• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Establishment and Application of a Multiplex PCR System for the Detection of Blast Resistance Genes Pi-ta and Pi-b in Rice

    2015-12-14 08:32:18ShuYAOYanqingLIUYadongZHANGZhenZHUTaoCHENQingyongZHAOLihuiZHOUChunfangZHAOXinYUCailinWANG
    Agricultural Science & Technology 2015年10期
    關(guān)鍵詞:植物保護(hù)稻瘟病抗性

    Shu YAO, Yanqing LIU, Yadong ZHANG, Zhen ZHU, Tao CHEN, Qingyong ZHAO, Lihui ZHOU,Chunfang ZHAO, Xin YU, Cailin WANG

    Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China

    Rice blast is one of the most serious diseases of rice that is caused by Magnaporthe grisea, which has become a serious impediment to high and stable yields of rice due to large hazard area and great damage. According to statistics,annual global rice yield loss caused by rice blast accounts for approxi mately 10%-15% of the total yield,resulting in billions of dollars of economic losses[1]. Practice has proved that breeding blast resistant varieties is the most economical and effective method for prevention and control of rice blast. However, due to strong variability of Magnaporthe grisea, resistant varieties may lose resistance after years of cultivation[2]. Therefore,transferring multiple blast resistance genes with different resistance spectra into the same variety by using molecular marker-assisted selection (MAS)technique has become one of the effective measures to breed rice varieties with durable blast resistance[3].

    With the rapid development of molecular biology techniques, so far,more than 50 major blast resistance genes have been fine mapped,among which 24 genes are cloned[4-8]. Pi-ta and Pi-b are two earliest cloned major blast resistance genes[9-10]. In recent years, functional markers of these two resistance genes and their allelic susceptibility loci have been developed,which can rapidly and accurately identify blast resistance genes Pi-ta and Pi-b from rice germplasms[11-12]. Li et al.[13]analyzed the distribution of blast resistance genes Pi-ta and Pi-b in rice germplasms from Yunnan Province using specific molecular markers of these two genes.Liu et al.[14]and Shi et al.[15]identified and analyzed blast resistance genes Pi-ta and Pi-b in main popularized rice varieties in Heilongjiang Province and major cultivars in China using these two specific molecular markers. Previous studies are mostly focused on the distribution of blast resistance genes Pi-ta and Pi-b in different rice varieties by molecular biology techniques, but little information is available on the optimization of mark detection methods.Especially, no studies have been reported on multiplex PCR systems for simultaneous detection of blast resistance genes Pi-ta and Pi-b.Compared with conventional single mark detection, multiplex PCR can detect two or more target genes in one PCR reaction with significantly improved efficiency and remarkably reduced costs[16-17]. Therefore, developing simple,rapid and efficient multiplex PCR systems for specific targets has a great significance for promoting the development of molecular breeding of disease-resistant rice.

    In this study, by investigating the effects of PCR reaction components and cycle parameters on multiplex PCR results, two multiple PCR systems for blast resistance and susceptibility genes were established. There was no mutual inhibition or mismatch between the primers in each system.Rice varieties with known genotypes were detected repeatedly to verify the accuracy and stability of the established multiplex PCR systems.The results showed that these two multiplex PCR systems could be used to simultaneously screen and identify two rice blast resistance (susceptibility)genes in the same PCR reaction. In addition,blast resistance genes (Pi-ta and Pi-b)and blast susceptibility genes (pi-ta and pi-b) in 336 high generation japonica varieties (lines) were detected with these two multiple PCR systems, aiming at providing rapid and efficient marker-assisted selection methods for screening Pi-ta and Pi-b genes,thereby improving the breeding efficiency of blast resistant rice.

    Materials and Methods

    Materials

    Nanjing 44, Nanjing 45, Wuyunjing 7, Wuyunjing 8, Wuyunjing 21,Wujing 15, Wuxiangjing 14, Changnongjing 5, Yandao 9 and Yangjing 805 were used to establish the multiplex PCR system for the detection of blast resistance genes Pi-ta and Pi-b(referred to as system I).Xudao 3,Xudao 4,Xudao 6, Zhendao 88, Huaidao 5, Huaidao 9, Lianjing 4, Lianjing 5,Lianjing 6 and Lianjing 7 were used to establish the multiplex PCR system for the detection of blast susceptibility genes pi-ta and pi-b (referred to as system II). Jia 33 was used as the resistant control,which has been recognized as a blast resistant variety; Lijiangxintuanheigu was used as the susceptible control[13,18]. By using the developed multiplex PCR systems,blast resistance genes Pi-ta and Pi-b in 336 high generation japonica lines were detected and compared with conventional single mark detection to verify the reliability of the multiplex PCR systems. The above materials were planted in the experimental field of Institute of Food Crops, Jiangsu Academy of Agricultural Sciences,which were sown on May 10 and transplanted on June 10. Each material was planted in eight rows, 40 seedlings per row. The spacing in the rows and spacing between rows were 13.2 cm × 26.4 cm. All the seedlings were plants under conventional field management.

