污染、殺傷天敵等一系列問題;(3)防治效果顯著,通過多代釋放可以將目標(biāo)害蟲種群維持在較低水平,甚至徹底根除害蟲;(4)防治面積較大,通常與大區(qū)域綜合治理(Area-wide integrated pest management approach,AW-IPM)相結(jié)合,輔以生物防治、農(nóng)業(yè)防治、物理防治、引誘劑殺滅和合理噴施農(nóng)藥等多種技術(shù)手段,并通過地區(qū)之間農(nóng)民、當(dāng)?shù)卣蛥^(qū)域性組織的合作,實(shí)現(xiàn)一種大范圍且可持續(xù)的、長期的害蟲治理(Klassen & Curtis,2005)。

      表1 不同國家(地區(qū))應(yīng)用SIT成功防治或根除的農(nóng)業(yè)和衛(wèi)生害蟲

      但在操作過程中,基于輻射的傳統(tǒng)SIT往往存在以下缺陷:由于缺乏有效手段區(qū)分性別,雌蟲和雄蟲被同時(shí)釋放,一定程度上增加了生產(chǎn)成本并降低了控制效率;昆蟲的質(zhì)量受種蟲引進(jìn)、人工飼養(yǎng)、輻射處理和操作過程的影響,飼養(yǎng)種群的遺傳變異性在種蟲引進(jìn)早期由于飄移、選擇和內(nèi)交喪失到最低限,隨后由于突變和重組有所回升,但遠(yuǎn)低于自然種群的水平,且這種近親繁殖下的變異性與自然種群也不一致,導(dǎo)致釋放種群適應(yīng)野外生境的能力變差(Bushland,1971);長期人工飼養(yǎng)引起種群質(zhì)量的變化,表現(xiàn)為飛行能力下降、交尾時(shí)間改變、雌蟲的吸引性與交尾次數(shù)改變等(Cayoletal.,1999)。此外,輻射處理可影響昆蟲的活動(dòng)能力、視覺、壽命,可能改變求偶過程中的發(fā)聲訊號(hào)等,輻射劑量越低,這些影響越小;輻射昆蟲的交尾競爭力往往低于自然昆蟲,如日本的輻射不育瓜實(shí)蠅的交尾競爭力為正常實(shí)蠅的20%~60%(Shiga,1992);難以監(jiān)控,盡管在有的SIT項(xiàng)目中不育昆蟲可以通過噴施熒光粉識(shí)別,但釋放昆蟲常常會(huì)將熒光粉傳遞給野生種群從而造成誤判,并且使用熒光粉的成本太高且對人體有害(Hagler & Jackson,2001)。這些缺陷在一定程度上增加了SIT的操作難度和運(yùn)行成本,在降低防治效果的同時(shí)限制了SIT在更多害蟲上的應(yīng)用。

      2 FKS

      2.1 FKS的概念與原理

      傳統(tǒng)SIT采取的策略是同時(shí)釋放不育的雌蟲和雄蟲(兩性害蟲),但實(shí)質(zhì)上僅不育雄蟲將不育性引入野生種群,因此在早期SIT也被稱為“不育雄蟲方法”(Sterile male method; Knipling,1959)。不育雌蟲對野生害蟲種群的不育性傳遞沒有實(shí)質(zhì)性的意義,且即使雌蟲不育,其仍會(huì)叮咬(如蚊子)或產(chǎn)卵(如實(shí)蠅類害蟲),從而對人類健康或作物品質(zhì)造成影響。因此,在傳統(tǒng)SIT的基礎(chǔ)上研究人員開發(fā)了FKS。早期FKS采用染色體移位技術(shù)將包括選擇標(biāo)記和條件致死基因在內(nèi)的多種突變重組,導(dǎo)致雌蟲在發(fā)育過程中死亡,從而定向生產(chǎn)出雄性成蟲,由此得到的昆蟲品系被稱為遺傳定性品系(Genetic sexing strain)。構(gòu)建遺傳定性品系至少需要滿足2個(gè)條件:(1)具有性別區(qū)分作用的選擇標(biāo)記和條件致死突變;(2)能夠通過Y染色體移位將這種突變定性遺傳給后代。在包括地中海實(shí)蠅在內(nèi)的多種雙翅目害蟲中,其Y染色體都包含一個(gè)顯性的“雄性因子”(Maleness factor; Willhoeft & Franz,1996)。如果通過染色體移位將常染色體上的選擇標(biāo)記和條件致死野生型等位基因連接到Y(jié)染色體的“雄性因子”區(qū)域(圖3),那么產(chǎn)生的雄性后代將是選擇標(biāo)記和條件致死基因的雜合子,具有與野生型一樣的性狀;而雌性后代則是選擇標(biāo)記和條件致死基因的純合子,不僅可以被選擇標(biāo)記識(shí)別,而且能在條件啟動(dòng)下(如熱激)致死。

      圖3 遺傳定性品系的基本構(gòu)造 (Franz et al.,1997)

      Robinson (2002)總結(jié)了19個(gè)物種的遺傳定性品系,這些品系的構(gòu)造原理基本類似。從理論上講,遺傳定性品系即使不經(jīng)過輻射釋放到田間,也能造成野外害蟲種群的顯著減少。如Foster (1991)報(bào)道的澳大利亞銅綠蠅Luciliacuprina遺傳定性品系中,3號(hào)和5號(hào)染色體各自包含一個(gè)眼睛顏色突變和染色體倒置(Inversion)突變,這種倒置僅在純合子條件下無害,表現(xiàn)為雄蟲雜合子可育而雌蟲半不育,因此釋放雄蟲僅將常染色體突變傳遞給子代雌蟲;同時(shí)常染色體上的突變由染色體移位連接到Y(jié)染色體,因此釋放雄蟲僅將Y染色體突變傳遞給子代雄蟲。當(dāng)釋放雄蟲與野生雌蟲交配后,常染色體突變被定向傳遞給子代雌蟲,造成整個(gè)野生種群50%不育;而存活的雌蟲再次與釋放雄蟲交配后,不同拷貝數(shù)的常染色體和Y染色體突變被同時(shí)傳遞給子代,造成整個(gè)野生種群90%不育。如果同時(shí)考慮不育和眼睛突變的致盲作用,野生種群的死亡率高達(dá)98%(Fosteretal.,1992)。

