• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Use of a Lattice Model for Analyzing of In-Plane Vibration of Thin Plates

    2015-12-14 05:36:10avijaSchlangen
    Computers Materials&Continua 2015年12期

    B.?avija,E.Schlangen

    On the Use of a Lattice Model for Analyzing of In-Plane Vibration of Thin Plates

    B.?avija1,E.Schlangen1

    In this paper,a novel approach for simulating in-plane vibration of thin plates is proposed.It is based on the spectral element method(SEM)used within a lattice modeling framework.First,derivation of a frequency dependent dynamic stiffness matrix for a spectral beam element is presented.Then,the lattice modeling concept is introduced.In the model,the two-dimensional plate is discretized as a set of(one dimensional)spectral beam elements connected at the ends.The proposed approach is then used for modal analysis of rectangular plates of different aspect ratios(1 and 2)and boundary conditions(completely free and clamped).Simulated natural frequencies and modal shapes are compared to results available in the literature.It was found that the proposed model can reasonably reproduce low natural frequencies(in most cases within 10%)and modal shapes.Future work will focus on the use of the model as an aid in non-destructive testing of structures.

    Lattice model,Fracture,Spectral Element Method,Coupling

    1 Introduction

    Spectral element method(SEM)has been used in recent years for dynamic analysis of structures[Doyle(1997)]as an alternative to the finite element method.It has shown to be suitable for modeling vibration of frame[Nefovska-Danilovic,Petronijevic and ?avija(2013)]and periodic structures[Lee(2009);Wu,Li and Zhang(2014)].The SEM is a method for dynamic analysis which is based on elements whose stiffness matrices are obtained by solving the governing differential equations in the frequency domain.The element shape functions are based on the solution of the equation of motion,and,therefore,the displacement field within each element is an exact solution,and not an approximation.This is in contrast to the FEM,where usually polynomial shape functions are used to approximate the displacement field[Zienkiewicz and Taylor(2000)].As a result,each geometrically and materially uniform structural element can be represented by a single spectralelement[Doyle(1997);Wu,Li and Zhang(2014)],greatly reducing the total number of elements in the analysis.In the SEM,the element shape functions(and element stiffness matrices)are frequency-dependent,and the analysis is performed in the frequency domain.

    Lattice type models have been first used by theoretical physicists to model fracture mechanisms in heterogeneous materials[Moukarzel and Herrmann(1992)].In such models,the material is discretized as a set of beam or truss elements,which transfer the load.This type of model has been adopted by various authors to simulate fracture in concrete(e.g.[Schlangen and van Mier(1992);Bolander and Saito(1998)])and other anisotropic or heterogeneous materials(e.g.wood[Vasic,Smith and Landis(2005)]or porous reactor core graphite[?avija,Liu,Smith,Hallam,Schlangen and Flewitt(2016)].The use of lattice(or discrete)models has been further extended on simulating transport processes in porous materials such as concrete[Bolander and Berton(2004);Grassl(2009);Wang and Ueda(2011);?avija,Pacheco and Schlangen(2013);?avija,Lukovi′c and Schlangen(2014);Pacheco,?avija,Schlangen and Polder(2014)],in which 1D “pipe”elements are used.In this work,an attempt is made to extend the lattice modeling concept to modeling dynamic behavior of structures by utilizing the SEM.This first effort is restricted to 2D analyses,and therefore the suitability of the proposed approach is assessed by analyzing in-plane vibrations of thin plates.Note,however,that the model proposed herein is different in nature compared to the model of Lee(1998),who used a continuum representation to simulate a periodic lattice structure:the model proposed herein uses a discrete representation of the continuum,in line with lattice approaches used for simulating fracture and transport.

    Only a small number of publications have been devoted to in-plane vibration of plates.As the model proposed herein is two-dimensional,such works can be considered suitable for verification,Therefore,in this study,work of Bardell,Langley and Dunsdon(1996)is used as a reference to verify the proposed approach.

    2 Modeling approach

    2.1 Spectral elements

    2.1.1 Spectral rod element

    Partial differential equation of motion for a rod element is[Doyle(1997);Nefovska-Danilovic,Petronijevic and ?avija(2013)]:

    Here,u(x,t)is the longitudinal displacement,ρ the mass density,E Young’s mod-ulus,A the cross-sectional area,and t time.

    Equation(1)can be solved by introducing a spectral representation of the displacement field[Doyle(1997);Nefovska-Danilovic,Petronijevic and ?avija(2013)]:

    where ω is the angular frequency.By inserting Eq.(2)in Eq.(1),the Fourier transform of Eq.(1)can be expressed as:

    where k is the wave number,with two possible values:

    The general solution of Eq.(3)can be written as:

    where B1and B2are constants which can be determined using boundary conditions at end nodes:

    By combining Eq.(6)and Eqs.(7)-(8),the relationship between the vectors of nodal displacements[U]and unknown constants can be written(in matrix form)as:

    where[DR]is:

    Similarly,by utilizing the relation between axial force and strain:

    the following matrix relation results:

    where[GR]is:

    The stiffness matrix relates the nodal displacements[UR]and nodal forces[FR]:

    The frequency dependent dynamic stiffness matrix for a rod element is given in as[KR]=[GR][DR]-1.

    2.1.2 Spectral beam element

    The dynamic stiffness matrix for a beam element can be derived in a similar manner as for the bar element.The equation of motion for an Euler-Bernoulli beam is:

    where w(x,t)is the transverse displacement and I the moment of inertia.

