• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigating Creep Performance and Predicting Rupture Time for Rotating FGM Disc under Different Thermal Gradients

    2015-12-14 05:36:07
    Computers Materials&Continua 2015年12期

    Investigating Creep Performance and Predicting Rupture Time for Rotating FGM Disc under Different Thermal Gradients

    K.Khanna1,2,V.K.Gupta3,S.P.Nigam1

    A mathematical model is developed to describe the steady state creep in a rotating Al-SiCpdisc having a non-linear thickness pro file and distribution of SiC particles along the radial direction.The model is used to investigate the effect of imposing three different kinds of radial temperature pro files viz.linear,parabolic and exponential with fixed values of inner and outer surface temperatures,on the creep stresses and strain rates.It is noticed that by increasing the temperature exponent(nT),the radial stress(over the entire radius)and tangential stress(near the inner radius)increase in the disc.However,the tangential stress decreases near the outer radius.The radial and tangential strain rates in the functionally graded(FG)disc reduce significantly with the increase in exponent nT.Besides reduction in the magnitude,the distribution of strain rates also become relatively more uniform throughout with the increase in nT.It is concluded that FG disc operating under exponential temperature pro file performs better.It is also revealed that amongst several FG discs operating under radial thermal gradients,with different values of temperature exponent(nT)but having the same average and fixed outer surface temperature,the FGM disc with lower value of nTexhibits the maximum creep life.

    Creep;Rotating disc;Functionally graded material;Rupture time;Thermal gradient.

    1 Introduction

    Rotating disc is a common component in many engineering applications like steam and gas turbine rotors,turbo generators, flywheels,gears,centrifugal compressors,ship propellers,automotive brakes,disc grinders,disc cutters,internal combustionengines and in aerospace devices[Gupta,Singh,Chandrawat,and Ray(2004a);Hojjati and Hassani(2008);Hassani,Hojjati,Farrahi,and Alashti(2012)].In some applications,like turbine rotors and disc brakes of racing cars,the disc operates at high speed and is simultaneously subjected to high temperature[Laskaj,Murphy and Houngan(1999);Farshi,Jahed,and Mehrabian(2004)].Under such severe thermo-mechanical loading,the disc material undergoes creep.Several investigators have performed analysis of stresses and deformations in rotating disc made of functionally graded material(FGM)[Hassani,Hojjati,Farrahi,and Alashti(2012);You,You,Zhang,and Li(2007);Bayat,Saleem,Sahari,Hamouda,and Mahdi(2008);?all?o?glu,Bektas,and Sayer(2011);Akbari and Ghanbari(2015)].The studies reveal that a variable thickness disc develops lesser stresses and deformations than a constant thickness disc[Bayat,Saleem,Sahari,Hamouda,and Mahdi(2008)].Besides disc,the stresses and displacements have also been estimated for FGM structures such as plates,shells and beams by using finite element method(without higher-order theory)[Dong,El-Gizawy,Juhany,and Atluri(2014a,b)].

    In some of the earlier investigations concerning analysis of creep in FGM disc,having either constant thickness[Singh and Ray(2001);Gupta,Singh,Chandrawat,and Ray(2004a)]or variable thickness[Deepak,Gupta,and Dham(2010);Nie and Batra(2010)],the disc has been assumed to operate under constant temperature.However,in real life applications,such as turbine rotor and disc brake,the disc operates under a radial thermal gradient[Ali and Mostefa,(2013)].Gupta,Singh,Chandrawat,and Ray(2005)simulated the effect of imposing radial thermal gradient on the creep behavior of rotating FGM disc having linearly decreasing content of reinforcement(SiCP)along the disc radius.However,the study assumed disc thickness to be constant.Garg,Salaria,and Gupta(2013)analyzed the effect of imposing radially varying linear thermal gradient on the creep performance of FGM disc with linearly varying thickness pro file.The studies reveal that creep response of FGM disc,with either uniform thickness[Gupta,Singh,Chandrawat,and Ray(2005);Kordkheili and Livani(2013)]or linearly variable thickness[Garg,Salaria,and Gupta(2013)],is significantly affected by varying the radial thermal gradient.In our recent study[Khanna,Gupta,and Nigam(2015)],pertaining to the effects of varying disc thickness profile and reinforcement gradient,it is observed that the FGM disc having higher thickness and higher reinforcement gradients exhibits lower strain rates.But,the study assumed the disc to operate at uniform temperature.Some attempts have been made by researchers to investigate the effect of imposing different kinds of radial thermal gradients on elastic stresses and deformation in FGM disc[Afsar and Go(2010);Hassani,Hojjati,Farshi,and Alashti(2011)].However,to the best of our knowledge no such study is reported that considers the effect of imposing various kinds of radial thermal gradients on the creep behavior of variable thickness rotating FGM disc.

    The present study investigates the effect of imposing different kinds of radial thermal gradients,viz.linear,parabolic and exponential,on the creep performance of rotating disc having non-linear thickness pro file and non-linear reinforcement gradient.The various kinds of temperature pro files are obtained by varying the value of temperature exponent(nT)in the equation of radial temperature pro file in the disc while keeping the fixed values of temperature at the inner and outer surface of the disc.The effect of varying the value of temperature exponent(nT)on the creep life of the disc has also been investigated when the discs are subjected to a fixed temperature at the outer surface while maintaining a constant average temperature for all values of nT,which ultimately reduces the value of temperature at the inner disc radius.