      2.2 FKS的應(yīng)用

      1970年,超過10萬頭尖音庫蚊Culexpipiens的遺傳定性品系在8周內(nèi)被釋放到法國巴黎圣母院附近,結(jié)果顯示,染色體移位突變不僅被成功引入當(dāng)?shù)胤N群,而且大大降低了其種群密度(Lavenetal.,1972)。1980年FKS首次在大規(guī)模飼養(yǎng)中得到應(yīng)用,結(jié)果表明,阿拉伯按蚊Anophelesarabiensis遺傳定性品系可以定向生產(chǎn)出99.9%的雄性且羽化率高達(dá)90%(Baileyetal.,1980)。1984~1986年銅綠蠅遺傳定性品系的田間釋放直接將性別定向飼養(yǎng)與雄性釋放相結(jié)合 (Fosteretal.,1985)。通常,構(gòu)建FKS相對容易,困難的是如何滿足SIT項(xiàng)目的特定要求。要將某一遺傳定性品系從實(shí)驗(yàn)室轉(zhuǎn)移到工廠大規(guī)模飼養(yǎng),然后再推廣到田間的大面積釋放,需要在遺傳穩(wěn)定性、品系適合度、行為和生理背景、環(huán)境選擇壓力、生態(tài)適應(yīng)性和經(jīng)濟(jì)可行性等多個(gè)方面進(jìn)行大量研究。由于不同開發(fā)環(huán)節(jié)的限制,具備遺傳定性品系的19個(gè)物種中,只有淡色按蚊和地中海實(shí)蠅可以被工廠化大規(guī)模飼養(yǎng),而真正結(jié)合SIT應(yīng)用于田間并取得理想效果的僅有地中海實(shí)蠅的遺傳定性品系(表2)。

      2.3 FKS的特點(diǎn)與缺陷

      遺傳定性品系的開發(fā)使得單獨(dú)釋放不育雄蟲成為可能,大大增加了不育雄蟲與野外雌蟲交配的概率(McInnisetal.,1986);增加了生態(tài)安全性,因?yàn)榧词乖谏a(chǎn)過程中發(fā)生逃逸,也不會(huì)造成重大安全事故;監(jiān)測更為準(zhǔn)確,當(dāng)采用雌性引誘劑時(shí),引誘的都是野生雌蟲而非不育雌蟲;提高了防控效率,如對地中海實(shí)蠅而言,單獨(dú)釋放不育雄蟲比釋放雌、雄兩性不育昆蟲的防控效率提高了3~4倍(Caceresetal.,2004; Rendonetal.,2004);此外,遺傳定性品系減少了包括標(biāo)記、輻射、運(yùn)輸、釋放和檢測在內(nèi)的后期操作,降低了生產(chǎn)成本。

      表2 世界范圍內(nèi)不同害蟲SIT工廠的生產(chǎn)能力和飼養(yǎng)策略(Franz,2005)

      FKS在地中海實(shí)蠅SIT項(xiàng)目中的成功應(yīng)用使人們迫切希望將該技術(shù)運(yùn)用到其他重大害蟲防治中,但遺傳定性品系的自身特點(diǎn)限制了其應(yīng)用范圍。如對某一新目標(biāo)物種進(jìn)行誘導(dǎo)突變是一個(gè)非常難于預(yù)測的過程,無法保證能夠找到合適的選擇標(biāo)記和條件致死突變;染色體移位也是一個(gè)隨機(jī)過程,且遺傳穩(wěn)定性很大程度上取決于染色體移位位點(diǎn),最好只涉及一個(gè)常染色體,并且該染色體與Y染色體的移位位點(diǎn)已知;染色體倒置是突變篩選的一個(gè)重要手段,但這不僅需要開展大量的工作,而且需要非常完善的細(xì)胞學(xué)檢測手段;突變選擇、染色體移位等因素往往制約了獲得品系的適用性,如地中海實(shí)蠅項(xiàng)目中的遺傳定性品系由于染色體移位降低了其單雌產(chǎn)卵量,而只有維持較大種群數(shù)量才能獲得足夠的雄蟲釋放,所以實(shí)際上飼養(yǎng)成本也較高(Robinsonetal.,1999)。

      3 RIDL技術(shù)

      3.1 RIDL技術(shù)的發(fā)展和原理

      Rubin & Spradling (1982)通過P轉(zhuǎn)座子將外源基因插入果蠅Drosophilamelanogaster的基因組,獲得了世界上第一個(gè)轉(zhuǎn)基因昆蟲品系,從而打開了人為控制昆蟲表達(dá)特定目的基因的大門,隨后科學(xué)家開始不斷嘗試通過昆蟲轉(zhuǎn)座子技術(shù)開發(fā)新的GPM策略。從20世紀(jì)90年代到21世紀(jì)初,多種轉(zhuǎn)座子被應(yīng)用于昆蟲的遺傳轉(zhuǎn)化體系并取得了成功(Handler,2011; Robinsonetal.,1999)。2000年,來自英國和新西蘭的科研團(tuán)隊(duì)分別獨(dú)立提出一種基于昆蟲轉(zhuǎn)座子技術(shù)的RIDL (Thomasetal.,2000; Heinrich & Scott,2000)。該技術(shù)利用遺傳工程方法,體外連接昆蟲轉(zhuǎn)座子、特異啟動(dòng)子、昆蟲顯性致死基因、轉(zhuǎn)錄激活域、熒光標(biāo)記等元件,構(gòu)建了一個(gè)復(fù)合轉(zhuǎn)座子(Transposons with armed cassettes,TAC),在昆蟲轉(zhuǎn)座子的引導(dǎo)下,TAC插入昆蟲基因組,形成遺傳修飾昆蟲。該遺傳修飾昆蟲的純合子品系與野生型昆蟲交配后,雌性后代在TAC作用下死亡,而雄性后代繼續(xù)攜帶TAC與野生型雌蟲交配;如果最初釋放的是多拷貝TAC的遺傳修飾昆蟲,或連續(xù)多代釋放單拷貝TAC的遺傳修飾昆蟲,那么經(jīng)過幾個(gè)世代后TAC的基因拷貝將擴(kuò)散到野生種群的所有個(gè)體,最終使靶標(biāo)昆蟲“自毀”(圖4; Alphey,2000; Alphey & Andreasen,2002)。