    Equation(15)can be solved by introducing a spectral representation of the transverse displacement field[Doyle(1997);Nefovska-Danilovic,Petronijevic and ?avija(2013)]:

    By combining Eqs.(16)and(15),the Fourier transform of Eq.(15)can be expressed as:

    where k is the wave number,with four possible values:

    The general solution of Eq.(17)can be written as:

    where C1-C4are constants which can be determined using boundary conditions at end nodes:

    where Ψ is the rotation(see Fig.1).By combining Eq.(22)and Eqs.(23)-(26),and keeping in mind thatthe relationship between the vector of nodal displacements[UB]and unknown constants can be written as(in matrix form):

    where[DB]matrix for a beam element is:

    By utilizing the relation between vertical displacements and node forces:

    the following matrix relation results:

    where[GB]is:

    The stiffness matrix relates the nodal displacements[UB]and nodal forces[FB]:

    The frequency dependent dynamic stiffness matrix for a beam element is given as[KB]=[GB][DB]-1.

    2.1.3 Spectral element

    The dynamic stiffness matrix for a two-dimensional element comprises both stiffness matrices for a rod and for bending,as previously derived.The relation between the spectral nodal displacements and forces can be expressed in the matrix form as[Doyle(1997);Nefovska-Danilovic,Petronijevic and ?avija(2013);Wu,Li and Zhang(2014)]:

    where K(ω)is the dynamic stiffness matrix,the vector of(all)nodal displacements,andthe vector of(all)nodal forces(see figure 1).The element stiffness matrix is frequency dependent of the following form:

    Figure 1:A beam element in a local coordinate system

    In Eq.(37),the superscripts R and B refer to rod and beam,respectively.Subscripts denote the position of each entry in the dynamic stiffness matrix of a rod or a beam.A typical beam element in the local coordinate system is shown in Fig.1.It can be seen that axial and bending motion are decoupled.The dynamic stiffness matrix in the global coordinate system for a structure is further obtained by using transformation and assembling procedure,the same as in the FEM[Zienkiewicz and Taylor(2000)].

    2.2 Lattice modeling concept

    In the lattice model as used herein,the material is discretized as a set of spectral beam elements(Fig.2).Therefore,the plate is modeled using simple beam elements with three degrees of freedom per node,two translations and one rotation(see Fig.1).The plate is divided into a number of quadratic cells with a unit length of h,and a node is placed within each of these cells.These are the end nodes of lattice beam elements.A regular quadrangular lattice is used,connecting nodes in neighboring cells.Cross sectional area and moment of inertia of each beam element are defined as:

    where d is the out-of plane thickness of the analyzed plate.The volume of the plate needs also to be converted to the volume of the equivalent lattice.It needs to be noted that,in this procedure,a certain overlap exists between neighboring lattice elements(Fig.3).Therefore,in the calculation of the stiffness matrix of the spectral beam,the mass density(ρ)is divided by a correction factor η,which is de fined as[Nakamura,Srisoros,Yashiro and Kunieda(2006)]:

    Figure 2:Discretization of the material domain by a lattice mesh

    Figure 3:Definition of overlap area for determination of parameter η[Nakamura,Srisoros,Yashiro and Kunieda(2006)]

    where n is the total number of lattice elements,Akthe cross-sectional area of each lattice element,Lkthe length of each lattice element,i the element number,and V the total volume of the plate.The correction factor η,therefore,ensures that the total mass of the plate is conserved after the lattice discretization.Note that in an in finite square lattice,η =2,while in a finite rectangular lattice,η is somewhat lower,due to the effect of the domain boundaries.

    3 Validation and discussion

    In their work,Bardell,Langley and Dunsdon(1996)used the Rayleigh-Ritz method to study in-plane vibration of isotropic rectangular plates with varying boundary conditions.Apart from the modal frequencies,modal shapes for different test cases are provided.As the methodology presented in the current paper is quite new,it is necessary to test both the accuracy of the simple lattice model in terms of natural frequencies and its ability to reproduce correct modes of vibration.Therefore,work of Bardell,Langley and Dunsdon(1996)was selected as a benchmark for evaluation of the proposed model.

    The modal frequencies can be determined as angular frequencies ω for which the following is true:

    The proposed model was used to analyze two rectangular plates with aspect ratios of a/b=1 and a/b=2.The material properties used in the calculation were E=207 GPa,ρ =7800 kg/m3and ν =0.3.A lattice cell of a unit cell size(h=1)was used in all analyses.The calculated natural frequencies were transformed into a non-dimensional form by using the following equation:

    where CLis the longitudinal wave speed:

    and compared to those obtained by Bardell,Langley and Dunsdon(1996).Furthermore,the mode shapes were plotted and compared as well.

    The first analyzed case was a completely free square plate(i.e.with an aspect ratio of a/b=1)with a=10h.The first five vibration modes and natural frequencies are shown in Fig.4.

    It is interesting to note that modes 1-3 correspond to modes by Bardell,Langley and Dunsdon(1996),while mode 4 corresponds to mode 5,and mode 5 to mode 4.InFig.5,a comparison between the non-dimensional natural frequencies calculated using the simple lattice model and those provided by Bardell,Langley and Dunsdon(1996)is given.The proposed model predicts somewhat higher values of natural frequencies than the benchmark results.Given the simplicity of the model,it can be said that reliable results are obtained for lower modes of vibration.

    Figure 4:Modes and natural frequencies of a free isotropic plate,a=b.In parentheses,the corresponding mode and natural frequency reported by Bardell,Langley and Dunsdon(1996)is given

    The second case analyzed was a completely free rectangular plate with an aspect ratio of a/b=2 with a=20h.The first six vibration modes and natural frequencies are shown in Fig.6.

    Figure 5:Comparison between natural frequencies calculated by the lattice model,and the benchmark results[Bardell,Langley and Dunsdon(1996)],for a free isotropic plate,a=b

    Figure 6:Modes and natural frequencies of a free isotropic plate,a=2b.In parentheses,the corresponding mode and natural frequency reported by Bardell,Langley and Dunsdon(1996)is given

    Figure 7:Comparison between natural frequencies calculated by the lattice model,and the benchmark results[Bardell,Langley and Dunsdon(1996)],for a free isotropic plate,a=2b

    Figure 8:Modes and natural frequencies of a clamped isotropic plate,a=b.In parentheses,the corresponding mode and natural frequency reported by Bardell,Langley and Dunsdon(1996)is given

    In this case,all predicted vibration modes correspond to those reported by Bardell,Langley and Dunsdon(1996).Comparison between the calculated natural frequencies and the benchmark values for this case is given in Fig.11.It can be noticed that in this case,too,the model shows a small overestimation of natural frequencies.