    2 Disc geometry and reinforcement pro file

    The present study assumes a variable thickness disc(Fig.1),with thickness at the inner and outer radii as ha(=49.00 mm)and hb(=19.1 mm),respectively.The disc thickness,h(r),at any radius r,is assumed to vary according to,

    where a,b and k are the inner disc radius,outer disc radius and disc thickness gradient,respectively.

    Figure 1:Schematic showing disc geometry and SiCpdistribution.

    The variable thickness FGM disc is assumed to rotate at 15000 rpm and made of Al-SiCp,with SiCpcontent at the inner and outer radius as Vmax(=100%)and Vmin(=5.67%),respectively.The content V(r)of SiCpat any radius r is assumed to decrease radially from the inner to outer radius according to,

    where m is the reinforcement gradient.

    The disc geometry and SiCpdistribution in the disc are similar to those taken in earlier work[Khanna,Gupta,and Nigam(2015)].The values of k and m are taken as-0.6 and-1.8295,respectively since,corresponding to these values the strain rates in the disc were the lowest[Khanna,Gupta,and Nigam(2015)].

    3 Creep law

    The disc material undergoes steady state creep according to[Gupta,Singh,Chandrawat,and Ray(2004b)],

    In this study,the value of exponent n is taken as 5 and the values of parameters M(r)and σ0(r)are estimated from the following regression equations,derived earlier[Deepak,Gupta,and Dham(2010)],

    where P is the size of SiCp(=1.7μm)and T(r)is the temperature at any radius r of the disc.

    4 Disc temperature pro file

    As outlined earlier,in applications of rotating disc as turbine rotor and disc brake,the disc is subjected to radial temperature gradient,with the temperature at the outer radius being higher than the inner radius.In case of disc brakes,frictional heat generated due to braking action causes higher temperature at the contact area between the brake pad and disc surface,and the temperature decreases radially towards the inner disc radius.Similarly,in turbine rotors,due to the entrance of steam/gas at the outer radius,a radially decreasing temperature distribution is developed towards the inner radius.

    To impose such a radial temperature gradient in the disc,the following equation,as proposed by Hassani,Hojjati,Farshi,and Alashti(2011),in their study on elastic behavior of rotating FGM disc,has been used to estimate temperature,T(r)in the disc,

    Figure 2:Temperature pro files.

    5 Creep modeling

    The analysis assumes:(i)disc material to be incompressible,(ii)steady state condition of stresses,(iii)negligible elastic deformations,and(iv)disc under plane stress condition.

    The generalized constitutive equations for creep in an isotropic disc,when the reference frame is along the principal directions r,θ and z,are given[Gupta,Singh,Chandrawat,and Ray(2005)]as,

    The disc material is assumed to yield according to Tresca’s criterion,therefore effective stress(ˉσ)in the disc,under plane stress condition[Khanna,Gupta,and Nigam(2015)],is given by,

    The equilibrium equation for a variable thickness rotating FGM disc is given as[Deepak,Gupta,and Dham(2010)],

    where ω is angular velocity of the disc.

    Following previous work[Khanna,Gupta,and Nigam(2015)],the disc is assumed under the following free-free boundary conditions,as applicable for disc fitted on a splined shaft,

    The creep stresses in the disc are estimated by solving equilibrium Eq.(9)alongwith the constitutive Eqs.(7),under the imposed boundary conditions given above.The solution procedure is similar to that described earlier[Khanna,Gupta and Nigam(2015)]and the resulting equations used for the estimation of σrand σθare given in theAPPENDIX A.

    6 Results and discussion

    The stresses and strain rates in the FGM disc are estimated by following an iterative process.The results are estimated by assuming the disc to operate under four different kinds of radial temperature pro files(Fig.2).

    6.1 Validation

    To validate the analysis performed,the value of tangential strain is estimated for a rotating steel disc by following the current analysis scheme.The dimensions of the disc used in this study are similar to those used by Wahl,Sankey,Manjoine and Shoemaker(1954).The analytical results are compared with the available experimental results for steel disc.The creep parameters required for the steel disc are estimated by fitting the experimental values of effective stress and effective strain rate in the steel disc into the creep law given in Eq.(3),which yields the values of parameters M and σ0as 2.0408 × 10-4s-1/5/MPa and 37.178 MPa,respectively.The tangential strain estimated by following the current analysis procedure is in good agreement with the experimental values(Fig.3).

    Figure 3:Comparison of theoretical and experimental[Wahl,Sankey,Manjoine,and Shoemaker(1954)]strain in steel disc.(Disc RPM=15000,Creep duration=180 hrs,Operating temperature=810.78 K.

    6.2 Effect of temperature exponent on the creep parameters

    It is evident from Eqs.(4)-(5)that the creep parameters Mand σ0depend on the operating temperature,therefore in different discs these parameters will vary due to different kinds of radial temperature distributions(Fig.2).The parameter M increases on moving from the inner to outer radius(Fig.4).The FGM disc with exponential temperature pro file shows the lowest value of M throughout,when compared to FGM disc with linear and parabolic temperature distributions.The variation observed in M is higher in the middle of the disc,although at the inner and outer radii the values of M are same in discs with all the radial temperature variations.The uniform temperature disc exhibits higher M value towards the inner radius but lower M value towards the outer radius,when compared to FGM disc with radially varying temperature.The effect of varying temperature pro file in the disc is not significant on the threshold stress(σ0),Fig.5,which may be attributed to low value(=0.023)of the coefficient of T(r)in Eq.(5).