      圖4 RIDL的田間效應(yīng)圖

      目前構(gòu)建RIDL技術(shù)昆蟲品系最常見的手段是采用四環(huán)素(Tetracycline)調(diào)控體系,其中包括雙元件系統(tǒng)和單元件系統(tǒng)(Alpheyetal.,2008)。在雙元件體系中(Heinrich & Scott,2000; Horn & Wimmer,2003; Scheteligetal.,2009; Thomasetal.,2000),啟

      動(dòng)元件(Driver)通過特定啟動(dòng)子(如雌性特異啟動(dòng)子)驅(qū)動(dòng)四環(huán)素反式激活因子(The tetracycline dependent transactivator,tTA)的表達(dá),而效應(yīng)元件(Effector)則包括轉(zhuǎn)錄增強(qiáng)子tetO (也叫作TRE)、最小啟動(dòng)子(Minimal promoter)和效應(yīng)基因(可包含雌性特異剪輯內(nèi)含子),其中,tetO由大腸桿菌Escherichiacoli四環(huán)素抑制子(tet repressor,tetR)的DNA結(jié)合域與病毒HSV1中VP16蛋白的轉(zhuǎn)錄激活域組成。因此,在缺乏四環(huán)素的條件下,tTA與tetO結(jié)合,驅(qū)動(dòng)效應(yīng)基因在雌性中表達(dá)并導(dǎo)致死亡(圖5A);而在四環(huán)素存在的條件下,tTA無法與tetO結(jié)合,不能激活效應(yīng)基因的表達(dá),整個(gè)系統(tǒng)通路被關(guān)閉(圖5B)。在單因子體系中(Gongetal.,2005),包含雌性特異剪輯內(nèi)含子的tTA直接作為效應(yīng)基因,由連鎖在tetO上的最小啟動(dòng)子控制。因此,在缺乏四環(huán)素條件下,只有雌性能夠產(chǎn)生tTA,該tTA與tetO結(jié)合后將激活更多tTA的表達(dá),由此循環(huán)反復(fù)造成tTA的不斷累積,高濃度的tTA最終導(dǎo)致雌性死亡(圖5C);而在四環(huán)素存在的條件下,tTA無法與tetO結(jié)合,不能造成tTA的累積,整個(gè)系統(tǒng)通路被關(guān)閉(圖5D)。

      圖5 RIDL的單元件系統(tǒng)和雙元件系統(tǒng)(Alphey et al.,2008)

      3.2 RIDL技術(shù)的應(yīng)用

      RIDL技術(shù)應(yīng)用于田間的一個(gè)重要條件是攜帶TAC的遺傳修飾品系必須具備與野生種群相近的競爭、交配以及擴(kuò)散等能力。2006年,美國農(nóng)業(yè)部與英國生物公司Oxitec合作開發(fā)了一個(gè)棉紅鈴蟲僅攜帶熒光標(biāo)記(DsRed)的遺傳修飾品系OX1138B,2006~2008年數(shù)以千萬的OX1138B品系棉紅鈴蟲被釋放到美國亞利桑那州的棉花田間。結(jié)果表明,OX1138B與SIT標(biāo)準(zhǔn)釋放品系A(chǔ)PHIS在競爭、交配、擴(kuò)散等能力方面沒有顯著差異(Simmonsetal.,2011)。隨后美國農(nóng)業(yè)部與Oxitec進(jìn)一步合作開發(fā)出基于單因子系統(tǒng)的棉紅鈴蟲顯性致死品系(Jinetal.,2013; Morrisonetal.,2012)。2010年Oxitec與馬來西亞政府合作,對登革熱病毒主要傳播載體埃及伊蚊Aedesaegypti的RIDL品系OX513A進(jìn)行了非棲息地野外釋放測試,結(jié)果表明,OX513A與同步釋放的野生型實(shí)驗(yàn)室品系在平均壽命等生命參數(shù)上沒有顯著差異(Lacroixetal.,2012)。與此同時(shí),Oxitec在開曼群島對OX513A進(jìn)行了大面積的棲息地(居民區(qū))野外釋放測試,結(jié)果顯示,釋放的OX513A雄蟲不僅與當(dāng)?shù)匾吧托巯x具有同等的競爭和交配能力(Harrisetal.,2011),而且能夠顯著降低當(dāng)?shù)匾吧<耙廖玫姆N群密度(Harrisetal.,2012)。此外,自2011年至今在巴西不同城市的野外釋放測試都表明,OX513A能夠有效抑制不同種類蚊子的野生種群數(shù)量,從而有效防止如登革熱、瘧疾等疾病的傳播(Alphey,2014)。2014年,印度、巴拿馬等國家也紛紛開始啟動(dòng)RIDL項(xiàng)目,以防控本國的病原蚊子(Alphey,2014; Patiletal.,2014)。

      3.3 RIDL的特點(diǎn)與缺陷

      與傳統(tǒng)SIT相比,RIDL具有幾個(gè)優(yōu)點(diǎn):不需要使用輻射使昆蟲不育,不會(huì)因此降低昆蟲壽命、繁殖力、交配競爭能力等生命參數(shù);有的昆蟲(如蚊子)因難以控制不育輻射的劑量而無法應(yīng)用SIT,而RIDL則能夠應(yīng)用于此類昆蟲;具有更強(qiáng)的生物安全性,因?yàn)槿魏螐呐嘤靥右莸睦ハx都不育,且由于環(huán)境中缺乏抑制昆蟲致死基因的化學(xué)物質(zhì)(四環(huán)素),逃逸的昆蟲將迅速死亡;大大降低了飼養(yǎng)成本,早期致死的RIDL品系將不需要額外飼養(yǎng)雌蟲;顯著提升了防控效率,如需要的初始釋放種群數(shù)量更少,達(dá)到控制效果的時(shí)間更短(Schliekelman & Gould,2000);由于所有釋放昆蟲都含有可遺傳的熒光標(biāo)記,可以對項(xiàng)目進(jìn)行更有效的監(jiān)控。

