• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫/水熱碳球復(fù)合材料的制備及對(duì)鋰硫電池倍率性能的影響

    2015-12-15 07:18:33李嚴(yán)冰段曉波韓亞苗黃利武陳云貴
    關(guān)鍵詞:高倍率韓亞鋰硫

    李嚴(yán)冰 段曉波 韓亞苗 朱 丁 黃利武 陳云貴

    (四川大學(xué)材料科學(xué)與工程學(xué)院,成都610065)

    硫/水熱碳球復(fù)合材料的制備及對(duì)鋰硫電池倍率性能的影響

    李嚴(yán)冰 段曉波 韓亞苗 朱 丁 黃利武 陳云貴*

    (四川大學(xué)材料科學(xué)與工程學(xué)院,成都610065)

    在鋰硫電池正極材料的研究中,碳材料可以有效改善電池倍率及循環(huán)性能。為了提高鋰硫電池的高倍率放電性能,通過水熱合成的方法,制備了由非均勻粒徑碳球組成的碳材料。與硫熱合成后,硫均勻分布在碳材料表面及周圍,復(fù)合材料含硫量為52wt%。0.2C放電電流下,首次放電比容量為1 174 mAh·g-1,100次循環(huán)后放電比容量為788 mAh·g-1。在4C的放電電流下,放電比容量穩(wěn)定維持在600 mAh·g-1,循環(huán)過程中,庫倫效率高于90%。該碳材料有良好的導(dǎo)電網(wǎng)絡(luò),且制備方便,成本低廉,對(duì)于穿梭效應(yīng)和放電過程中的膨脹效應(yīng)有一定的抑制作用,是一種優(yōu)秀的正極材料。

    鋰硫電池;水熱法;硫碳復(fù)合材料;高倍率

    0 Introduction

    As hybrid electric vehicles(HEVs)and portable electronic devices are making their entry into the market and our lives,the demand for high energy rechargeable batteries continues to rise[1-3].The current lithium-ion batteries(LIBs)can offer a practical specific energy only around 150 Wh·kg-1.Therefore, rechargeable batteries beyond LIBs have been investigated as alternatives.Among them,lithium-sulfur(Li-S)battery has received considerable attention[4-5].

    Rechargeable Li-S batteries are safe,environmentally friendly and low cost.The high specific capacity(1 675 mAh·g-1)coupled with a cell voltage of about 2.15 V leads to theoretical energy density of 2600 Wh·kg-1,which is almost seven times higher than that of the current LIBs(≈387 Wh·kg-1)[6-9]. However,there are still challenges in obtaining good cycling stability at high power.Good cycling stability is essential for real applications such as automotive transport.Compared with other cathode materials such as LiCoO2,both sulfur and lithium polysulfide are electronic insulators,and sulfur is not ionically conductive either[10-14].Another issue is the“shuttle effect”.Lithium polysulfides(Li2Sn,2

    Approaches for improving the performance of the sulfur cathode are to replace the carbonate-based solvents with ionic or polymeric liquid solvents[19-20]so that the diffusivity and solubility of the polysulfides would be slowed down thus setting up a physical[21-23]or chemical[24]obstacle in cathode for adsorbing the polysulfide.The previous strategy is to increase electrical resistivity and the viscosity of electrolytes. Thus,it is not appropriate for fast discharge and charge.Metal oxides or polymers face the same problem.For example,their insulating nature makes the reaction very slow except for small amounts. Carbonaceous materials with good electrical conductivity,large surface area,strong adsorption properties, and short transport pathways for both electrons and Li ions are more favorable choices to deal with the challenges.Lots of carbon-sulfur composites use impregnation via filling carbon pores with molten sulfur[25].Nevertheless,the fully filled pores block the penetration of lithium ions and electrolyte thus increasing cathode polarization.It could limit the power performance of sulfur cathodes.Furthermore,to satisfy the commercial requirements in the future,the compacted density of carbon materials should be more promising compared with some porous carbon or carbon black with a low density.Thus,carbon material with a spherical morphology as an electrically conductive matrix is considered to be an option of the sulfur cathode.

    Here,we report a composite of sulfur evenly dispersed on the surface of the carbon material as the cathode for Li-S batteries.The carbon material was prepared through hydrothermal method and showed a degree of graphitization.The carbon-sulfur composite was synthesized by heat treatment.The composite with 52wt%sulfur shows a good electrochemical properties.

    1 Experimental

    1.1 Preparation of carbon spheres

    6.2 g of glucose was put in 50 mL of deionized water.Then the obtained solution was placed into a sealed autoclave and heated at 200℃with a pressure of 2 MPa in the hydrothermal synthesis reactor for 4~8 h.After cooling down to room temperature,the caramel color products were collected by an air pump filter and then washed with deionized water.After repeated washing,the product was dried in a vacuum oven at 60℃for 24 h,and then heated at 750℃for 5 h in a tube furnace under the atmosphere of Argon.