    Figure 4:Variation of creep parameter M.

    Figure 5:Variation of threshold stress(σ0).

    Figure 6:Variation of radial stress in disc.

    Figure 7:Variation of tangential(effective)stress in disc.

    6.3 Effect of temperature exponent on the stresses

    As compared to uniform temperature disc,the radial stress in discs with radial temperature distributions is slightly higher throughout(Fig.6).The maximum variation of 3 MPa at a radius of 65.3 mm is observed in discs with linear temperature pro file and uniform temperature.On imposing radial thermal gradient in the disc,the tangential(effective)stress increases towards the inner radius but decreases towards the outer radius(Fig.7),when compared to uniform temperature disc.The maximum variation of 15 MPa is noticed at the inner disc radius between the discs with linear and uniform temperature pro files.

    Figure 8:Variation of radial strain rate in the FGM disc.

    Figure 9:Variation of tangential strain rates in the FGM disc.

    6.4 Effect of temperature exponent on the strain rates

    The radial strain rate in all the discs is tensile near the ends but shows compressive nature in the middle(Fig.8).The magnitude of radial strain rate(tensile as well as compressive)is observed to decrease with the increase in temperature exponent(nT)when compared to those observed in uniform temperature disc.The decrease observed is maximum in the middle region.Besides reduction in magnitude,the strain rate tends to become relatively uniform with the increase in exponent nT.Similarly,the tangential strain rate in the disc also decreases significantly with the increase in exponent nT(Fig.9).The decrease observed is more near the inner radius of the disc.The reduction observed in strain rates near the inner radius of the FGM disc having radially varying temperature is attributed to significant reduction in creep parameter M in these discs(Fig.4),which dominates over the effect caused by the higher effective stress observed near the inner radius of these discs than those observed in uniform temperature disc(Fig.7).However,towards the outer radius,inspite of high M value observed in FGM disc having radially varying temperature(Fig.4),the lower effective stress(Fig.7)tends to reduce strain rates in these discs,as compared to uniform temperature disc.Thus the FGM disc operating under exponentially varying temperature pro file develops lower and relatively uniform distribution of strain rates and will have lesser chances of distortion.

    6.5 Effect of temperature exponent on rupture time

    In this section,the effect of varying the value of temperature exponent(nT)has been investigated on the creep rupture time of the FGM discs,when all the discs operate under the same average temperature(Tavg)and at a fixed value of outer surface temperature(To=723 K).As the superior response of FGM disc is observed for temperature exponent nT=10,the average temperature(Tavg=632.09 K)is calculated for that disc from the following equation,obtained by integrating Eq.(6)between limits a to b.

    For given values of Toand Tavg,the temperature at the inner surface of the FGM disc(Ti)may be estimated from Eq.(10)for different values of nT,that is varied in the range 2 to 15.The values Ti,thus obtained,are substituted in Eq.(6)to get the radial variation of temperature in FGM disc for different values of nT(Fig.6a).It is important to mention that the value of temperature exponent(nT)has not been reduced below 2,as it gives negative value of creep parameter M,which is practically impossible.It is observed that for a given average temperature in the disc,the temperature decreases near the inner radius but increases towards the outer radius(Fig.10).Corresponding to different kinds of temperature pro files in the FGM disc,the radial and tangential strain rates are estimated at the inner and outer disc radii.With the decrease in temperature exponent(nT)from 15 to 2,both the strain rates are observed to reduce drastically by about 8 orders of magnitude(Fig.11).Based on the maximum strain rates(i.e.tangential strain rate),observed at the inner disc radius,the creep life(de fined in terms of the creep rupture time)of the FGM disc has been estimated for different values of nT.The rupture strain for Al-SiC composites is observed in the range of 2 to 4%[Nieh(1984);Orlando and Filho(2004)].Therefore,the rupture time has been estimated for different values of nTby taking 2%,3%and 4%strain as the rupture strain.The rupture time is observed to increase slightly(by few hours)as the value of exponent nTdecreases from 15 to 5(Fig.12).On decreasing nTbelow 5,the rupture time is observed to increase significantly(by several years).As an example,the rupture time increases by around nine orders o magnitude when the value of nTdecreases from 5 to 2.The increase in rupture time with decreasing the value of exponent nTis attributed to the reduction in temperature at the inner radius(Fig.10),which leads to significant reduction in strain rate(Fig.11).Thus,if one controls the heat transfer along the radial direction of the FGM disc,which is possible by employing suitable thermal barrier coatings,heat sink[Lepeshkin(2012);Padture,Gell,and Jordan(2002)]etc.,the creep damage in the FGM disc could be reduced significantly to achieve enhanced creep life.

    Figure 10:Variation of temperature with nT(Tavg=632.09 K).

    Figure 11:Variation of strain rate with nT.

    Figure 12:Variation of rupture time with nT.