    The third analyzed case was a square plate(a/b=1)with all its edges clamped,with a=10h.These boundary conditions in the lattice analysis were applied as full constraint(i.e.both displacements and rotation)at lattice edge nodes.The first four vibration modes and natural frequencies are shown in Fig.8.

    Bardell,Langley and Dunsdon(1996)reported the first five natural frequencies and modes for this analysis case.In the simple lattice analysis herein,however,mode 5 was not detected.The first four modes of vibration correspond to the benchmark case.The deviation between the calculated natural frequencies and the benchmark values is small,and is shown in Fig.9.

    Figure 9:Comparison between natural frequencies calculated by the lattice model,and the benchmark results[Bardell,Langley and Dunsdon(1996)],for a clamped isotropic plate,a=b

    The last case analyzed was a rectangular plate with all its edges clamped,with an aspect ratio of a/b=2 with a=20h.The same as in the previous case,full constraints were applied at the edge nodes of the lattice.The first five vibration modes observed and their natural frequencies are shown in Fig.10.

    The lattice model predicts the first three vibration modes very well.However,mode 4 from the benchmark was not predicted(note the caption in Fig.10).Modes 5 and 6 were also predicted well.A comparison between the natural frequencies from the lattice model and the benchmark values is given in Fig.11.Same as in other analysis cases,there is a small deviation between the natural frequencies.

    Figure 10:Modes and natural frequencies of a clamped isotropic plate,a=2b.In parentheses,the corresponding mode and natural frequency reported by Bardell,Langley and Dunsdon(1996)is given

    Figure 11:Comparison between natural frequencies calculated by the lattice model,and the benchmark results[Bardell,Langley and Dunsdon(1996)],for a clamped isotropic plate,a=2b

    In order to check if there is an effect of mesh size on the calculated natural frequencies,the first analysis(free square plate,a=b)was repeated for two other mesh sizes:a=5h,and a=20h.The analysis results(together with the analysis with a=10h and the benchmark results)are given in Fig.12.

    Figure 12:Comparison between natural frequencies calculated by the lattice model of different mesh size,and the benchmark results Bardell,Langley and Dunsdon(1996),for a free isotropic plate,a=b

    All three mesh sizes predict natural frequencies close to the benchmark results.Even though some differences between the three meshes were observed,there were no clear improvements resulting from the increased mesh size(or mesh density).

    The proposed model is able to reliably calculate the natural frequencies and modal shapes for in-plane vibrations of thin plates for low vibration modes.The error between the simulated results and the benchmark is mainly less than 10%,which can be considered good when the simple nature of the model is taken into account.Some of the deviation could be probably ascribed to the use of such simple square lattice grid of beams.Such a lattice cannot reproduce the Poisson’s ratio of the continuum,as its global Poisson’s ratio is equal to zero.Similar limitations apply also to triangular 2D lattice arrangements,which can(under uniform strain)reproduce global Poisson’s ratio of-1< ν < 1/3[Schlangen and Garboczi(1997)].Some of the recent approaches were able to overcome this issue(albeit in a 3D lattice arrangement)[Jivkov and Yates(2012)].In the two examples dealing with the constrained mesh boundaries,another issue was that some of the vibration modes were not observed using the lattice modeling approach.Another source of this could be the manner in which the boundary conditions are applied in the lattice model:only lattice nodes were constrained,while the beams were free between the nodes.This is somewhat different compared to other methods.Combined with the issue of the global Poisson’s ratio,it is a possible source of deviation.

    It is recognized that there are possibilities of using other methods for modeling in-plane vibration of thin plates,even with a higher precision.Besides the FEM,spectral plate elements were recently presented with such capabilities[Nefovska-Danilovicand Petronijevic(2015);Kolarevic,Nefovska-Danilovic and Petronijevic(2015);Kolarevic,Marjanovi′c,Nefovska-Danilovic and Petronijevic(2016)].Other methods for simulating microcracking in heterogeneous composites[Dong and Atluri(2013);Dong,Alotaibi,Mohiuddine and Atluri(2014)]are also available.However,besides its relative simplicity,the proposed lattice method has several advantages.It can be further extended on studying modal characteristics and vibration of cracked heterogeneous solids,such as concrete.First,the fracture simulation would be performed using the fracture lattice model[Schlangen and Qian(2009)].In the fracture lattice model,cracks are simulated by removing “cracked”beams from the lattice mesh.Following the fracture analysis,using the cracked con figuration as input,modal analysis would be performed.As it is known that any change in natural frequency can be a sign of structural damage[Salawu(1997)],such model could be used as aid in non-destructive testing of structures.It is further envisioned that such a method could be useful in studying recovery of modal properties due to repair and self-healing of concrete structures[de Rooij,Van Tittelboom,De Belie and Schlangen(2013);Tziviloglou,Van Tittelboom,Palin,Wang,Sierra-Beltrán,Er?san,Mors,Wiktor,Jonkers,Schlangen et al.(2016)].Similar efforts in combining discrete models with non-destructive testing of deterioration are already under development[Alnaggar,Cusatis,Qu and Liu(2014)].A simple example of such application of the model is given next.