      目前構(gòu)建的RIDL品系都是使用不同轉(zhuǎn)座子轉(zhuǎn)化而來,TAC被隨機(jī)插入到基因組,其插入位點(diǎn)很大程度上決定了效應(yīng)基因的表達(dá)效率和RIDL品系的適合度,因此往往需要構(gòu)建多個(gè)轉(zhuǎn)化品系進(jìn)行篩選比較;構(gòu)建TAC一般采用內(nèi)源元件,需要從目標(biāo)昆蟲本身分離啟動(dòng)子、效應(yīng)基因和雌性特異剪輯內(nèi)含子等元件;轉(zhuǎn)座子活性可能導(dǎo)致TAC在種內(nèi)或種間漂移,降低RIDL品系的遺傳穩(wěn)定性,進(jìn)而需要通過特定手段使轉(zhuǎn)座子失活(Scheteligetal.,2009)。這些問題增加了RIDL前期的技術(shù)難度和構(gòu)建成本。

      4 小結(jié)與展望

      經(jīng)過半個(gè)多世紀(jì)的不斷發(fā)展和改進(jìn)(表3),GPM已經(jīng)成為當(dāng)今國際上用于防治或根除重大害蟲最有效的手段之一。作為一個(gè)學(xué)科高度交叉的應(yīng)用領(lǐng)域,GPM涉及到多個(gè)層面的問題。在技術(shù)層面上,既需要分子生物學(xué)、細(xì)胞學(xué)、生物信息學(xué)等方面的知識(shí)儲(chǔ)備,也需要掌握目標(biāo)對象的遺傳背景、生活史參數(shù)、種群動(dòng)態(tài)、危害特征等生態(tài)特點(diǎn)。在操作層面上,項(xiàng)目前期需要結(jié)合經(jīng)濟(jì)學(xué)、檢疫學(xué)、氣象學(xué)等進(jìn)行詳細(xì)的可行性考證和風(fēng)險(xiǎn)評估;項(xiàng)目中期需要結(jié)合數(shù)學(xué)模型、半開放試驗(yàn)等決定釋放的策略組合;項(xiàng)目后期需要結(jié)合種群遺傳學(xué)、田間流行學(xué)等對釋放種群和野生種群進(jìn)行有效監(jiān)控和管理。在政策層面上,既需要政府部門的大力支持,也需要制定和落實(shí)相關(guān)的法律法規(guī)。在社會(huì)層面上,既需要公共媒體進(jìn)行科學(xué)的宣傳和教育,也需要普通大眾的理解和支持??偠灾?,盡管GPM具有卓越的防治效果和巨大的應(yīng)用前景,但每一個(gè)GPM項(xiàng)目的實(shí)施都必須經(jīng)過科學(xué)、社會(huì)、法規(guī)、倫理等方面詳細(xì)審慎的梳理、評估和管理,才能使GPM技術(shù)最大化地造福人類社會(huì)。

      傳統(tǒng)的害蟲防治技術(shù)已不能滿足現(xiàn)代農(nóng)業(yè)生產(chǎn)的需求,各種基因組剪輯手段和遺傳防治策略被不斷開發(fā),如歸巢核酸內(nèi)切酶基因(Homing endonuclease gene)、鋅指核酸酶(Zinc-finger nucleases)、轉(zhuǎn)錄激活因子樣效應(yīng)因子核酸酶(Transcription activator-like effector nucleases)、CRISPR/Cas系統(tǒng)(Clustered regulatory interspaced short palindromic repeat)、Medea元件(Medea element)、Killer-Rescue系統(tǒng)、Wolbachia-細(xì)胞質(zhì)不親和性系統(tǒng)(Wolbachia-cytoplasmic incompatibility)等 (Alphey,2014; Fraser,2012; Gajetal.,2013; Gould,2008; Gouldetal.,2008; Sinkins & Gould,2006)?;蚪M測序技術(shù)的發(fā)展不僅幫助更多模式生物完成了全基因組測序,從而為相關(guān)近緣有害生物的遺傳控制策略提供了更多數(shù)據(jù)參照,而且使針對非模式生物的重大害蟲進(jìn)行全基因組測序成為可能,大大降低了GPM前期的投入和操作難度。目前,美國、加拿大、英國、德國、澳大利亞、印度、馬來西亞、巴西、墨西哥、巴拿馬等多個(gè)國家已經(jīng)在不同規(guī)模上啟動(dòng)了下一代的GPM項(xiàng)目。而我國在GPM領(lǐng)域起步較晚,對下一代遺傳防治策略的研究幾乎是空白,因此迫切需要借鑒國外先進(jìn)經(jīng)驗(yàn),針對我國農(nóng)林牧漁業(yè)重大有害生物開展遺傳防治的基礎(chǔ)和應(yīng)用研究,實(shí)現(xiàn)本地有害生物的可持續(xù)治理和外來入侵生物的有效狙擊,確保我國未來的糧食和生態(tài)安全。

      表3 害蟲遺傳防治的發(fā)展歷史和重大事件(改自Robinson,2002)