    7 Conclusions

    The performance of the Al-SiCpdisc has been investigated by imposing three different kinds of radially decreasing temperature pro files,viz.linear,parabolic and exponential,and compared with a similar FGM disc subjected to uniform temperature.The study indicates that as compared to uniform temperature disc the FGM disc operating under radial temperature pro file(s)has higher radial stress throughout and higher tangential stress near the inner radius,with the maximum stress noticed for disc subjected to linear temperature gradient.Though,near the outer radius,the tangential stress is observed to be minimum in FGM disc subjected to radial thermal gradient(s),with the lowest stress noticed for FGM disc subjected to exponential thermal gradient.The radial as well as tangential strain rates in the FGM disc operating under radial thermal gradient(s)are significantly reduced as compared to uniform temperature FGM disc.The maximum reduction in strain rates is observed for FGM disc operating under exponential thermal gradient.Besides reduction in magnitude,the imposition of exponential thermal gradient leads to relatively more uniform distribution of strain rates in the FGM disc.The study also reveals that amongst several FGM discs operating under radial thermal gradients,with different values of temperature exponent(nT)but having the same average and fixed outer surface temperature,the FGM disc with lower value of nTexhibits the maximum creep life.By decreasing nTfrom 15 to 2,the creep life of the disc could be increased from few hours to several years.

    Afsar,A.M.;Go,J.(2010):Finite element analysis of thermoelastic field in a rotating FGM circular disc.Appl.Math.Model.,vol.34,pp.3309-3320.

    Akbari,M.R.;Ghanbari,J.(2015):Analytical solution of thermo-elastic stresses and deformation of functionally graded rotating hollow discs with radially varying thermo-mechanical properties under internal pressure.Computers,Materials&Continua,vol.45,pp.187-201.

    Ali,B.;Mostefa,B.(2013):Thermomechanical modelling of disc brake contact phenomena.FME Transactions,vol.41,pp.59-65.

    Bayat,M.;Saleem,M.;Sahari,B.B.;Hamouda,A.M.S.;Mahdi,E.(2008):Analysis of functionally graded rotating discs with variable thickness.Mech.Res.Commun.,vol.35,pp.283-309.

    ?all?o?glu,H.;Bektas,N.B.;Sayer,M.(2011):Stress analysis of functionally graded rotating discs:analytical and numerical solutions.Acta Mech.Sin.,vol.27,pp.950-955.

    Deepak,D.;Gupta,V.K.;Dham,A.K.(2010):Creep modeling of functionally graded rotating disc of variable thickness.J.Mech.Sci.Technol.,vol.24,pp.2221-2232.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014a):A simple locking-alleviated 4-node mixed-collocation finite element with over-integration,for homogeneous or functionally-graded or thick-section laminated composite beams.CMC:Comput Mater Con,vol.40,pp.49-77.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014b):A simple locking-alleviated 3D 8-node mixed-collocation C0finite element with overintegration,for functionally-graded and laminated thick-section plates and shells,with&without Z-pins.CMC:Comput Mater Con,vol.41,pp.163-192.

    Farshi,B.;Jahed,H.;Mehrabian,A.(2004):Optimum design of inhomogeneous non-uniform rotating discs.Comput.Struct.,vol.82,pp.773-779.

    Garg,M.;Salaria,B.S.;Gupta,V.K.(2013):Effect of thermal gradient on steady state creep in a rotating disc of variable thickness.Procedia Eng.,vol.55,pp.542-547.

    Gupta,V.K.;Singh,S.B.;Chandrawat,H.N.;Ray,S.(2004a)Steady state creep and material parameters in a rotating disc of Al-SiCpcomposite.Eur.J.Mech.A/Solids,vol.23,pp.335-344.

    Gupta,V.K.;Singh,S.B.;Chandrawat H.N.;Ray,S.(2004b)Creep behavior of a rotating functionally graded composite disc operating under thermal gradient.Metall Mater Trans A.,vol.35,pp.1381-1391.

    Gupta,V.K.;Singh,S.B.;Chandrawat,H.N.;Ray,S.(2005)Modeling of creep behavior of a rotating disc in the presence of both composition and thermal gradients.J.Eng.Mater.Technol.,vol.127,pp.97-105.

    Hassani,A.;Hojjati,M.H.;Farrahi,G.H.;Alashti,R.A.(2012):Semi-exact solution for thermo-mechanical analysis of functionally graded elastic-strain hardening rotating disks.Commun.Nonlinear Sci.Numer.Simul,vol.17,pp.3747-3762.

    Hassani,A.;Hojjati,M.H.;Farshi,G.;Alashti,R.A.(2011):Semi-exact solutions for thermo-mechanical analysis of functionally graded rotating disks.Compos.Struct.,vol.93,pp.3239-3251.

    Hojjati,M.H.;Hassani,A.(2008):Theoretical and numerical analyses of rotating discs of non-uniform thickness and density.Int.J.Pressure Vessels Piping,vol.85,pp.694-700.

    Khanna,K.;Gupta,V.K.;Nigam,S.P.(2015):Creep analysis of a variable thickness rotating FGM disc using Tresca criterion.Def.Sci.J.vol.65,pp.163-170.