    4 Example of application

    In this section,the developed model is applied for modal analysis of a slice of a simply supported concrete beam(160x40x1mm3).The beam consists of spherical inclusion(aggregate)particles embedded in a mortar matrix.The model was first subjected to a simulated three-point bending test,using the Delft lattice model[Schlangen and Qian(2009)].In the model,all individual elements exhibit linear elastic behavior.The fracture simulation is achieved by performing a linear elastic analysis of the lattice under loading,and removing an element which exceeds a prescribed fracture criterion(e.g.strength,strain,or energy)from the mesh.This analysis is then repeated in a step-wise manner,removing a single element in eachstep.Thus,a non-linear analysis is performed by actually performing a number of linear analyses.Using this method,realistic crack patterns are found.Furthermore,even though individual elements all behave brittle,a ductile global response is achieved[Schlangen and Qian(2009)].Mechanical properties used in the analysis are given in table 1.The simulated load-displacement curve is shown in figure 13.

    Table 1:Mechanical properties used in the analysis

    Figure 13:Load-displacement curve for the three-point bending simulation

    Natural frequencies were calculated for different stages in the cracking process:initial mesh,at peak load,and at failure(See figure13).For the crack states,"crack"elements were removed from the mesh prior to modal analysis.Then,the natural frequencies of the cracked specimen are compared to the initial values(Table 2).The cracks are assumed to be repaired/healed using glue(i.e.cracked elements are replaced by glue elements),which is a promising mechanism for self-healing of concrete[Feiteira,Gruyaert and De Belie(2016)].Modal analysis is performed again,and the recovery of natural frequencies is observed.

    Table 2:Calculated natural frequencies for all analyses(Hz)

    Figure 14:Fracture simulation and assumed healing/repairing of broken lattice elements(b,c-pink-cracks;green-repaired/healed elements)

    Microcracks occurring prior to the peak load(Figure 14b)cause a very small decrease in the first natural frequency.Second and third mode are not affected.This is also related to the damage location,because here the stiffness loss is in the middle of the span,which causes a reduction in mode 1[Salawu(1997)].Just prior to failure(Figure 14c),the first three modes are all significantly reduced,indicating significant damage.After the healing event(assuming complete filling of all cracks with glue),the natural frequencies have recovered,except the first natural frequency,which is still somewhat lower compared to the initial one.The reason for this is that,although the glue has filled up the crack,it has a somewhat lower stiffness compared to the initial material(see Table 1).Due to the modal shape of mode 1,this mode is particularly affected by loss of stiffness in the middle of the beam span.

    From this simple example,it can be concluded that the model is able to detect changes in natural frequencies caused by cracking,and their subsequent recovery after crack healing.However,the model cannot be used in a quantitative sense due to its 2D nature,and needs to be extended to 3D and further validated.

    5 Conclusions

    In this paper,a simple model for in-plane vibration of thin plates is presented.Based on the spectral element method(SEM),and using the lattice modeling principle,it can be seen as an alternative to other methods,such as the FEM.The 2D plate is discretized as a set of spectral beam elements connected at the nodes.The stiffness matrix of a spectral beam element is frequency dependent,and the analysis is performed in the frequency domain.In this paper,the proposed approach is tested and verified for modal analysis of in-plane vibrations of rectangular plates.The validation procedure has lead to the following conclusions:

    ·The lattice model provides reliable results for natural frequencies of the plates,mainly within less than 10%error for lower vibration modes in analyzed cases.

    ·In case of completely free plates,all the vibration modes were correctly reproduced by the model.Only in case of a square plate,two higher modes(mode 4 and mode 5)were permuted compared to the benchmark results of Bardell,Langley and Dunsdon(1996).

    ·In case of clamped plates,most vibration modes were correctly reproduced by the model.However,for both analyzed plates(i.e.with aspect ratios of a/b=1 and a/b=2),one of the first five vibration modes was not detected by the model(mode 5 and mode 4 for a/b=1 and a/b=2,respectively).This can probably(at least in part)be attributed to the the way that boundary conditions are applied in the lattice model.

    ·Mesh size seems not to have a large effect on the calculated natural modes.This was expected,as in the SEM the mass is distributed over the length of the beam,and not lumped in the nodes.

    Finally,a simple example of modal analysis of cracked and healed concrete is given.The example showed that,in general,the model is able to reproduce a shift in natural frequencies due to cracking and healing.This needs to be explored and validated,and will be a subject of further study.Once validated,the model will provide a valuable tool in assisting to non-destructive testing of cracked and repaired/healed structures.

    Acknowledgement:The authors acknowledge the financial support of European Union Seventh Framework Programme(FP7/2007-2013)under grant agreement no 309451(HEALCON).

    Alnaggar,M.;Cusatis,G.;Qu,J.;Liu,M.(2014): Simulating acoustic nonlinearity change in accelerated mortar bar tests:A discrete meso-scale approach.In Furuta,H.;Frangopol,D.;Akiyama,M.(Eds):Life-cycle of structural systems:design,assessment,maintenance and management,pp.451-458.CRC Press.

    Bardell,N.;Langley,R.;Dunsdon,J.(1996):On the free in-plane vibration of isotropic rectangular plates.Journal of Sound and Vibration,vol.191,no.3,pp.459-467.

    Bolander,J.;Berton,S.(2004): Simulation of shrinkage induced cracking in cement composite overlays.Cement and Concrete Composites,vol.26,no.7,pp.861-871.

    Bolander,J.;Saito,S.(1998): Fracture analyses using spring networks with random geometry.Engineering Fracture Mechanics,vol.61,no.5,pp.569-591.

    de Rooij,M.;Van Tittelboom,K.;De Belie,N.;Schlangen,E.(2013):Self-Healing Phenomena in Cement-Based Materials:State-of-the-Art Report of RILEM Technical Committee 221-SHC:Self-Healing Phenomena in Cement-Based Materials,volume 11.Springer.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.;Atluri,S.(2014): Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-posed bcs. CMES:Computer Modeling in Engineering&Sciences,vol.99,no.1,pp.1-85.