    1.2 Preparation of su lfur/carbon composites

    The prepared carbon materials(0.5 g)were mixed with sublimed sulfur(1 g).In order to confirm the improvement of the electrochemical performance by the material itself rather than the carbon content,the reference sample was the sublimed sulfur mixed with the commonly used carbon material Super P in the same weight ratio of 2∶1(the S/Super P composite). The two S/C mixtures were heated at 155℃for 12 h in sealed container filled with argon.At this temperature,the sulfur has the lowest viscosity.Then, the temperature was raised to 300℃and kept for 1 h. the sulfur-carbon spheres(S/CS)composite and the S/ Super P composite were obtained after cooling the system to room temperature.

    1.3 Assembly of Li-S cells

    The two composites were mixed with Super P and polyvinylidene fluoride(PVDF 2801)in a weight ratioof 80∶10∶10,with N-methyl-2-pyrrolidone(NMP)as a dispersant.The cathode electrodes were made by coating the slurry on aluminum foil(20 μm)with KTQ-Ⅱadjustable coating machine and dried at 60℃for 20 h in the oven(DZF-6020).CR2025 cointype cells were assembled to test the electrochemical performance of the sulfur-carbon cathode materials with lithium metal(14 mm in diameter)as the anode, and a Celgard 2400 as the separator.The electrolyte was 0.65 mol·L-1lithium bis(trifluoromethanesulfonyl) imide(LiTFSI)in a mixed solvent of 1,2-dimethoxyethane(DME)and 1,3-dioxolane(DOL)(V/V,1∶1, Beijing Chemical Reagent Research Institute).After assembly,a 3 h standing for the cells was allowed to ensure the immersion of electrolyte into the electrodes.

    1.4 Characterizations

    X-ray power diffraction(XRD-DX-2600)was performed with graphite monochromator and Cu Kα radiation(λ=0.154 18 nm)at a scan rate of 0.04°·s-1at operating voltage of 35 kV and the current of 25 mA.Scanning electron microscopy was SEM-JSM-6490LV,and thermogravimetry(NETZSCH STA 449F3) was operated under Ar at a scan rate of 10℃·min-1. Raman spectroscopy(LabRAM HR)was performed with 532 nm diode laser excitation on a 300 lines mm-1grating at room temperature.The relative properties of the hydrothermal carbon were characterized with MODEL FZ-2010 Semiconductor Power Resistivity Meter.

    The coin cells were tested in galvanostatic mode at various currents at room temperature within a voltage window of 1.0~3.0 V using LAND 2001A battery tester. Cyclic voltammetry(CV)measurements were carried out with the coin cell at a scan rate of 0.5 mV·s-1by using a Parstate 2273 electrochemical workstation.

    2 Results and discussion

    2.1 Structure characterization

    Fig.1a exhibits the XRD patterns of the asprepared carbon spheres,sublimed sulfur and S/CS composite.The XRD pattern of elemental sulfur shows two sharp diffraction peaks at 2θ=23°and 28°,indicating an orthorhombic structure.The XRD pattern of the as-prepared carbon shows two broad peaks around 23°and 44°,which correspond to the(002)and(100) diffraction,respectively.The(100)diffraction indicates an amorphous framework,while(002)diffraction suggests a certain degree of graphitized structure with high electronic conductivity.As for the S/CS composite, the diffraction peaks of the sulfur are still present,but the intensities become lower.Fig.1b shows the results obtained from TG of the prepared S/CS composite,S/ Super P composite,and sublimed sulfur correlated to the sublimation of sulfur under argon atmosphere.The sulfur content is about 52wt%and 50wt%,respectively for the S/CS composite and the S/Super P electrode.

    Raman spectrum for the hydrothermal carbon is shown in Fig.2.The spectrum is obtained with 532 nm diode laser excitation on a 300 lines mm-1grating at room temperature.The Raman spectrum of the hydrothermal carbon shows typical pattern of partially graphitized carbon.Two main bands are seen in the spectrum,the D band and the G band.The G band ataround 1 600 cm-1is due to a bond stretching vibration of a pair of sp2sites corresponding to graphitic cluster lattice vibration mode with E2gsymmetry.The D band at 1 350 cm-1is due to an A1gbreathing vibration of a six-fold aromatic ring that is activated by disordered carbon.IDand IGin the Raman spectrum provide the degree of graphitization and the size of any graphitic clusters in disorder carbon.The IDis stronger than IG, suggesting that the hydrothermal carbon has a structure with a fraction of graphitic cluster dispersed in disordered carbon.

    Fig.2 Raman spectrum of the hydrothermal carbon

    As shown in Fig.3a,the Super P consists of carbon particles of different sizes,and the particles are independent of each other.After mixing with sulfur and the heat treatment,as seen in Fig.3b, sulfur evenly distributes on the surface of carbon particles.The C and S elements mapping shown in Fig.3c and Fig.3d also proves it.The Fig.3e is a sketch map of the Super P/S composite,it shows the distribution of the S and C in the composite clearly. When sulfur is attached to the surface of carbon particles,the contact between carbon particles will be weakened,severely reducing the conductivity of the conductive network.