    Kordkheili,S.A.H.;Livani,M.(2013):Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties.Int.J.Pressure Vessels Piping,vol.111-112,pp.63-74.

    Laskaj,M.;Murphy,B.;Houngan,K.(1999):Improving the efficiency of cooling the front disc brake on a V8 racing car,A Project Report,Monash University,Australia.

    Lepeshkin,A.(2012):Investigations of Thermal Barrier Coatings for Turbine Parts,in Ceramic Coatings-Applications in Engineering(Edited by Prof.Feng Shi),InTech,Croatia.

    Nieh,T.G.(1984):Creep rupture of a silicon carbide reinforced aluminum composite.Metall.Trans.A,vol.15A,pp.139-146.

    Nie,G.J.;Batra,R.C.(2010):Stress analysis and material tailoring in isotropic linear thermo elastic incompressible functionally graded rotating disks of variable thickness.Compos.Struct.,vol.92,pp.720-729.

    Orlando,J.A.;Filho,G.(2004):A lower bound to the creep rupture time of pressurised thick cylinders.Int.J.Mech.Sci.,vol.46,pp.527-539.

    Padture,N.P.;Gell,M.;Jordan,E.H.(2002):Thermal Barrier Coatings for Gas-Turbine Engine Applications.Science,vol.296,pp.280-284.

    Singh,S.B.;Ray,S.(2001):Steady-state creep behavior in an isotropic functionally graded material rotating disc of Al-SiC composite Metall Mater Trans A,vol.32,pp.1679-1685.

    Wahl,A.M.;Sankey,G.O.;Manjoine,M.J.;Shoemaker,E.(1954):Creep test of rotating discs at elevated temperature and comparison with theory.J.Appl.Mech.-T ASME vol.21,pp.225-235.

    You,L.H.;You,X.Y.;Zhang,J.J.;Li,J.(2007):On rotating circular discs with varying material properties.Z.angew.Math.Phys,vol 58,pp.1068-1084.

    1Mechanical Engineering Dept.,Thapar University,Patiala-147004,India

    2Corresponding author(Email:kishore.khanna@thapar.edu)