    Dong,L.;Atluri,S.N.(2013): Sgbem voronoi cells(svcs),with embedded arbitrary-shaped inclusions,voids,and/or cracks,for micromechanical modeling of heterogeneous materials.CMC:Computers,Materials&Continua,vol.33,no.2,pp.111-154.

    Doyle,J.F.(1997): Wave propagation in structures:Spectral analysis using fast discrete Fourier transforms.Springer.

    Feiteira,J.;Gruyaert,E.;De Belie,N.(2016):Self-healing of moving cracks in concrete by means of encapsulated polymer precursors.Construction and Building Materials,vol.102,pp.671-678.

    Grassl,P.(2009):A lattice approach to model flow in cracked concrete.Cement and Concrete Composites,vol.31,no.7,pp.454-460.

    Jivkov,A.P.;Yates,J.R.(2012):Elastic behaviour of a regular lattice for mesoscale modelling of solids.International Journal of Solids and Structures,vol.49,no.22,pp.3089-3099.

    Kolarevic,N.;Marjanovi′c,M.;Nefovska-Danilovic,M.;Petronijevic,M.(2016): Free vibration analysis of plate assemblies using the dynamic stiffness method based on the higher order shear deformation theory.Journal of Sound and Vibration,vol.364,pp.110-132.

    Kolarevic,N.;Nefovska-Danilovic,M.;Petronijevic,M.(2015):Dynamic stiffness elements for free vibration analysis of rectangular mindlin plate assemblies.Journal of Sound and Vibration,vol.359,pp.84-106.

    Lee,U.(1998): Equivalent continuum representation of lattice beams:spectral element approach.Engineering Structures,vol.20,no.7,pp.587-592.

    Lee,U.(2009): Spectral element method in structural dynamics.John Wiley&Sons.

    Moukarzel,C.;Herrmann,H.(1992):A vectorizable random lattice.Journal of Statistical Physics,vol.68,no.5-6,pp.911-923.

    Nakamura,H.;Srisoros,W.;Yashiro,R.;Kunieda,M.(2006): Timedependent structural analysis considering mass transfer to evaluate deterioration process of rc structures.Journal of Advanced Concrete Technology,vol.4,no.1,pp.147-158.

    Nefovska-Danilovic,M.;Petronijevic,M.(2015):In-plane free vibration and response analysis of isotropic rectangular plates using the dynamic stiffness method.Computers&Structures,vol.152,pp.82-95.

    Nefovska-Danilovic,M.;Petronijevic,M.;?avija,B.(2013): Traffic-induced vibrations of frame structures.Canadian Journal of Civil Engineering,vol.40,no.2,pp.158-171.

    Pacheco,J.;?avija,B.;Schlangen,E.;Polder,R.B.(2014): Assessment of cracks in reinforced concrete by means of electrical resistance and image analysis.Construction and Building Materials,vol.65,pp.417-426.

    Salawu,O.(1997):Detection of structural damage through changes in frequency:a review.Engineering Structures,vol.19,no.9,pp.718-723.

    ?avija,B.;Liu,D.;Smith,G.;Hallam,K.;Schlangen,E.;Flewitt,P.(2016):Experimentally informed multi-scale modelling of mechanical properties of quasibrittle nuclear graphite.Engineering Fracture Mechanics,vol.Accepted for publication.

    ?avija,B.;Lukovi′c,M.;Schlangen,E.(2014):Lattice modeling of rapid chloride migration in concrete.Cement and Concrete Research,vol.61,pp.49-63.

    ?avija,B.;Pacheco,J.;Schlangen,E.(2013): Lattice modeling of chloride diffusion in sound and cracked concrete.Cement and Concrete Composites,vol.42,pp.30-40.

    Schlangen,E.;Garboczi,E.(1997): Fracture simulations of concrete using lattice models:computational aspects.Engineering fracture mechanics,vol.57,no.2,pp.319-332.

    Schlangen,E.;Qian,Z.(2009):3d modeling of fracture in cement-based materials.Journal of Multiscale Modelling,vol.1,no.02,pp.245-261.

    Schlangen,E.;van Mier,J.(1992):Simple lattice model for numerical simulation of fracture of concrete materials and structures.Materials and Structures,vol.25,no.9,pp.534-542.

    Tziviloglou,E.;Van Tittelboom,K.;Palin,D.;Wang,J.;Sierra-Beltrán,M.G.;Er?san,Y.?.;Mors,R.;Wiktor,V.;Jonkers,H.M.;Schlangen,E.et al.(2016):Bio-based self-healing concrete:From research to field application.Advances in Polymer Science.

    Vasic,S.;Smith,I.;Landis,E.(2005):Finite element techniques and models for wood fracture mechanics.Wood science and technology,vol.39,no.1,pp.3-17.

    Wang,L.;Ueda,T.(2011): Mesoscale modelling of the chloride diffusion in cracks and cracked concrete.Journal of Advanced Concrete Technology,vol.9,no.3,pp.241-249.

    Wu,Z.-J.;Li,F.-M.;Zhang,C.(2014): Vibration properties of piezoelectric square lattice structures.Mechanics Research Communications,vol.62,pp.123-131.

    Zienkiewicz,O.C.;Taylor,R.L.(2000): The finite element method:Solid mechanics,volume 2.Butterworth-heinemann.