    Fig.3 SEM images of Super P(a),S/Super P composite (b),elemental maps of Super P(c)and S(d)in the Super P/S composite,Sketch map of the Super P and S distribution in the composite(e)

    Fig.4a and 4b show that the carbon material has a sphere-like morphology with a size from submicron to micron order.The formation of non-uniform carbon spheres is due to the use of excessive glucose in the preparing process,so that large particles of carbon spheres will be generated because of the high temperature with long holding time.Carbon spheres of various particle sizes do not exist independently. Among these carbon spheres,there is a chain conductive network,as shown in Fig.4g,which improves both electron conduction and ionic conduction.The hydrothermal product is obtained by filtering,rather than by high speed centrifugation thus leading to the formation of the network.The specific resistivity of the hydrothermal carbon is 0.026 Ω·cm, and the Super P is 0.053 Ω·cm.The voids between the carbon spheres provide more reaction sites for the electrochemical reaction.After the heat treatment for sulfur and carbon spheres,as seen in Fig.4c,there still exists some space,which slows down the pore blockage caused by the deposition of the resultant on the surface at high rate discharge and by effective buffer volume expansion during the reaction,thus ensuring the stability of the structure.By contrast,the contact between Super P particles depends mainly on the PVDF binder,but the binder is not stable in the reaction process,which leads to instability of the cathode structure.Fig.4e and 4f are the elemental maps of the carbon and sulfur for the S/CS composite. Obviously,the elemental map confirms that the sulfuris homogeneously distributed in the framework of the carbon sphere material.

    Fig.4 SEM images of carbon spheres(a);Carbon spheres under different magnifications(b);SEM images of S/CS composite(c);Elemental maps of carbon(e)and sulfur(f)in the S/CS composite corresponding to(d);Sketch map of the Super P and S distribution in the composite(g)

    2.2 Electrochem ical performance

    In Fig.5a,the S/CS composite shows a good highrate performance.At the maximum discharge rate of 4C,it delivers a reversible capacity(calculated on the basis of sulfur)of 683 mAh·g-1(1 675 mAh·g-1at 1C). With the increase of the discharge rate,the discharge capacity decreases accordingly.However,at the same discharge rate,the specific discharge capacity is relatively stable.The stability of the cathode material is also evidenced by the recovery of capacity when the rate goes back to 0.2C.This is because that the carbon material as a matrix can provide a good electrical conductivity and a stable structure.At the same time,the high dispersion of elemental sulfur in the carbon materials is good for the high-rate discharge capability of the sulfur cathode.Fig.5b shows the discharge-charge plots at a serious of current density.As can be seen,with the increase of current density,discharge plateaus are gradually reduced,when the current goes to 4C,voltage plateau is about 1.7 V.As a comparison,the S/Super P electrode delivers a reversible capacity even more than that of the S/CS composite under the discharge rate of 0.2C.As shown in Fig.5c,when the discharge current gets higher,the capacity of the S/Super P electrode declines seriously,the corresponding voltage plateau reduces obviously,too.When the discharge current increases to 2C,the voltage plateau is almost disappeared.The polarization during high-rate cycling is also much more serious than that of the S/CS composite electrode.

    Fig.5 Rate performance of the S/CS composite and the S/Super P electrode at different C rates(a); voltage vs capacity profiles of the S/CS composite (b)and the S/Super P electrode(c)at different discharge rates

    As seen in Fig.6a,the S/CS composite delivers a discharge capacity of 1 174 mAh·g-1at 0.2C in the 1st cycle.After that,it shows a good electrochemical reversibility with a capacity of about 1 041 mAh·g-1in the 2nd cycle,788 mAh·g-1in the 100th cycle, and the capacity retention is 67%,which means that it has a good utilization of sulfur.The corresponding coulombic efficiency is maintained above 90%during cycling,indicating that this material has played a good role in limiting the dissolution and diffusion of polysulfide lithium.It reduces the shuttle effect effectively.Because the percentage of sulfur and carbon in the two S/C composites are similar,the S/ Super P electrode delivers a capacity nearly as much as the S/CS composite in the first few cycles,but as the reaction proceeds,its capacity suffers heavy losses.After 100 cycles,the capacity retention is only 26%,and the coulombic efficiency is far below that of the S/CS electrode.Fig.6b shows the cycle performance of the S/CS electrode at a higher current density of 2C.After 200 cycles,it still delivers a specific capacity of 518 mAh·g-1,the capacity retention is 73%.The coulombic efficiency is maintained above 95%during 200 cycles.This is because that as the current density increases,the electric field force also increases,which inhibits the shuttle effect to a certain extent.The typical discharge-charge curves of the S/ CS composite with 52wt%sulfur at 0.2C are shown in Fig.6c.Two discharge voltage plateaus appear at about 2.3 V and 2.0 V.The higher plateau indicates the S8ring opening to the linear high order lithium polysulfides(Li2Sx,4

    Fig.6d shows the CV curves of the S/CS composite electrode during the first 3 cycles.The peaks of the curve correspond very well with voltage plateaus in the discharge-charge plots in Fig.6c.Two cathodic peaks at~2.3 V and~2.0 V in CV plots are observed due to the multiple reduction of sulfur with Li+ions.In the procedure of anodic scanning,only one peak at~2.5 V is observed,which stands for the oxidation of Li2S2and Li2S to Li2S8.Maybe it is because that the high potential polarization between the insoluble lithium sulfide and lithium polysulfides makes the two oxidation peaks overlapped.In Fig.6c, the two plateaus have a close interval of potential in keeping with that only one anodic peak is observed on the oxidization side of the CV curve.Over 3 cycles, both the CV peak positions and the peak currents change slightly,demonstrating that the cathode materials have excellent electrochemical reversibility which can be attributed to its structure and good electronic conductivity of the S/CS composite.