    3Mechanical Engineering Dept.,Punjabi University,Patiala-147002,India

    APPENDIX A

    亚洲av男天堂| 在线观看美女被高潮喷水网站| 一级毛片aaaaaa免费看小| 欧美性感艳星| 99在线人妻在线中文字幕| 久久精品国产亚洲av香蕉五月| 国产真实伦视频高清在线观看| 精华霜和精华液先用哪个| 精品人妻视频免费看| 大型黄色视频在线免费观看| 亚洲经典国产精华液单| 国产极品精品免费视频能看的| 麻豆久久精品国产亚洲av| 在线a可以看的网站| 1000部很黄的大片| 人体艺术视频欧美日本| 国产精品综合久久久久久久免费| 精品熟女少妇av免费看| 一区二区三区高清视频在线| 蜜臀久久99精品久久宅男| 国产一区二区在线观看日韩| 九九久久精品国产亚洲av麻豆| 亚洲内射少妇av| 久久久成人免费电影| 亚洲精品粉嫩美女一区| 麻豆国产97在线/欧美| 中国国产av一级| 亚洲一级一片aⅴ在线观看| 丰满乱子伦码专区| 校园人妻丝袜中文字幕| 日本一二三区视频观看| 免费观看的影片在线观看| 男人和女人高潮做爰伦理| 国产麻豆成人av免费视频| 热99re8久久精品国产| 黄色欧美视频在线观看| 中文字幕av在线有码专区| 精品少妇黑人巨大在线播放 | 嫩草影院精品99| 免费看美女性在线毛片视频| 免费人成视频x8x8入口观看| 午夜激情欧美在线| 欧美成人免费av一区二区三区| 精品久久久噜噜| 国产精品不卡视频一区二区| 成人特级黄色片久久久久久久| 在线观看66精品国产| 精品人妻偷拍中文字幕| 在线观看66精品国产| 2022亚洲国产成人精品| 最新中文字幕久久久久| 亚洲国产欧洲综合997久久,| 国产黄色小视频在线观看| 亚洲va在线va天堂va国产| 亚洲欧美中文字幕日韩二区| av女优亚洲男人天堂| 国产淫片久久久久久久久| 美女内射精品一级片tv| 一本一本综合久久| 久久精品久久久久久久性| 一卡2卡三卡四卡精品乱码亚洲| 日本三级黄在线观看| 国产欧美日韩精品一区二区| 日韩国内少妇激情av| 寂寞人妻少妇视频99o| 欧美日韩在线观看h| 97超视频在线观看视频| 欧美性感艳星| 禁无遮挡网站| 嘟嘟电影网在线观看| 精品久久久噜噜| 白带黄色成豆腐渣| 天天躁夜夜躁狠狠久久av| 久久人人精品亚洲av| 精品久久久久久久久久免费视频| 国产综合懂色| 久久草成人影院| 亚洲精品国产av成人精品| 国产亚洲欧美98| 精品久久久久久久久久免费视频| 特级一级黄色大片| 亚洲欧美精品自产自拍| 免费看a级黄色片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美bdsm另类| av又黄又爽大尺度在线免费看 | 久久人人爽人人爽人人片va| av视频在线观看入口| 成人av在线播放网站| 日本在线视频免费播放| 国产成人午夜福利电影在线观看| 久久久欧美国产精品| 久久久久国产网址| 免费观看在线日韩| 亚洲精品日韩av片在线观看| 久久人人爽人人爽人人片va| 天天躁日日操中文字幕| 韩国av在线不卡| 精品久久久噜噜| 亚洲av二区三区四区| av天堂在线播放| 亚洲自偷自拍三级| 久久6这里有精品| 国产麻豆成人av免费视频| 又爽又黄a免费视频| 国产伦一二天堂av在线观看| 亚洲成人久久性| 国产成人91sexporn| 久久久精品欧美日韩精品| 男插女下体视频免费在线播放| 少妇熟女欧美另类| 中文在线观看免费www的网站| 搞女人的毛片| 女同久久另类99精品国产91| 久久久国产成人精品二区| 国产中年淑女户外野战色| 久久精品国产鲁丝片午夜精品| 小蜜桃在线观看免费完整版高清| 久久久久免费精品人妻一区二区| 午夜精品国产一区二区电影 | 国产精品99久久久久久久久| 日日撸夜夜添| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 国产精品av视频在线免费观看| 国模一区二区三区四区视频| 国产精品不卡视频一区二区| 91麻豆精品激情在线观看国产| 久久国内精品自在自线图片| 特级一级黄色大片| 国产精品一区二区三区四区久久| 国产中年淑女户外野战色| 亚洲在久久综合| 欧美bdsm另类| 高清毛片免费观看视频网站| 亚洲成av人片在线播放无| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 亚洲人成网站高清观看| 久久国产乱子免费精品| 久久久色成人| 国产精品国产高清国产av| av免费在线看不卡| a级毛色黄片| 国内精品一区二区在线观看| 亚洲av成人av| 久久精品夜色国产| 黄色日韩在线| 综合色av麻豆| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 欧美成人一区二区免费高清观看| 人人妻人人看人人澡| av国产免费在线观看| 欧美成人一区二区免费高清观看| 99热精品在线国产| 国产午夜精品久久久久久一区二区三区| av在线播放精品| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 综合色av麻豆| 天堂√8在线中文| 国产黄色视频一区二区在线观看 | 尾随美女入室| 亚洲欧美日韩无卡精品| 国产一区二区亚洲精品在线观看| 久久久久久久久久久丰满| 身体一侧抽搐| 亚洲欧美日韩卡通动漫| 91精品国产九色| 黄色配什么色好看| 边亲边吃奶的免费视频| 免费黄网站久久成人精品| 免费看日本二区| 人妻久久中文字幕网| 蜜桃久久精品国产亚洲av| 一级毛片aaaaaa免费看小| 国产白丝娇喘喷水9色精品| 日本与韩国留学比较| 亚洲最大成人av| 成人性生交大片免费视频hd| 国产色爽女视频免费观看| 在线观看66精品国产| 热99在线观看视频| 老司机影院成人| 国产午夜精品论理片| 国产蜜桃级精品一区二区三区| 国产片特级美女逼逼视频| 91狼人影院| 国产蜜桃级精品一区二区三区| 成人性生交大片免费视频hd| 九九在线视频观看精品| 日本爱情动作片www.