      參考文獻(xiàn)續(xù)表3時(shí)間Date事件Event意義SignificanceReferences1982首次通過P轉(zhuǎn)座子將外源基因插入果蠅的基因組InsertionofexogenousgeneintoDrosophilamelano-gastergenomebyPelement獲得了世界上第一個(gè)轉(zhuǎn)基因昆蟲品系DevelopmentofthefistinsecttransgenicstrainRubin&Spradling,19821998地中海實(shí)蠅遺傳修飾品系的構(gòu)建Constructionoftransgenicmedflystrain基于遺傳修飾技術(shù)的害蟲方式手段進(jìn)入人們視野ConsiderationofgeneticengineeringmethodforpestcontrolLoukerisetal.,19952000基于四環(huán)素調(diào)控的雌性特異顯性致死系統(tǒng)在果蠅中得到實(shí)現(xiàn)Experimentaldemonstrationofarepressiblefemale-specificdominantlethalgeneticsysteminDrosophi-lamelanogaster首次闡述了昆蟲顯性致死技術(shù)作為新遺傳防治手段的原理和優(yōu)勢DevelopmentofRIDLasanewcontrolmethodHeinrich&Scott,2000;Thomasetal.,20002003基于昆蟲顯性致死技術(shù)的胚胎早期致死在果蠅中得到實(shí)現(xiàn)Demonstrationofembryo-specificlethalitysysteminDrosophilamelanogaster利用昆蟲顯性致死技術(shù)的雙因子系統(tǒng)使胚胎早期致死成為可能Developmentofembryo-specificlethalityusingtwocomponentssystemofRIDLHorn&Wimmer,20032005在地中海實(shí)蠅中發(fā)現(xiàn)了tTA的致死效應(yīng)DemonstrationoftTAlethalityeffectinMedfly提出了昆蟲顯性致死技術(shù)單因子系統(tǒng)的原理與模型DevelopmentofonecomponentsystemofRIDLGongetal.,20052006攜帶熒光標(biāo)記DsRed的棉紅鈴蟲OX1138B品系被大規(guī)模釋放到田間FieldreleaseofPectinophoragossypiellatransgenicstraincarryingDsRedinArizona昆蟲遺傳修飾品系首次在田間被大規(guī)模釋放FirstfieldreleaseofinsecttransgenicstrainSimmonsetal.,20112009埃及伊蚊的昆蟲顯性致死品系被大規(guī)模釋放到開曼群島的居民區(qū)FieldreleaseofAedesaegyptiRIDLstraininCay-manisland昆蟲顯性致死品系首次被釋放到人類社區(qū)FieldreleaseofinsectRIDLstrainintohumancom-munityHarrisetal.,2011、2012

      Alphey L. 2000. Re-engineering the Sterile Insect Technique.InsectBiochemistryandMolecularBiology, 32: 1243-1247.

      Alphey L. 2014. Genetic control of mosquitoes.TheAnnualReviewofEntomology, 59: 205-224.

      Alphey L and Andreasen M. 2002. Dominant lethality and insect population control.MolecularandBiochemicalParasitology, 121: 173-178.

      Alphey L, Nimmo D, O′Connell S and Alphey N. 2008. Insect population suppression using engineered insects∥Aksoy S.TransgenesisandtheManagementofVector-BorneDisease. Austin, Texas: Landes Bioscience, 627: 93-103.

      Bailey D L, Lowe R E, Dame D A and Seawright J A. 1980. Mass rearing the genetically altered macho strain ofAnophelesalbimanusWiedemann.TheAmericanJournalofTropicalMedicineandHygiene, 29: 141-149.

      Barnes B N, Eyles D K and Franz G. 2004. South Africa′s fruit fly SIT programme — the Hex River Valley pilot project and beyond∥Barnes B N.Proceedingsofthe6thInternationalSymposiumonFruitFliesofEconomicImportance. Irene, South Africa: Isteg Scientific Publications, 131-141.

      Baumhover A H, Graham A J, Bitter B A, Hopkins D E, New W D, Dudley F H and Bushland R C. 1955. Screwworm control through release of sterilized flies.JournalofEconomicEntomology, 48: 462-466.

      Bloem K A and Bloem S. 2000. SIT for codling moth eradication in British Columbia, Canada∥Tan K H.Proceedings:AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 207-214.

      Bushland R C. 1951. Hopkins Experiments D. E., with screwworm flies sterilized by X-rays.JournalofEconomicEntomology, 44: 725-731.

      Bushland R C. 1971. Sterility principle for insect control. Historical development and recent innovations∥Proceedings,Symposium:SterilityPrincipleforInsectControlorEradication. Vienna, Austria: IAEA, 3-14.

      Caceres C. 2002. Mass rearing of temperature sensitive genetic sexing strains in the Mediterannean fruit fly (Ceratitiscapitata).Genetica, 116: 107-116.

      Caceres C, Cayol J P, Enkerlin W R, Franz G, Hendrich J and Robinson A S . 2004. Comparison of Mediterranean fruit fly (Ceratitiscapitata) bisexual and genetic sexing strains: development, evaluation and economics∥Barnes B N.Proceedingsofthe6thInternationalSymposiumonFruitFliesofEconomicImportance. Irene, South Africa: Isteg Scientific Publications, 367-381.

      Cayol J P, Coronado P and Taher M. 2002. Sexual compatibility in Medfly (Diptera: Tephritidae) from different origins.FloridaEntomologist, 85: 51-57.

      Cayol J P, Rossler Y, Weiss M, Bahdousheh M, Omari M, Hamalawi M and Almughayyar A. 2004. Fruit fly control and monitoring in the Near East: shared concern in a regional transboundary problem∥Barnes B N.Proceedingsofthe6thInternationalSymposiumonFruitFliesofEconomicImportance. Irene, South Africa: Isteg Scientific Publications, 155-171.

      Cayol J P, Vilardi J, Rial E and Vera M T. 1999. New indices and method to measure the sexual compatibility and mating performance ofCeratitiscapitata(Diptera: Tephritidae) laboratory-reared strains under field cage conditions.JournalofEconomicEntomology, 92: 140-145.

      Curtis C F. 1968a. A possible genetic method for the control of insect pests, with special reference to tsetse flies (Glossinasp.).BulletinofEntomologicalResearch, 57: 509-523.

      Curtis C F. 1968b. Possible use of translocations to fix desirable genes in insect pest populations.Nature, 218: 368-369.

      Dame D A, Lowe R E and Williamson D W. 1981. Assessment of released sterileAnophelesalbimanusandGlossinamorsitansmorsitan∥Pal R, Kitzmiller J B and Kanda T.CytogeneticsandGeneticsofVectors. Amsterdam, The Netherlands: Elsevier Science Publishers, 231-248.