    Fig.6 Cycle performance and its corresponding coulombic efficiency of the S/CS and the S/Super P composite electrode at 0.2C(a)and the S/CS composites at 2C(b);voltage vs capacity curves of the S/CS composite at 1st,10th,20th cycle at 0.2C(c);CV profiles of the S/CS composite electrode when measured at a scan rate of 0.5 mV·s-1in the potential range of 1.0~3.0 V(vs Li/Li+)(d)

    Obviously the mass loss and the solubility of active materials could have a significant impact on the sulfur cathode,but the rate and cycle performance is also related with the interface reaction.In order to verify that the prepared S/CS material is responsible for the performance of the cell with the electrode,we conducted electrochemical impedance spectroscopy (EIS).Fig.7 shows that all the Nyquist plots of sulfur cathodes are composed of a semicircle in the high frequency region and a linear in the low frequency region.The semicircle is about the interface chargetransfer process of the S/CS cathode.The greater of the semicircle diameter indicates the greater resistance of the electrodes of the electrochemical reaction.The straight line corresponds to the ion diffusion resistance,which is called Warburg diffusion.It is obvious that the S/CS composite electrode exhibits a much smaller charge transfer resistance than that of the S/Super P electrode,although its carbon content is lower.The diameter of the semicircle before cycling is significantly larger than that of the semicircle after the 1st cycle,because the active material of initial state is sulfur,but the active material after the 1st cycle is lithium polysulfide.Obviously,the enhanced structural stability and electrical conductivity of the carbon material as matrix makes a contribution to improve the electrochemical performance of the sulfur cathode. Furthermore,this can be well matched with theelectrochemical performance.

    Fig.7 EIS spectra of the S/CS and S/Super P composite electrode at the current density of 0.5C;Inset: the detail for high frequency area

    3 Conclusions

    The carbon-sulfur composites were synthesized by a melt-diffusion of sulfur in hydrothermal carbon, and the weight ratio of sulfur is 52%in the composite. The obtained structure of carbon-sulfur composites is effective in improving the electrochemical performance of S-based cathode material.The electronic/ionic transport and the ability to accommodate volume expansion in the reaction process are also improved owing to the unique chain conductive network structure of the carbon matrix.The sulfur cathode exhibits specific capacity retention of~66%at 0.2C after 100 cycles,~73%at 2C after 200 cycles,and the coulombic efficiency maintains above 90%in the cycles.At the discharge current of 4C,it still delivers a specific capacity of more than 600 mAh·g-1.As a result,when evaluated as a cathode material for lithium-sulfur batteries,the S/CS composite shows good electrochemical performance with excellent rate capability and cycling stability.

    [1]Manthiram A,Fu Y,Su Y S.Acc.Chem.Res.,2012,46:1125 -1134

    [2]Bruce P G,Freunberger S A,Tarascon J M,et al.Nat.Mater., 2012,11:19-29

    [3]Lu Y C,He Q,Gasteiger H A.J.Phys.Chem.C,2014,118: 5733-5741

    [4]Cheon S E,Choi S S,Han J S,et al.J.Electorchem.Soc., 2004,151(12):A2067-A2073

    [5]Evers S,Nazar L F.Acc.Chem.Res.,2012,46(5):1135-1143

    [6]He G,Ji X,Nazar L.Energy Environ.Sci.,2011,4:2878-2883

    [7]Choi Y J,Chung Y D,Baek C Y,et al.J.Power Sources, 2008,184(2):548-552

    [8]Liang X,Wen Z,Liu Y,et al.J.Power Sources,2011,196: 3655-3658

    [9]Geng X,Rao M,Li X,et al.J.Solid State Electrochem., 2013,17:987-992

    [10]Lu S,Cheng Y,Wu X,et al.Nano Lett.,2013,13(6):2485-2489

    [11]Rauh R D,Abraham K M,Pearson G F,et al.J.Electrochem. Soc.,1979,126(4):523-527

    [12]He X,Pu W,Ren J,et al.Ionics,2008,14(4):335-337

    [13]Zhu Y,Zhang L,Schappacher F M,et al.J.Phys.Chem.C, 2008,112(23):8623-8628

    [14]Zhang B,Qin X,Li G R,et al.Energy Environ.Sci.,2010,3 (10):1531-1537

    [15]Jayaprakash N,Shen J,Moganty S S,et al.Angew.Chem. Int.Ed.,2011,123(26):6026-6030