在线观看| 国产又黄又爽又无遮挡在线| 男女啪啪激烈高潮av片| 一本久久中文字幕| 九草在线视频观看| 国产成人福利小说| 国产又黄又爽又无遮挡在线| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 我的女老师完整版在线观看| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 精品午夜福利在线看| 一级毛片久久久久久久久女| 亚洲电影在线观看av| 亚洲中文字幕日韩| 亚洲欧美成人综合另类久久久 | 国产一区亚洲一区在线观看| 午夜老司机福利剧场| 99久久人妻综合| 亚洲av二区三区四区| 丰满的人妻完整版| 免费看av在线观看网站| 成人特级黄色片久久久久久久| 长腿黑丝高跟| 亚洲高清免费不卡视频| 国产av不卡久久| 嫩草影院新地址| 国产日本99.免费观看| 99精品在免费线老司机午夜| 人妻夜夜爽99麻豆av| 色哟哟·www| 成人av在线播放网站| 国产精品人妻久久久久久| 婷婷色综合大香蕉| 91久久精品国产一区二区成人| 色尼玛亚洲综合影院| 亚洲经典国产精华液单| 一进一出抽搐gif免费好疼| a级一级毛片免费在线观看| 中文亚洲av片在线观看爽| 99热网站在线观看| 性插视频无遮挡在线免费观看| 国产真实乱freesex| 亚洲aⅴ乱码一区二区在线播放| 人妻系列 视频| 亚洲欧美成人精品一区二区| 国产亚洲5aaaaa淫片| 嫩草影院精品99| 国产成人影院久久av| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 国产精品三级大全| 夜夜夜夜夜久久久久| 成人欧美大片| 九九久久精品国产亚洲av麻豆| 简卡轻食公司| 日本黄色视频三级网站网址| 91在线精品国自产拍蜜月| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 老司机影院成人| 网址你懂的国产日韩在线| 亚洲无线在线观看| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 亚洲最大成人av| 国产成人a区在线观看| 亚洲成人中文字幕在线播放| 欧美3d第一页| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 婷婷亚洲欧美| av在线播放精品| 久久久久久久久中文| 深夜精品福利| 天堂影院成人在线观看| 精品久久久久久久久亚洲| 99热6这里只有精品| 国产熟女欧美一区二区| 亚洲精品影视一区二区三区av| 欧美高清成人免费视频www| av免费在线看不卡| av黄色大香蕉| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 日韩人妻高清精品专区| 久99久视频精品免费| 在线观看66精品国产| 日本av手机在线免费观看| 赤兔流量卡办理| 国产高清视频在线观看网站| av在线老鸭窝| 久久久久久伊人网av| 国产亚洲欧美98| 欧美日韩综合久久久久久| 亚洲18禁久久av| 午夜精品在线福利| 欧美高清成人免费视频www| 黄片无遮挡物在线观看| 少妇裸体淫交视频免费看高清| 国产精品久久久久久久久免| 在线a可以看的网站| 日本在线视频免费播放| 日本五十路高清| 精品欧美国产一区二区三| 亚洲经典国产精华液单| 男女视频在线观看网站免费| 亚洲最大成人中文| 两个人视频免费观看高清| 日韩欧美在线乱码| 综合色av麻豆| 99久久精品一区二区三区| 久久久久久久久大av| 国产美女午夜福利| 一卡2卡三卡四卡精品乱码亚洲| 国产精品蜜桃在线观看 | 精品少妇黑人巨大在线播放 | 精品人妻偷拍中文字幕| 国产精品免费一区二区三区在线| 春色校园在线视频观看| 看片在线看免费视频| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看| 国产在线男女| 亚洲精品日韩av片在线观看| 午夜精品在线福利| 人人妻人人看人人澡| www日本黄色视频网| 高清毛片免费观看视频网站| 99精品在免费线老司机午夜| 看非洲黑人一级黄片| 热99在线观看视频| 国产精品一及| av女优亚洲男人天堂| 尾随美女入室| 爱豆传媒免费全集在线观看| 久久久久性生活片| 变态另类成人亚洲欧美熟女| 淫秽高清视频在线观看| 亚洲图色成人| 高清午夜精品一区二区三区 | 国产一级毛片在线| 在线a可以看的网站| 色综合站精品国产| 女的被弄到高潮叫床怎么办| 亚洲中文字幕日韩| or卡值多少钱| 又爽又黄a免费视频| 日韩一本色道免费dvd| 亚洲欧美日韩高清专用| 男的添女的下面高潮视频| 国产亚洲精品久久久com| av天堂中文字幕网| 在线观看午夜福利视频| 国产熟女欧美一区二区| 亚洲av免费高清在线观看| av.在线天堂| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影| 在线观看午夜福利视频| 精品熟女少妇av免费看| 麻豆成人午夜福利视频| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影小说 | 美女黄网站色视频| 一进一出抽搐gif免费好疼| 亚洲欧洲日产国产| 夜夜夜夜夜久久久久| 99久久九九国产精品国产免费| 一边亲一边摸免费视频| 国产精品蜜桃在线观看 | 热99在线观看视频| 少妇人妻精品综合一区二区 | 欧美一区二区国产精品久久精品| 在线观看美女被高潮喷水网站| 99在线视频只有这里精品首页| 啦啦啦韩国在线观看视频| 免费观看a级毛片全部| 99久国产av精品国产电影| 久久久久久久久久成人| 成人特级av手机在线观看| 又爽又黄a免费视频| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 天堂av国产一区二区熟女人妻| 亚洲av男天堂| 久久精品国产99精品国产亚洲性色| 欧美日韩综合久久久久久| 久久久精品94久久精品| 精品99又大又爽又粗少妇毛片| 午夜福利在线观看免费完整高清在 | 搡老妇女老女人老熟妇| 大又大粗又爽又黄少妇毛片口| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 永久网站在线| 亚洲五月天丁香| 成人永久免费在线观看视频| 嫩草影院新地址| www.av在线官网国产| 欧美激情在线99| 大香蕉久久网| 一本久久精品| 男的添女的下面高潮视频| 午夜激情欧美在线| 久久国产乱子免费精品| 国产精品永久免费网站| 97超视频在线观看视频| 久久这里有精品视频免费| 国产视频首页在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一个人观看的视频www高清免费观看| 国产精品.