      Dantas L, Pereira R, Silva N, Rodrigues A and Costa R. 2004. The SIT control programme against medfly on Madeira Island∥Barnes B N.Proceedingsofthe6thInternationalSymposiumonFruitFliesofEconomicImportance. Irene, South Africa: Isteg Scientific Publications, 127-130.

      Dowell R V, Siddiqui I A, Meyer F and Spaugy E L. 2007. Mediterranean fruit fly preventative release programme in southern California∥Tan K H.AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 369-375.

      Food and Agriculture Organization of the United Nations (FAO). 1992.TheNewWorldScrewwormEradicationProgramme:NorthAfrica1988-1992. Rome: FAO.

      Foster G G, Vogt W G and Woodburn T L. 1985. Genetic analysis of field trials of sex-linked translocation strains for genetic control of the Australian sheep blowflyLuciliacuprina(Wiedemann).AustralianJournalofBiologicalSciences, 38: 275-293.

      Foster G G. 1991. Chromosomal inversions and genetic control revisited: the use of inversions in sexing systems for higher Diptera.TheoreticalandAppliedGenetics, 81: 619-623.

      Foster G G, Vogt W G, Woodburn T L and Smith P H. 1988. Computer simulation of genetic control. Comparison of sterile males and field-female killing systems.TheoreticalandAppliedGenetics, 76: 870-879.

      Foster G G, Weller G L, James W J, Paschalidis K M and McKenzie L J. 1992. Advances in sheep blowfly genetic control in Australia∥ProceedingsofInternationalAtomicEnergyAgencySymposium:ManagementofInsectPests:NuclearandRelatedMolecularandGeneticTechniques. Vienna, Austria: IAEA, 299-312.

      Franz G. 2005. Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique∥Dyck V A, Hendrich J and Robinson A S.PrinciplesandPracticeinArea-WideIntegratedPestManagement. The Netherlands: Springer, 427-451.

      Franz G, Willhoeft U, Kerremans P, Hendrichs J and Rendón P. 1997. Development and application of genetic sexing systems for Mediterranean fruit fly based on a temperature sensitive lethal system∥IAEA.EvaluationofGeneticallyAlteredMedfliesforUseinSITProgrammes. Vienna: IAEA, 85-95.

      Fraser M J. 2012. Insect transgenesis: current applications and future prospects.AnnualReviewofEntomology, 57: 267-289.

      Gaj T, Gersbach C A and Barbas C F. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.TrendsBiotechnology, 31: 397-405.

      Gong P, Epton M, Fu G, Scaife S, Hiscox A, Condon K, Condon G, Morrison N, Kelly D, Dafa′alla T, Coleman P and Alphey L. 2005. A dominant lethal genetic system for autocidal control of the Mediterranean fruit fly.NatureBiotechnology, 23: 453-456.

      Gould F. 2008. Broadening the application of evolutionarily based genetic pest management.Evolution, 62: 500-510.

      Gould F, Huang Y, Legros M and Lloyd A L. 2008. A killer-rescue system for self-limiting gene drive of anti-pathogen constructs.ProceedingsoftheRoyalSocietyofLondon, 275: 2823-2829.

      Gould F and Schliekelman P. 2004. Population genetics of autocidal control and strain replacement.AnnualReviewofEntomology, 49: 193-217.

      Guillén D and Sánchez R. 2007. Expansion of the National Fruit Fly Control Programme in Argentina∥Tan K H.AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 653-660.

      Hagler J R and Jackson C G. 2001. Methods of marking insects: current techniques and future prospects.AnnualReviewofEntomology, 46: 511-543.

      Handler A M. 2011. A current perspective on insect gene transfer.InsectBiochemistryandMolecularBiology, 31: 111-128.

      Harris A F, McKemey A R, Nimmo D, Curtis Z, Black I,etal. 2012. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes.NatureBiotechnology, 30: 828-830.

      Harris A F, Nimmo D, McKemey A R, Kelly N, Scaife S, Donnelly C A, Beech C, Petrie W D and Alphey L. 2011. Field performance of engineered male mosquitoes.NatureBiotechnology, 29: 1034-1037.

      Heinrich J C and Scott M J. 2000. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 97: 8229-8232.

      Hertwig O.1911. Die radiumkrankheit tierischer Keimzellen. Ein Beitrag zur experimentellen Zeugungs-und Vererbungslehre.ArchMikroskAnat, 77: 1-164.

      Horber E. 1963. Eradication of the white grub (MelolonthavulgarisF.) by the sterile male technique∥FAO/IAEA:Proceedings,Symposium:RadiationandRadioisotopesAppliedtoInsectsofAgriculturalImportance. Vienna, Austria: IAEA, 313-332.

      Horn C and Wimmer E A. 2003. A transgene-based, embryo-specific lethality system for insect pest management.NatureBiotechnology, 21: 64-70.

      Jessup A J, Dominiak B, Woods B D E, Lima C P F, Tomkins A and Smallridge C J. 2007. Area-wide management of fruit flies in Australia∥Tan K H.AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 685-697.

      Jin L, Walker A S, Fu G L, Harvey-Samuel T, Dafa′alla T, Miles A, Marubbi T, Granville D, Humphrey-Jones N, O′Connell S, Morrison N I and Alphey L. 2013. Engineered female-specific lethality for control of pest Lepidoptera.ACSSyntheticBiology, 2: 160-166.

      Klassen W and Curitis C F. 2005. History of the sterile insect technique∥Dyck V A, Hendrichs J and Robinson A S.SterileInsectTechnique:PrinciplesandPracticeinArea-WideIntegratedPestManagement. Dordrecht: Springer, 3-36.

      Knipling E F. 1955. Possibilities of insect control or eradication through the use of sexually sterile males.JournalofEconomicEntomology, 48: 459-462.

      Knipling E F. 1959. Sterile-male method of population control.Science, 130: 902-904.

      Knipling E F. 1960. The eradication of the screw-worm.ScientificAmerican, 203: 54-61.