    [16]Shin J H,Jung S S,Kim K W,et al.J.Mater.Sci.-Mater. El.,2002,13(12):727-733

    [17]Wei S,Zhang H,Huang Y,et al.Energy Environ.Sci., 2011,4(3):736-740

    [18]Su Y S,Manthiram A.Chem.Commun.,2012,48(70):8817-8819

    [19]Marmorstein D,Yu T H,Cairns E J,et al.J.Power Sources, 2000,89(2):219-226

    [20]Shin J H,Cairns E J.J.Electrochem.Soc.,2008,155(5): A368-A373

    [21]Zheng G Y,Yang Y,Cha J J,et al.Nano Lett.,2011,11(10): 4462-4467

    [22]Ji X,Evers S,Black R,et al.Nat.Commun.,2011,2:325-331

    [23]Ji X L,Lee K T,Nazar L F.Nat.Mater.,2009,8(6):500-506

    [24]Demir-Cakan R,Morcrette M,Nouar F,et al.J.Am.Chem. Soc.,2011,133:16154-16160

    [25]Liang C D,Dudney N J,Howe J Y.Chem.Mater.,2009,21 (19):4724-4730

    Sulfur-Hydrothermal Carbon Com posites for Cathode in High-Rate Lithium-Sulfur Batteries

    LI Yan-Bing DUAN Xiao-Bo HAN Ya-Miao ZHU Ding HUANG Li-Wu CHEN Yun-Gui*
    (College of Materials Science and Engineering,Sichuan University,Chengdu 610065,China)

    Sulfur-carbon composites as the cathode of Lithium-Sulfur batteries have shown excellent electrochemical performance for high power devices.To enhance rate performance of sulfur cathode for Li-S batteries,a carbon material consisted of non-uniform carbon spheres has been prepared by hydrothermal method.Sulfur disperses evenly on the surface of the carbon spheres via a melt-diffusion method.The as-prepared composite with a sulfur content of 52wt%delivers an initial discharge capacity of 1 174 mAh·g-1and a reversible discharge capacity of 788 mAh·g-1after 100 cycles at 0.2C.At a higher rate of 4C,the capacity stabilizes at around 600 mAh·g-1. During cycling,the coulombic efficiency is maintained above 90%.The results show that the carbon-sulfur composites with chain conductive network represents a promising cathode material for rechargeable lithium batteries because of the effective improvement of the electronic conductivity,the restraint of the volume expansion and the reduction of the shuttle effect.