久久久| 丝袜美腿在线中文| 在线天堂最新版资源| 老司机影院成人| 日韩人妻高清精品专区| 干丝袜人妻中文字幕| 欧美bdsm另类| 久久人妻av系列| 国产一区亚洲一区在线观看| 看黄色毛片网站| 超碰av人人做人人爽久久| www.av在线官网国产| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 亚洲精品自拍成人| 亚洲欧美精品综合久久99| 男女做爰动态图高潮gif福利片| 国产精品永久免费网站| 天堂√8在线中文| 欧美高清成人免费视频www| 天美传媒精品一区二区| 小说图片视频综合网站| 国产人妻一区二区三区在| 2022亚洲国产成人精品| 亚洲av电影不卡..在线观看| 男女做爰动态图高潮gif福利片| 如何舔出高潮| 欧美精品一区二区大全| 99久国产av精品国产电影| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| 真实男女啪啪啪动态图| 亚洲欧美成人综合另类久久久 | 99久久人妻综合| 精华霜和精华液先用哪个| 免费大片18禁| 国产精品久久久久久久久免| 级片在线观看| 久久精品国产亚洲av香蕉五月| 九九爱精品视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美极品一区二区三区四区| 国产三级中文精品| 日韩亚洲欧美综合| 中文亚洲av片在线观看爽| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 日韩欧美在线乱码| 中文字幕熟女人妻在线| 国产伦精品一区二区三区四那| 有码 亚洲区| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 一级黄片播放器| 欧美一区二区精品小视频在线| 插阴视频在线观看视频| 欧美激情国产日韩精品一区| 欧美性猛交╳xxx乱大交人| 国产在线男女| 精品久久久久久久久av| 黄色欧美视频在线观看| 亚州av有码| 精品久久久噜噜| 青春草亚洲视频在线观看| 小蜜桃在线观看免费完整版高清| 国产一区二区在线av高清观看| 男女视频在线观看网站免费| 老司机福利观看| 中文欧美无线码| 国产中年淑女户外野战色| 久久欧美精品欧美久久欧美| 午夜爱爱视频在线播放| 国产免费一级a男人的天堂| 最后的刺客免费高清国语| 久久久久久久久久久免费av| 日本av手机在线免费观看| 91狼人影院| 99九九线精品视频在线观看视频| 国产精品人妻久久久久久| a级毛片免费高清观看在线播放| 欧美最黄视频在线播放免费| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 欧美性猛交黑人性爽| 国产成人freesex在线| 午夜老司机福利剧场| 亚洲激情五月婷婷啪啪| 欧美另类亚洲清纯唯美| 国产成人福利小说| 黄色一级大片看看| 国产真实乱freesex| 免费观看a级毛片全部| 日本一本二区三区精品| 国产一区二区在线av高清观看| 日韩,欧美,国产一区二区三区 | 在线免费观看不下载黄p国产| 男女下面进入的视频免费午夜| 国产色婷婷99| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看| 久久人人爽人人片av| 日韩精品有码人妻一区| 联通29元200g的流量卡| 免费观看人在逋| 成年版毛片免费区| 亚洲高清免费不卡视频| kizo精华| 成年女人看的毛片在线观看| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 精品久久久久久久末码| 美女脱内裤让男人舔精品视频 | 国产精品美女特级片免费视频播放器| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看 | 哪个播放器可以免费观看大片| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| 精品国内亚洲2022精品成人| 国产黄片视频在线免费观看| 悠悠久久av| 亚洲av电影不卡..在线观看| 亚洲精品粉嫩美女一区| 国内精品一区二区在线观看| 成人性生交大片免费视频hd| 成人国产麻豆网| 亚洲丝袜综合中文字幕| 欧美zozozo另类| 国产精品综合久久久久久久免费| 亚洲久久久久久中文字幕| 国产一区二区亚洲精品在线观看| 亚洲av二区三区四区| 在线免费观看不下载黄p国产| 精品一区二区免费观看| 中国美白少妇内射xxxbb| 亚洲精品国产av成人精品| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清在线视频| а√天堂www在线а√下载| 人妻夜夜爽99麻豆av| 成人亚洲精品av一区二区| 亚洲欧洲日产国产| 免费av不卡在线播放| 99在线视频只有这里精品首页| 国产不卡一卡二| 国产欧美日韩精品一区二区| 18禁在线无遮挡免费观看视频| 国产极品天堂在线| 亚洲天堂国产精品一区在线| 免费观看人在逋| 国产免费一级a男人的天堂| 精品99又大又爽又粗少妇毛片| 一级毛片电影观看 | 午夜福利高清视频| 国产精品永久免费网站| 黄色视频,在线免费观看| 日本-黄色视频高清免费观看| 如何舔出高潮| 久久精品综合一区二区三区| 国产老妇女一区| 婷婷色av中文字幕| 亚洲av成人av| 一个人看的www免费观看视频| 久久精品夜色国产| 国产精品国产三级国产av玫瑰| 免费看光身美女| 精品人妻熟女av久视频| 男女做爰动态图高潮gif福利片| 国产精品不卡视频一区二区| 午夜精品在线福利| 日韩精品有码人妻一区| 在线播放无遮挡| 男人和女人高潮做爰伦理| 久久精品久久久久久噜噜老黄 | 国产三级在线视频| 精品久久久久久久久久免费视频| 99国产精品一区二区蜜桃av| 午夜福利在线在线| 国产成人精品一,二区 | 99久久久亚洲精品蜜臀av| 别揉我奶头 嗯啊视频| 黑人高潮一二区| 国产伦精品一区二区三区四那| 亚洲av一区综合| .国产精品久久| 精品欧美国产一区二区三| 亚洲av中文av极速乱| 国产精品一二三区在线看| 久久精品国产自在天天线| 国产 一区 欧美 日韩| 国产精品三级大全| 一个人看视频在线观看www免费| 午夜福利在线观看吧| 一进一出抽搐gif免费好疼| 亚洲一区高清亚洲精品| 九九久久精品国产亚洲av麻豆| 美女被艹到高潮喷水动态| 99riav亚洲国产免费| 日本色播在线视频| 天堂av国产一区二区熟女人妻| 男人的好看免费观看在线视频|