    1Microlab,Delft University of Technology,Delft,the Netherlands

    汤姆久久久久久久影院中文字幕| 街头女战士在线观看网站| 日日啪夜夜爽| 黄色视频在线播放观看不卡| 性色avwww在线观看| 精品国产露脸久久av麻豆| 97精品久久久久久久久久精品| 国产免费视频播放在线视频| 国产精品国产三级国产av玫瑰| 精品亚洲成a人片在线观看| 国产亚洲一区二区精品| 多毛熟女@视频| 精品久久久久久电影网| 一级,二级,三级黄色视频| www.av在线官网国产| 蜜桃在线观看..| 久久精品熟女亚洲av麻豆精品| 亚洲第一av免费看| 精品亚洲乱码少妇综合久久| 国产亚洲精品第一综合不卡 | 久久久精品区二区三区| 韩国av在线不卡| 麻豆乱淫一区二区| 亚洲精品中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 国产精品99久久99久久久不卡 | 日韩在线高清观看一区二区三区| 久久精品国产亚洲av天美| 男人舔女人的私密视频| 亚洲国产欧美日韩在线播放| 久久精品久久久久久久性| www日本在线高清视频| 亚洲国产精品成人久久小说| 国产成人aa在线观看| 黄色视频在线播放观看不卡| 妹子高潮喷水视频| 久久精品夜色国产| 最近的中文字幕免费完整| 少妇熟女欧美另类| 三上悠亚av全集在线观看| 精品99又大又爽又粗少妇毛片| 久久久a久久爽久久v久久| 午夜免费男女啪啪视频观看| 免费大片黄手机在线观看| 大陆偷拍与自拍| 国产免费现黄频在线看| 久久鲁丝午夜福利片| 亚洲欧美成人精品一区二区| 少妇被粗大的猛进出69影院 | 成人免费观看视频高清| 国产在线免费精品| 欧美日本中文国产一区发布| 亚洲国产看品久久| 久久狼人影院| 人妻 亚洲 视频| 国产免费又黄又爽又色| 亚洲精品一区蜜桃| 国产日韩欧美在线精品| 一个人免费看片子| av线在线观看网站| 国产深夜福利视频在线观看| 国产精品久久久久久精品古装| 啦啦啦啦在线视频资源| 在线观看www视频免费| 三级国产精品片| 久热久热在线精品观看| 一边摸一边做爽爽视频免费| 中文乱码字字幕精品一区二区三区| 少妇熟女欧美另类| av女优亚洲男人天堂| 国产精品嫩草影院av在线观看| 一二三四在线观看免费中文在 | 欧美老熟妇乱子伦牲交| 在线观看免费视频网站a站| 久久精品熟女亚洲av麻豆精品| 宅男免费午夜| 熟女av电影| 国产在线免费精品| 国产av码专区亚洲av| 精品福利永久在线观看| 精品国产一区二区三区久久久樱花| 九九在线视频观看精品| 欧美亚洲 丝袜 人妻 在线| 街头女战士在线观看网站| 精品国产乱码久久久久久小说| www.色视频.com| 一级毛片 在线播放| 国产成人精品婷婷| 大码成人一级视频| 久久人人爽av亚洲精品天堂| 黄色怎么调成土黄色| 99九九在线精品视频| 好男人视频免费观看在线| 永久免费av网站大全| 欧美日韩视频高清一区二区三区二| 捣出白浆h1v1| 国产白丝娇喘喷水9色精品| 亚洲精品自拍成人| 美女国产视频在线观看| 亚洲情色 制服丝袜| 国产精品久久久久久精品电影小说| 亚洲图色成人| 在线观看免费视频网站a站| 国产一区二区三区综合在线观看 | 一本久久精品| 丝瓜视频免费看黄片| 韩国av在线不卡| 最近手机中文字幕大全| 飞空精品影院首页| 久久国产精品男人的天堂亚洲 | 日本猛色少妇xxxxx猛交久久| 九色成人免费人妻av| 天美传媒精品一区二区| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品电影小说| 妹子高潮喷水视频| 久久久国产欧美日韩av| 夜夜爽夜夜爽视频| 伦理电影大哥的女人| 午夜日本视频在线| 看非洲黑人一级黄片| 国产亚洲午夜精品一区二区久久| 亚洲高清免费不卡视频| 免费日韩欧美在线观看| 国内精品宾馆在线| 中文字幕制服av| 国产xxxxx性猛交| 亚洲国产日韩一区二区| 亚洲国产日韩一区二区| 一级,二级,三级黄色视频| 国产成人91sexporn| xxxhd国产人妻xxx| a级毛片黄视频| 日韩一区二区三区影片| 国产乱人偷精品视频| 一区二区日韩欧美中文字幕 | 五月伊人婷婷丁香| 国产亚洲欧美精品永久| 一级片免费观看大全| 欧美另类一区| 久久国产亚洲av麻豆专区| 狂野欧美激情性bbbbbb| 新久久久久国产一级毛片| 伦精品一区二区三区| 最近中文字幕2019免费版| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 国产男女内射视频| av在线播放精品| 在现免费观看毛片| 久久99热6这里只有精品| 晚上一个人看的免费电影| 国产色婷婷99| 看免费成人av毛片| 美女脱内裤让男人舔精品视频| 午夜日本视频在线| 色吧在线观看| 美女xxoo啪啪120秒动态图| 亚洲国产精品成人久久小说| 亚洲国产成人一精品久久久| 赤兔流量卡办理| 熟女电影av网| 国产精品偷伦视频观看了| 亚洲国产欧美在线一区| 国产激情久久老熟女| 免费观看性生交大片5| 99久国产av精品国产电影| 欧美日韩亚洲高清精品| 成人午夜精彩视频在线观看| 少妇高潮的动态图| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 欧美日韩av久久| 日本欧美视频一区| 大香蕉久久网| 成人手机av| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 亚洲美女黄色视频免费看| 国产片内射在线| 丝袜脚勾引网站| 久久狼人影院| 夫妻性生交免费视频一级片| 69精品国产乱码久久久| 国产片内射在线| 亚洲精品国产av成人精品| 内地一区二区视频在线| 高清视频免费观看一区二区| 国产女主播在线喷水免费视频网站| 亚洲色图 男人天堂 中文字幕 | 欧美人与性动交α欧美软件 | 大香蕉久久成人网| 日韩中字成人| 成人影院久久| 大香蕉97超碰在线| 亚洲av免费高清在线观看| 成年av动漫网址| 91精品三级在线观看| 22中文网久久字幕| 五月伊人婷婷丁香| 两个人看的免费小视频| 又黄又粗又硬又大视频| 亚洲图色成人| 国产不卡av网站在线观看| 午夜福利网站1000一区二区三区| 美女国产视频在线观看| 亚洲欧美日韩卡通动漫| 中文字幕亚洲精品专区| 999精品在线视频| 最后的刺客免费高清国语| 99久久人妻综合| 国产欧美亚洲国产| 日本与韩国留学比较| av一本久久久久| 嫩草影院入口| 97精品久久久久久久久久精品| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区久久久樱花| 