    lithium-sulfur batteries;hydrothermal;sulfur/carbon composite;high-rate

    O614.111;O613.51;O613.71

    A

    1001-4861(2015)04-0641-08

    10.11862/CJIC.2015.073

    2014-09-25。收修改稿日期:2015-01-01。

    *通訊聯(lián)系人。E-mail:ygchen60@aliyun.com,Tel:0086-28-85407335

    猜你喜歡
    高倍率韓亞鋰硫
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    “網(wǎng)紅”韓亞
    派出所工作(2018年1期)2018-05-30 10:48:04
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    中國公路(2017年13期)2017-02-06 03:16:37
    鋰硫電池硫/碳復(fù)合材料制備方法的研究進(jìn)展
    韓國漢陽大學(xué)研發(fā)出新型鋰硫電池
    高倍率性能鋰離子電池Li[Ni1/3Co1/3Mn1/3]O2正極材料的制備及其電化學(xué)性能
    國外鋰硫電池研究進(jìn)展
    首页视频小说图片口味搜索 | 99久久人妻综合| 国产日韩一区二区三区精品不卡| 高清av免费在线| 黄色片一级片一级黄色片| 免费在线观看黄色视频的| 欧美日韩成人在线一区二区| 男的添女的下面高潮视频| 欧美日韩视频精品一区| 十八禁人妻一区二区| 美女主播在线视频| 校园人妻丝袜中文字幕| 999精品在线视频| 考比视频在线观看| a级毛片在线看网站| 国产一区二区在线观看av| 亚洲色图综合在线观看| 亚洲三区欧美一区| 国产精品二区激情视频| 国产熟女午夜一区二区三区| 国产精品一区二区在线不卡| 欧美日韩精品网址| 久久久欧美国产精品| 亚洲一码二码三码区别大吗| www.精华液| 久久久久久久精品精品| 久久国产精品人妻蜜桃| 亚洲伊人色综图| 天天躁夜夜躁狠狠躁躁| 蜜桃国产av成人99| 三上悠亚av全集在线观看| 日本91视频免费播放| 亚洲国产精品国产精品| 成人午夜精彩视频在线观看| 欧美激情 高清一区二区三区| 日韩人妻精品一区2区三区| av又黄又爽大尺度在线免费看| 91九色精品人成在线观看| 亚洲av成人不卡在线观看播放网 | 色网站视频免费| 日韩伦理黄色片| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 日本a在线网址| 一本—道久久a久久精品蜜桃钙片| 精品国产国语对白av| www.自偷自拍.com| 中文字幕人妻丝袜制服| 女人精品久久久久毛片| 国产在视频线精品| 男人添女人高潮全过程视频| a级毛片在线看网站| 多毛熟女@视频| 水蜜桃什么品种好| 国产欧美日韩一区二区三 | 香蕉国产在线看| 制服人妻中文乱码| 性色av一级| 亚洲av美国av| 亚洲一码二码三码区别大吗| av天堂久久9| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 免费观看av网站的网址| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩av久久| 一区福利在线观看| 国产精品成人在线| 丰满迷人的少妇在线观看| 99热全是精品| 欧美日本中文国产一区发布| 国产一区二区在线观看av| 99九九在线精品视频| 极品少妇高潮喷水抽搐| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 国产一卡二卡三卡精品| 亚洲av国产av综合av卡| 青春草亚洲视频在线观看| av电影中文网址| 国产精品久久久久成人av| 国产精品久久久久久人妻精品电影 | 精品少妇黑人巨大在线播放| 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| av又黄又爽大尺度在线免费看| 欧美精品啪啪一区二区三区 | 亚洲国产精品999| 久久九九热精品免费| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 老司机影院毛片| 亚洲免费av在线视频| 欧美 亚洲 国产 日韩一| 亚洲欧美色中文字幕在线| 日本a在线网址| www.精华液| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av涩爱| 男人操女人黄网站| 欧美日韩国产mv在线观看视频| 91成人精品电影| 久久99一区二区三区| 国产精品 欧美亚洲| 久久人人爽人人片av| 欧美人与善性xxx| 精品熟女少妇八av免费久了| 天天躁日日躁夜夜躁夜夜| 亚洲国产毛片av蜜桃av| 亚洲黑人精品在线| 久久热在线av| 国产一级毛片在线| 精品免费久久久久久久清纯 | 两个人看的免费小视频| 大型av网站在线播放| 成人国产av品久久久| 青春草亚洲视频在线观看| 女性被躁到高潮视频| 亚洲伊人色综图| 少妇被粗大的猛进出69影院| 国产一区二区激情短视频 | 久久久国产精品麻豆| 大陆偷拍与自拍| 一级,二级,三级黄色视频| 精品国产乱码久久久久久小说| 成人国产av品久久久| 欧美精品人与动牲交sv欧美| 色精品久久人妻99蜜桃| 国产黄频视频在线观看| 精品一区在线观看国产| 日韩免费高清中文字幕av| 超碰97精品在线观看| 男人添女人高潮全过程视频| 日本黄色日本黄色录像| 久久久国产精品麻豆| 日本a在线网址| 中文字幕色久视频| 无限看片的www在线观看| 老熟女久久久| 成人免费观看视频高清| 一二三四社区在线视频社区8| 中文字幕高清在线视频| www.熟女人妻精品国产| 人妻人人澡人人爽人人| 啦啦啦啦在线视频资源| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品999| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕| 国产国语露脸激情在线看| av不卡在线播放| 久久天堂一区二区三区四区| 亚洲国产av新网站| 久久天堂一区二区三区四区| 亚洲一区二区三区欧美精品| 亚洲国产精品一区三区| 2021少妇久久久久久久久久久| 波多野结衣av一区二区av| 中文字幕人妻丝袜一区二区| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 久热这里只有精品99| 亚洲国产欧美一区二区综合| 啦啦啦在线免费观看视频4| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 99久久99久久久精品蜜桃| 国产亚洲av片在线观看秒播厂| cao死你这个sao货| 在线观看免费高清a一片| 欧美av亚洲av综合av国产av| 老鸭窝网址在线观看| 久久99热这里只频精品6学生| 