      Lacroix R, McKemey A R, Raduan N, Wee L K, Ming W H, Ney T G, Siti Rahidah A A, Salman S, Subramaniam S, Nordin O, Norhaida Hanum A T, Angamuthu C, Mansor S M, Lees R S, Naish N, Scaife S, Gray P, Labbé G, Beech C, Nimmo D, Alphey L, Vasan S S, Lim L H, Nazni Wasi A and Murad S. 2012. Open field release of genetically engineered sterile maleAedesaegyptiin Malaysia.PLoSONE, 7: e42771.

      Laven H, Cousserans J and Guille G. 1972. Eradicating mosquitoes using translocations: a first field experiment.Nature, 236: 456-457.

      Liu Y C. 1993. Pre-harvest control of Oriental fruit fly and melon fly∥PlantQuarantineinAsiaandthePacific,ReportofAPOStudyMeeting,Taipei,China. Tokyo: Asian Productivity Organization, 73-76.

      Loukeris T G, Livadaras J, Arco B, Zabalou S and Savakis C. 1995. Gene transfer into the medfly,Ceratitiscapitata, with aDrosophilahydeitransposable element.Science, 270: 2002-2005.

      Lyttle T W. 1977. Experimental population genetics of meiotic drive systems. I. Pseudo-Y chromosomal drive as a means of eliminating cage populations ofDrosophilamelanogaster.Genetics, 86: 413-445.

      Malavasi A, Nascimento A S, Paranhos B J, Costa M L Z and Walder J M M. 2007. Establishment of a Mediterranean fruit flyCeratitiscapitata, fruit fly parasitoids, and codling mothCydiapomonellarearing facility in north-rastern Brazil∥Tan K H.AreawideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 527-534.

      McInnis D O, Wong T T Y and Tam S Y T. 1986. Mediterranean fruit fly (Diptera: Tephritidae): suppression efficiencies of unisexual and bisexual sterilized release populations in field cages.AnnalsoftheEntomologicalSocietyofAmerica, 79: 931-937.

      Morrison N I, Simmons G S, Fu G, O′Connell S, Walker A S, Dafa′alla T, Walters M, Claus J, Tang G L, Jin L, Marubbi T, Epton M J, Harris C L, Staten R T, Miller E, Miller T A and Alphey L. 2012. Engineered repressible lethality for controlling the pink bollworm, a Lepidopteran pest of cotton.PLoSONE, 7: e50922.

      Muller H J. 1927. Artificial transmutation of the gene.Science, 66: 84-88.

      North D T and Holt G G. 1970. Population control of Lepidoptera: the genetic and physiological basis.ManitobaEntomologist, 4: 53-69.

      Orankanok W, Chinvinijkul S, Thanaphum S, Sitilob P and Enkerlin W R. 2007. Area-wide integrated control of oriental fruit flyBactroceradorsalisand guava fruit flyBactroceracorrectain Thailand∥Tan K H.AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 517-526.

      Patil P B, Reddy B P N, Gorman K, Reddy K V S, Barwale S R, Zehr U B, Nimmo D, Naish N and Alphey L. 2014. Mating competitiveness and life-table comparisons between transgenic and Indian wild-typeAedesaegyptiL.PestManagementScience, DOI: 10.1002/ps.3873.

      Proverbs M D and Newton J R. 1962. Some effects of gammairradiation on the reproductive potential of the codling moth,Carpocapsapomonella(L.) (Lepidoptera: Olethreutidae).CanadaEntomology, 94: 1162-1170.

      Rao T R. 1974. Research on genetic control of mosquitoes in India: review of the work of the WHO/ICMR research unit New Delhi.JournalofCommunicableDiseases, 6: 57-72.

      Rendon P, McInnis D, Lance D and Stewart J. 2000. Comparison of medfly male only and bisexual releases in large scale field trials∥Tan K H.AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains, 517-527.

      Rendon P, McInnis D, Lance D and Stewart J. 2004. Medfly (Diptera: Tephritidae) genetic sexing: Large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala.JournalofEconomicEntomology, 97: 1547-1553.

      Robinson A S. 2002. Mutations and their use in insect control.MutationResearch, 511: 113-132.

      Robinson A S, Franz G and Fisher K. 1999. Genetic sexing strains in the medfly,Ceratitiscapitata: development, mass rearing and field application.TrendsEntomology, 2: 81-104.

      Rubin G M and Spradling A C. 1982. Genetic transformation ofDrosophilawith transposable element vectors.Science, 218:348-353.

      Runner G A. 1916. Effects of roentgen rays on the tobacco or cigarette beetle and the results of an experiment with a new roentgen tube.TheJournalofAgriculturalResearch, 6: 383-388.

      Schetelig M F, Scolari F, Handler A M, Kittelmann S, Gasperi G and Wimmer E A. 2009. Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit flyCeratitiscapitata.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 106: 18171-18176.

      Schliekelman P and Gould F. 2000. Pest control by the release of insects carrying a female-killing allele on multiple loci.JournalofEconomicEntomology, 93: 1566-1579.

      Shiga M. 1992. Future prospects for the eradication of fruit flies.TechnicalBulletinofFoodandFertilizerTechnologyCenter, 128: 1-12.

      Simmons G S, McKemey A R, Morrison N I, O′Connell S, Tabashnik B E, Claus J, Fu G L, Tang G L, Sledge M, Walker A S, Phillips C E, Miller E D, Rose R I, Staten R T, Donnelly C A and Alphey L. 2011. Field performance of a genetically engineered strain of pink bollworm.PLoSONE, 6: e24110.

      Sinkins S P and Gould F. 2006. Gene drive systems for insect disease vectors.NatureReviewsGenetics, 7: 427-435.

      Steiner L F, Mitchell W C, Harris E J, Kozuma T T and Fujimoto M S. 1965. Oriental fruit fly eradication by male annihilation.JournalofEconomicEntomology, 58: 961-964.

      Suguna S G and Curtis C F. 1974. Sex ratio distorter strains inAedesaegypti.JournalofCommunicableDiseases, 6: 102-105.