婷婷色综合大香蕉| 国产视频首页在线观看| 美女国产高潮福利片在线看| 在线观看一区二区三区激情| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 大片电影免费在线观看免费| 热99国产精品久久久久久7| 久久久国产欧美日韩av| 久久久久久久久久久免费av| 欧美日韩视频精品一区| 国产欧美另类精品又又久久亚洲欧美| 日韩成人av中文字幕在线观看| 欧美精品亚洲一区二区| 天天影视国产精品| 国产免费现黄频在线看| 免费高清在线观看视频在线观看| 亚洲欧洲日产国产| 中文字幕av电影在线播放| 麻豆精品久久久久久蜜桃| 国产色婷婷99| 99视频精品全部免费 在线| 婷婷色综合大香蕉| 黄片播放在线免费| 国产精品国产三级国产专区5o| 亚洲丝袜综合中文字幕| 制服丝袜香蕉在线| 日韩中文字幕视频在线看片| 大码成人一级视频| 免费观看无遮挡的男女| 另类精品久久| 秋霞伦理黄片| 18禁国产床啪视频网站| 人成视频在线观看免费观看| 视频在线观看一区二区三区| 国产熟女午夜一区二区三区| 国产男人的电影天堂91| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 午夜免费男女啪啪视频观看| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 我要看黄色一级片免费的| 老熟女久久久| 国产白丝娇喘喷水9色精品| 国产极品粉嫩免费观看在线| 午夜免费鲁丝| 啦啦啦啦在线视频资源| 欧美老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 国产精品人妻久久久影院| 大片免费播放器 马上看| 乱人伦中国视频| 免费观看在线日韩| 亚洲一级一片aⅴ在线观看| 91精品伊人久久大香线蕉| 黄色 视频免费看| 亚洲精品美女久久av网站| 国产精品成人在线| 搡老乐熟女国产| 亚洲av综合色区一区| 欧美+日韩+精品| 精品国产乱码久久久久久小说| 日日摸夜夜添夜夜爱| 99久久人妻综合| 大话2 男鬼变身卡| 男女高潮啪啪啪动态图| 99热全是精品| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 伦理电影免费视频| 97精品久久久久久久久久精品| 久热这里只有精品99| 亚洲一码二码三码区别大吗| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 天天操日日干夜夜撸| 啦啦啦在线观看免费高清www| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| a级毛片在线看网站| 欧美精品av麻豆av| 秋霞在线观看毛片| 18+在线观看网站| 亚洲一区二区三区欧美精品| 欧美少妇被猛烈插入视频| 丰满饥渴人妻一区二区三| 女性生殖器流出的白浆| 日韩制服骚丝袜av| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃 | 国产精品三级大全| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 久久鲁丝午夜福利片| 69精品国产乱码久久久| 亚洲精品av麻豆狂野| 新久久久久国产一级毛片| 最近中文字幕2019免费版| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| 国产爽快片一区二区三区| 久久久久久久久久人人人人人人| 女人精品久久久久毛片| 成人无遮挡网站| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 国产一区二区三区综合在线观看 | 国产乱来视频区| 成年av动漫网址| 五月开心婷婷网| 国产精品国产三级国产av玫瑰| 欧美国产精品va在线观看不卡| 成年动漫av网址| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 飞空精品影院首页| 国产成人精品在线电影| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文字幕精品免费在线观看视频 | 美女主播在线视频| 美女内射精品一级片tv| 久久久国产欧美日韩av| 亚洲精品久久久久久婷婷小说| 亚洲情色 制服丝袜| videos熟女内射| 国产福利在线免费观看视频| 国产国拍精品亚洲av在线观看| 国产69精品久久久久777片| 国产一区二区激情短视频 | 赤兔流量卡办理| 免费在线观看黄色视频的| 久久 成人 亚洲| 国产xxxxx性猛交| 亚洲天堂av无毛| av黄色大香蕉| 久久鲁丝午夜福利片| 亚洲国产精品专区欧美| 丝袜喷水一区| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| av在线app专区| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| tube8黄色片| 亚洲美女黄色视频免费看| 久久精品国产综合久久久 | 亚洲综合色惰| 99热6这里只有精品| 成年女人在线观看亚洲视频| 国产国语露脸激情在线看| 亚洲欧美中文字幕日韩二区| 日韩成人伦理影院| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久久久久久性| 插逼视频在线观看| 少妇的丰满在线观看| 成年人午夜在线观看视频| a级片在线免费高清观看视频| 免费播放大片免费观看视频在线观看| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 亚洲一区二区三区欧美精品| 高清不卡的av网站| 巨乳人妻的诱惑在线观看| 日韩中字成人| 热99国产精品久久久久久7| 亚洲成av片中文字幕在线观看 | 欧美精品人与动牲交sv欧美| 久久人人爽av亚洲精品天堂| 如何舔出高潮| av网站免费在线观看视频| 啦啦啦视频在线资源免费观看| 亚洲精品久久成人aⅴ小说| 国产精品秋霞免费鲁丝片| 中文字幕精品免费在线观看视频| 国产精品国产av在线观看| 这个男人来自地球电影免费观看| 王馨瑶露胸无遮挡在线观看| 亚洲片人在线观看| 成人黄色视频免费在线看| 国产精品久久久久成人av| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 丁香欧美五月| a在线观看视频网站| 咕卡用的链子| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| 