男人舔女人的私密视频| 人成视频在线观看免费观看| 国产免费视频播放在线视频| 在线观看一区二区三区激情| 久9热在线精品视频| 亚洲国产最新在线播放| 男女床上黄色一级片免费看| 又粗又硬又长又爽又黄的视频| 啦啦啦啦在线视频资源| 大陆偷拍与自拍| 免费av中文字幕在线| 国产成人欧美| 国产精品 国内视频| 精品少妇久久久久久888优播| 男女午夜视频在线观看| 麻豆国产av国片精品| 人妻人人澡人人爽人人| 啦啦啦 在线观看视频| 在线av久久热| 亚洲精品国产av蜜桃| 国产女主播在线喷水免费视频网站| 黑人欧美特级aaaaaa片| 天天影视国产精品| 国产成人影院久久av| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 男的添女的下面高潮视频| 美女中出高潮动态图| 国产在线视频一区二区| 亚洲黑人精品在线| 亚洲国产av影院在线观看| 国产精品免费大片| 在线观看免费高清a一片| 91字幕亚洲| 肉色欧美久久久久久久蜜桃| 久久综合国产亚洲精品| 青春草视频在线免费观看| 午夜av观看不卡| 国产在视频线精品| 性高湖久久久久久久久免费观看| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| av天堂在线播放| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 国产欧美日韩一区二区三 | 波多野结衣一区麻豆| 亚洲自偷自拍图片 自拍| 久久天堂一区二区三区四区| av网站在线播放免费| 免费在线观看影片大全网站 | 中文字幕av电影在线播放| avwww免费| av福利片在线| 啦啦啦啦在线视频资源| 中国美女看黄片| 91九色精品人成在线观看| 亚洲av美国av| 国产片内射在线| 久久精品国产a三级三级三级| 日韩av在线免费看完整版不卡| 亚洲色图综合在线观看| 1024香蕉在线观看| 成人三级做爰电影| 丝袜喷水一区| 亚洲av成人精品一二三区| 亚洲欧美激情在线| cao死你这个sao货| 欧美 亚洲 国产 日韩一| 久久鲁丝午夜福利片| 婷婷丁香在线五月| 韩国精品一区二区三区| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡 | 天天操日日干夜夜撸| 免费在线观看日本一区| 午夜免费观看性视频| 99久久精品国产亚洲精品| 天堂俺去俺来也www色官网| 你懂的网址亚洲精品在线观看| 免费在线观看日本一区| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 成人国产一区最新在线观看 | 好男人电影高清在线观看| 久久精品成人免费网站| 欧美 亚洲 国产 日韩一| 美女高潮到喷水免费观看| 伦理电影免费视频| 国产精品香港三级国产av潘金莲 | 久久精品熟女亚洲av麻豆精品| 欧美日韩福利视频一区二区| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久人妻精品电影 | 欧美精品一区二区免费开放| 久热爱精品视频在线9| 亚洲九九香蕉| 国产1区2区3区精品| 欧美黑人精品巨大| 又粗又硬又长又爽又黄的视频| 免费在线观看影片大全网站 | 天天躁夜夜躁狠狠久久av| 男人添女人高潮全过程视频| 成人亚洲欧美一区二区av| 日韩中文字幕视频在线看片| av天堂在线播放| 亚洲色图 男人天堂 中文字幕| 老司机在亚洲福利影院| 精品国产乱码久久久久久男人| 一区二区三区四区激情视频| 少妇被粗大的猛进出69影院| svipshipincom国产片| 免费黄频网站在线观看国产| 午夜老司机福利片| 999久久久国产精品视频| 久久99精品国语久久久| 久久人人爽人人片av| 亚洲一码二码三码区别大吗| 欧美国产精品va在线观看不卡| 日韩熟女老妇一区二区性免费视频| 黄片播放在线免费| 宅男免费午夜| 国产高清国产精品国产三级| 蜜桃在线观看..| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线| 成人亚洲欧美一区二区av| 在线观看国产h片| 国产又爽黄色视频| 狂野欧美激情性xxxx| 久久久久久久国产电影| 国产一区二区三区av在线| 老司机在亚洲福利影院| 午夜福利在线免费观看网站| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 亚洲情色 制服丝袜| av视频免费观看在线观看| 亚洲精品乱久久久久久| 女人高潮潮喷娇喘18禁视频| 精品久久久久久电影网| 韩国精品一区二区三区| 国产麻豆69| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 午夜精品国产一区二区电影| 99精品久久久久人妻精品| 国产精品一二三区在线看| 男的添女的下面高潮视频| 久久精品亚洲熟妇少妇任你| 亚洲av日韩在线播放| 天天躁日日躁夜夜躁夜夜| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 国产精品久久久人人做人人爽| 大片电影免费在线观看免费| 成年动漫av网址| 菩萨蛮人人尽说江南好唐韦庄| 悠悠久久av| 91国产中文字幕| 久久人人爽人人片av| 久久免费观看电影| 国产精品免费视频内射| 又大又爽又粗| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| a 毛片基地| 99国产精品一区二区蜜桃av | 国产亚洲欧美在线一区二区| 丝袜美足系列| 精品久久久久久久毛片微露脸 | 久久精品亚洲熟妇少妇任你| 久久99一区二区三区| 不卡av一区二区三区| 香蕉丝袜av| 一区二区三区乱码不卡18| 波野结衣二区三区在线| 人妻人人澡人人爽人人| 性色av乱码一区二区三区2| 在线观看免费高清a一片| h视频一区二区三区| 亚洲九九香蕉| 精品少妇黑人巨大在线播放| bbb黄色大片| 在现免费观看毛片| 日本黄色日本黄色录像| 国精品久久久久久国模美| 精品人妻熟女毛片av久久网站| 久久综合国产亚洲精品| 捣出白浆h1v1| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 不卡av一区二区三区| 欧美xxⅹ黑人| 老司机在亚洲福利影院| 18在线观看网站| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 国产成人欧美| 国产精品秋霞免费鲁丝片| 好男人电影高清在线观看| 少妇人妻 视频| av线在线观看网站| 久久久久视频综合| 青春草视频在线免费观看| 免费久久久久久久精品成人欧美视频| avwww免费| 国产精品 欧美亚洲| 久久毛片免费看一区二区三区| √禁漫天堂资源中文www| 赤兔流量卡办理| 国产精品一区二区在线不卡| 国产欧美日韩精品亚洲av| av在线播放精品| 国产三级黄色录像| 亚洲欧美一区二区三区久久| 亚洲欧美一区二区三区黑人| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线| 