      Suguna S G, Curtis C F, Kazmi S J, Singh K R P, Razdan R K and Sharma V P. 1977. Distorter double translocation heterozygote systems inAedesaegypti.Genetica, 47: 117-123.

      Takken W, Olandunmade M A, Dengwat L, Feldmann H U, Onah J A, Tenabe S O and Hamann H J. 1986. The eradication ofGlossinapalpalis(Robineau-Desvoidy) (Diptera: Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in central Nigeria.BulletinofEntomologicalResearch, 76: 275-286.

      Thomas D D, Donnelly C A, Wood R J and Alphey L S. 2000. Insect population control using a dominant, repressible, lethal genetic system.Science, 287: 2474-2476.

      Vanderplank F L. 1944. Hybridization betweenGlossinaspecies and suggested new method for control of certain species of tsetse.Nature, 154: 607-608.

      Vreysen M J B. 2001. Principles of area-wide integrated tsetse fly control using the sterile insect technique.MedicineforTropics, 61: 397-411.

      Vreysen M J B, Saleh K M, Ali M Y, Abdulla A M, Zhu Z R, Juma K G, Dyck A, Msangi A, Mkonyi P A and Feldmann H U. 2000.Glossinaausteni(Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique.JournalofEconomicEntomology, 93: 123-135.

      Walters M L, Staten R T and Roberson R C. 2000. Pink bollworm integrated management using sterile insects under field trial conditions. Imperial Valley, California∥Tan K H.AreaWideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains Malaysia, 201-206.

      Whitten M J. 1969. Automated sexing of pupae and its usefulness in control by sterile insects.JournalofEconomicEntomology, 62: 272-273.

      Willhoeft U and Franz G. 1996. Identification of the sex-determining region of theCeratitiscapitataY chromosome by deletion mapping.Genetics, 144: 737-745.

      Wyss J H. 2000. Screwworm eradication in the Americas — Overview∥Tan K H.Area-WideControlofFruitFliesandOtherInsectPests. Penang, Malaysia: Penerbit Universiti Sains Malaysia, 79-86.

      Yen J H and Barr A R. 1971. New hypothesis of the cause of cytoplasmic incompatibility inCulexpipiens.Nature, 232: 657-658.

      (責(zé)任編輯:楊郁霞)

      1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural

      Sciences,Beijing100193,China;2Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh,

      NC27695-7613,USA;3Genetic Engineering and Society Center and W. M. Keck Center for Behavioral Biology,

      NorthCarolinaStateUniversity,Raleigh,NC27695-7613,USA;4Center for Management

      ofInvasiveAlienSpecies,MinistryofAgriculture,Beijing100193,China

      Abstract:Genetic pest management (GPM) is one of the most efficient methods to control or eradicate insect pests and has been carried out worldwide with notable successes. Some classic GPM strategies including the sterile insect technology (SIT), female killing system (FKS) and release of insects carrying dominant lethality (RIDL) are reviewed here. The development history, technical characters and application of SIT, FKS and RIDL technologies are introduced. In recent years, many new molecular or biological tools like the homing endonuclease gene, zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR/Cas9 system, medea element, the killer-rescue system and the Wolbachia-cytoplasmic incompatibility system were proposed to improve GPM efficiency. Some new tools were already used in control programs as next generation GPM strategies in some countries. The GPM practice in China is limited, and both basic and applied research on GPM should be enhanced, as the GPM technology can help with the sustainable management of some major pests and contribute to food production and human health in China.

      Key words:insect sterile technique; mass rearing; chromosome translocation; genetic sexing strain; transposon

      通訊作者*(Author for correspondence), E-mail: wanfanghao@ieda.org.cn

      作者簡介:申建茹, 女, 博士后。 研究方向: 入侵昆蟲抗逆性生物防治。 E-mail: sjrhappy2008@126.com

      基金項(xiàng)目:國家“973”計(jì)劃項(xiàng)目(2009CB119200); 國家“十一五”科技支撐計(jì)劃課題(2006BAD08A18); 農(nóng)業(yè)部農(nóng)作物病蟲害疫情監(jiān)測與防治項(xiàng)目(2003-2015); 中國農(nóng)科院科技創(chuàng)新工程(2013-2015); 人力資源社會(huì)保障部2014年度留學(xué)人員科技活動(dòng)擇優(yōu)資助項(xiàng)目

      收稿日期(Received): 2014-12-02接受日期(Accepted): 2015-03-20

      DOI:10. 3969/j.issn.2095-1787.2015.02.002

      猜你喜歡
      轉(zhuǎn)座子
      科學(xué)家在DNA轉(zhuǎn)座子研究領(lǐng)域取得新突破
      德氏乳桿菌與嗜熱鏈球菌ISL3家族轉(zhuǎn)座子的比較與分析
      毛竹Mariner-like element自主轉(zhuǎn)座子的鑒定與生物信息學(xué)分析*
      毛竹長末端重復(fù)序列反轉(zhuǎn)錄轉(zhuǎn)座子的全基因組特征及進(jìn)化分析
      地熊蜂基因組中具有潛在活性的轉(zhuǎn)座子鑒定
      淅川烏骨雞全基因組轉(zhuǎn)座子的鑒定與分析
      四倍體海島棉LTR反轉(zhuǎn)錄轉(zhuǎn)座子的數(shù)量與分布
      斑馬魚轉(zhuǎn)座子時(shí)空表達(dá)特性
      植物轉(zhuǎn)座子與基因表達(dá)調(diào)控
      花葉矢竹轉(zhuǎn)錄組中的轉(zhuǎn)座子表達(dá)分析
      莲花县| 密云县| 德阳市| 高台县| 景东| 鄂托克前旗| 色达县| 保德县| 高青县| 瓮安县| 莎车县| 出国| 柯坪县| 白水县| 米脂县| 舞阳县| 麻城市| 修文县| 甘孜县| 平果县| 台北市| 麦盖提县| 连山| 金阳县| 厦门市| 海门市| 方正县| 崇信县| 长丰县| 元氏县| 石棉县| 绍兴市| 古交市| 桑日县| 安徽省| 岑溪市| 博爱县| 潍坊市| 观塘区| 夏邑县| 余干县|