手机成人av网站| videosex国产| 夫妻午夜视频| 乱人伦中国视频| 黄频高清免费视频| 国产片内射在线| 天天影视国产精品| 欧美日韩福利视频一区二区| 不卡av一区二区三区| 捣出白浆h1v1| 欧美另类亚洲清纯唯美| 飞空精品影院首页| av超薄肉色丝袜交足视频| 搡老熟女国产l中国老女人| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 精品一区二区三区视频在线观看免费 | 中文字幕人妻丝袜一区二区| 国产欧美日韩一区二区精品| 日日夜夜操网爽| av线在线观看网站| 亚洲人成电影观看| 精品少妇久久久久久888优播| 久久婷婷成人综合色麻豆| 精品久久久久久久毛片微露脸| 欧美国产精品一级二级三级| 涩涩av久久男人的天堂| 超色免费av| 免费在线观看日本一区| 国产高清激情床上av| 久久久久久亚洲精品国产蜜桃av| 成人av一区二区三区在线看| 久久精品成人免费网站| 高潮久久久久久久久久久不卡| 亚洲国产精品sss在线观看 | 中国美女看黄片| 欧美一级毛片孕妇| 午夜视频精品福利| 男人的好看免费观看在线视频 | 最新美女视频免费是黄的| 亚洲美女黄片视频| a在线观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 免费一级毛片在线播放高清视频 | 香蕉久久夜色| av超薄肉色丝袜交足视频| 久久久精品区二区三区| 精品国产一区二区久久| tube8黄色片| 黑人猛操日本美女一级片| 日本精品一区二区三区蜜桃| 久久精品国产综合久久久| 大型av网站在线播放| 亚洲中文字幕日韩| 三级毛片av免费| 日本欧美视频一区| 久久国产精品人妻蜜桃| 久久久国产精品麻豆| 99国产精品一区二区三区| 一边摸一边抽搐一进一小说 | 欧美一级毛片孕妇| 久久天堂一区二区三区四区| 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 成年人午夜在线观看视频| 桃红色精品国产亚洲av| 美女视频免费永久观看网站| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 日本黄色视频三级网站网址 | 在线观看66精品国产| 1024视频免费在线观看| 国产精品一区二区精品视频观看| 国产成人精品无人区| 又黄又粗又硬又大视频| 黄色视频,在线免费观看| 亚洲av片天天在线观看| 亚洲中文av在线| 丁香六月欧美| 国产欧美亚洲国产| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 久久久久国内视频| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| 精品国产乱子伦一区二区三区| 午夜福利,免费看| 老司机午夜福利在线观看视频| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 亚洲一区二区三区不卡视频| 亚洲视频免费观看视频| 无人区码免费观看不卡| 精品电影一区二区在线| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品古装| 国产色视频综合| 国产99白浆流出| 成年人黄色毛片网站| 不卡一级毛片| 制服诱惑二区| 亚洲欧美激情在线| 桃红色精品国产亚洲av| 国产无遮挡羞羞视频在线观看| 香蕉国产在线看| 少妇粗大呻吟视频| 视频区图区小说| 日韩欧美国产一区二区入口| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 老司机午夜福利在线观看视频| 美女午夜性视频免费| 熟女少妇亚洲综合色aaa.| 国产精品久久久人人做人人爽| 黄片播放在线免费| 亚洲人成电影观看| 电影成人av| 两性午夜刺激爽爽歪歪视频在线观看 | av视频免费观看在线观看| 国产aⅴ精品一区二区三区波| 91精品三级在线观看| 国产熟女午夜一区二区三区| 亚洲中文字幕日韩| 亚洲国产欧美一区二区综合| 黄色成人免费大全| 国产av精品麻豆| 亚洲国产欧美网| 99精国产麻豆久久婷婷| 人人澡人人妻人| 午夜福利一区二区在线看| 高清毛片免费观看视频网站 | 免费女性裸体啪啪无遮挡网站| 亚洲一区二区三区欧美精品| 美女高潮到喷水免费观看| 国产成人av激情在线播放| 日本五十路高清| 国产精品成人在线| 亚洲专区国产一区二区| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av | 亚洲色图av天堂| 日本五十路高清| 无人区码免费观看不卡| 国产又爽黄色视频| 少妇粗大呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看视频国产中文字幕亚洲| 成人亚洲精品一区在线观看| 在线观看免费高清a一片| 国产精品国产av在线观看| 国产一区在线观看成人免费| 精品国产一区二区三区久久久樱花| 老司机深夜福利视频在线观看| 日韩成人在线观看一区二区三区| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 丝袜在线中文字幕| 一级片免费观看大全| 热99国产精品久久久久久7| 性色av乱码一区二区三区2| 岛国在线观看网站| 91成年电影在线观看| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频| 精品国产乱子伦一区二区三区| 亚洲成人免费av在线播放| 亚洲综合色网址| 啦啦啦免费观看视频1| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 香蕉国产在线看| 亚洲av片天天在线观看| 亚洲成av片中文字幕在线观看| 国产精品久久电影中文字幕 | 欧美日韩亚洲综合一区二区三区_| 真人做人爱边吃奶动态| 欧美激情高清一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久中文字幕一级| 亚洲精品乱久久久久久| 伊人久久大香线蕉亚洲五| 久久草成人影院| 天天影视国产精品| 色尼玛亚洲综合影院| 精品一区二区三卡| 正在播放国产对白刺激| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 亚洲中文字幕日韩| 国产不卡av网站在线观看| 人妻久久中文字幕网| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久二区二区91| 真人做人爱边吃奶动态| 女人久久www免费人成看片| 欧美久久黑人一区二区| 国内毛片毛片毛片毛片毛片|