国产成人91sexporn| av在线app专区| 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 日本猛色少妇xxxxx猛交久久| 欧美变态另类bdsm刘玥| 色视频在线一区二区三区| 看免费成人av毛片| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| 91九色精品人成在线观看| 性色av乱码一区二区三区2| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 久久国产精品影院| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲高清精品| 精品一区二区三区四区五区乱码 | 亚洲av日韩在线播放| 水蜜桃什么品种好| 亚洲美女黄色视频免费看| 久久久久久人人人人人| 一级毛片 在线播放| 国产xxxxx性猛交| 国产成人啪精品午夜网站| 亚洲视频免费观看视频| 中国国产av一级| 国产一区二区三区综合在线观看| 午夜福利视频精品| 亚洲欧美精品自产自拍| 亚洲精品成人av观看孕妇| 成年人黄色毛片网站| 999久久久国产精品视频| 亚洲av男天堂| 久久精品aⅴ一区二区三区四区| 国产人伦9x9x在线观看| 亚洲精品美女久久久久99蜜臀 | 黄频高清免费视频| 九色亚洲精品在线播放| 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网 | 免费在线观看视频国产中文字幕亚洲 | 亚洲七黄色美女视频| 男人爽女人下面视频在线观看| 男女免费视频国产| 亚洲五月色婷婷综合| 亚洲天堂av无毛| 久久人人97超碰香蕉20202| 午夜视频精品福利| 满18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清 | 亚洲,一卡二卡三卡| 精品视频人人做人人爽| 国产精品一国产av| 老司机在亚洲福利影院| 免费高清在线观看日韩| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 国产欧美日韩综合在线一区二区| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| av国产久精品久网站免费入址| 亚洲男人天堂网一区| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 桃花免费在线播放| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| a级毛片黄视频| 欧美日韩亚洲综合一区二区三区_| 久久国产亚洲av麻豆专区| 看免费成人av毛片| 我的亚洲天堂| av视频免费观看在线观看| www.精华液| 国产伦理片在线播放av一区| 国产免费一区二区三区四区乱码| 美女大奶头黄色视频| 亚洲精品中文字幕在线视频| 一级毛片 在线播放| 80岁老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 国产成人精品无人区| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 久久国产精品男人的天堂亚洲| 中文字幕最新亚洲高清| 波野结衣二区三区在线| 亚洲欧美一区二区三区国产| 欧美人与性动交α欧美精品济南到| 乱人伦中国视频| 国产精品三级大全| 国产精品九九99| 欧美精品啪啪一区二区三区 | 亚洲av成人精品一二三区| 欧美在线黄色| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 亚洲欧美中文字幕日韩二区| 99香蕉大伊视频| 搡老岳熟女国产| 激情五月婷婷亚洲| 久久久国产精品麻豆| 手机成人av网站| 欧美人与性动交α欧美精品济南到| 免费黄频网站在线观看国产| 亚洲国产精品一区三区| 亚洲九九香蕉| 国产亚洲一区二区精品| 在线av久久热| 人妻一区二区av| netflix在线观看网站| 母亲3免费完整高清在线观看| 日韩一区二区三区影片| 免费不卡黄色视频| 宅男免费午夜| av电影中文网址| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 国产精品欧美亚洲77777| 黄色视频不卡| 在线 av 中文字幕| 99香蕉大伊视频| 久久狼人影院| 久久 成人 亚洲| 国产精品久久久久久人妻精品电影 | 纵有疾风起免费观看全集完整版| 国产精品 国内视频| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 王馨瑶露胸无遮挡在线观看| 色网站视频免费| 最近手机中文字幕大全| 男女之事视频高清在线观看 | www.精华液| 国产又爽黄色视频| 日本猛色少妇xxxxx猛交久久| 一本一本久久a久久精品综合妖精| 精品高清国产在线一区| 性色av乱码一区二区三区2| 大码成人一级视频| 国产主播在线观看一区二区 | 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 国产有黄有色有爽视频| 老司机影院成人| 18在线观看网站| 18禁观看日本| 欧美精品一区二区大全| 亚洲熟女毛片儿| 午夜老司机福利片| 精品一区二区三卡| 青青草视频在线视频观看| 国产成人精品在线电影| 亚洲国产精品成人久久小说| cao死你这个sao货| 热re99久久精品国产66热6| av福利片在线| 少妇精品久久久久久久| 欧美少妇被猛烈插入视频| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 高清欧美精品videossex| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 日韩av在线免费看完整版不卡| 亚洲中文字幕日韩| 视频在线观看一区二区三区| 五月天丁香电影| 一区二区三区精品91| 在线观看www视频免费| 欧美日韩成人在线一区二区| 建设人人有责人人尽责人人享有的| 18禁国产床啪视频网站| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 日韩av在线免费看完整版不卡| av不卡在线播放| 日本av免费视频播放| 亚洲伊人色综图| 18禁黄网站禁片午夜丰满| 国产xxxxx性猛交| 天堂8中文在线网| 美女脱内裤让男人舔精品视频| 美女国产高潮福利片在线看| 一区在线观看完整版| av线在线观看网站| 国产成人啪精品午夜网站| 国产在线视频一区二区| 日本欧美国产在线视频| 男女下面插进去视频免费观看| 国产精品久久久久久精品古装| 日本wwww免费看| 欧美黑人精品巨大| 亚洲精品久久午夜乱码| 欧美日韩亚洲综合一区二区三区_| 久热爱精品视频在线9| 日本一区二区免费在线视频| 国产日韩欧美在线精品| 一边亲一边摸免费视频| 高清视频免费观看一区二区| 一级毛片我不卡| 汤姆久久久久久久影院中文字幕| 九色亚洲精品在线播放| 日本一区二区免费在线视频|