    DNA extraction

    Fresh tender leaves were collected from rice seedlings at maximum tillering stage.Genomic DNA of control and experimental varieties was extracted by CTAB method[19]with slight modifications[19].

    Primer synthesis

    Based on the principle of allelespecific PCR, Wang et al.[20]designed specific primers YL155/YL87 and YL183/YL87 according to the sequences of blast resistance and susceptibility genes. The former primers could specifically amplify DNA fragment of blast resistance gene Pi-ta,which was about 1 042 bp; the latter primers could specifically amplify DNA fragment of blast susceptibility gene pi-ta, which was about 1 042 bp.Primers Pi-bdomF/Pi-bdomR were designed according to Fjellstrom et al.[21]to specifically amplify DNA fragment of blast resistance gene Pi-b,which was about 365 bp; primers Lys145F/Lys145R were designed according to Liu et al.[12]to specifically amplify DNA fragment of blast susceptibility gene pi-b, which was about 803 bp. All the primers were synthesized by Shanghai Invitrogen Biotechnology Co., Ltd. The names, sequences and expected amplified fragment sizes of these primers were shown in Table 1.

    Table 1 Names,sequences and expected amplified fragment sizes of primers used for multiplex PCR

    Multiplex PCR and electrophoresis

    The total multiplex PCR reaction volume was 20 μl, containing l × PCR buffer (1.5 mmol/L MgCl2), 200 μmol/L dNTPs, 1.25 U of Taq DNA polymerase [GenScript (Nanjing) Co.,Ltd.], 100-150 ng of template DNA and proper amounts of primers.Multiplex PCR was performed using Tprofessional thermal cycler. The PCR amplification was started with initial denaturation at 95 ℃for 3 min, followed by 6 cycles of denaturation at 94 ℃for 1 min, annealing at 55 ℃for 1 min and extension at 72 ℃for 1 min,and 32 cycles of denaturation at 94 ℃for 1 min, annealing at 55 ℃for 50 s and extension at 72 ℃for 30 s; the amplification was completed by holding the reaction mixture at 72 ℃for 6 min to allow complete extension of PCR products. PCR products were added with 2 μl of loading buffer; 10 μl of the mixture was separated by electrophoresis on 1.5% agarose gel containing ethidium bromide in 1× TAE buffer under 120 V for 45 min. The electrophoresis results were observed and photographed under an ultraviolet light. In order to ensure the stability and reliability of the results, each material was amplified for more than three times.

    Results and Analysis

    Establishment of multiplex PCR systems

    Genomic DNA of 22 rice varieties harboring known blast resistance and susceptibility genes was extracted as the template for gradient PCR using specific primers of four genes, to identify the appropriate annealing temperature range of each pair of primers.Primers with the same annealing temperature and great differences in amplified fragments were selected for multiplex PCR to further detect experimental materials harboring known genes. After identifying the consistent annealing temperature of four primers for system establishment, the original primers, dNTPs and DNA polymerase were prepared into multiplex PCR systems for PCR amplification and electrophoresis assay. Subsequently,combined with the amplification results of control materials, the amount of primers,extension time and number of cycles were optimized. Equal concentration of primers was added into the system firstly, and the amount was adjusted according to the amplification results: the amount of primers with weak amplification was increased,while that with strong amplification was reduced. The extension time of weak amplification was extended appropriately. Finally, in two multiplex PCR systems, each primer could amplify clear specific fragments from control materials harboring target genes(loci),but no specific bands were amplified from control materials harboring no target genes (loci). The established multiplex PCR systems were described as below.

    Multiplex PCR system for the detection of blast resistance genes Pi-ta and Pi-b The multiplex PCR system for detection of blast resistance genes Pi-ta and Pi-b involves primers YL155/YL87 and Pi-bdomF/Pi-bdomR. Using genomic DNA of 12 rice varieties (lines) harboring known genes as the template, PCR amplification and electrophoresis of corresponding loci were performed. The concentration ratio of primers, extension time and number of cycles in multiplex PCR system I were adjusted repeatedly to constantly optimize the system. Ultimately, the total multiplex PCR reaction volume was 20 μl, containing 2.0 μl of DNA template (approximately 20 ng/μl), 2.0 μl of 10 ×PCR buffer (25 mmol/L), 2.0 μl of dNTPs(2.5 mmol/L),and 0.8-1.2 μl of each of primers (10 μmol/L); ddH2O was added to a final volume of 20 μl.

    As shown in Fig.1, among 12 rice varieties detected with multiplex PCR system I, the same fragments were amplified from ten materials such as Nanjing 44 and Nanjing 45 as blast resistant control Jia 33,which were 1042 bp and 365 bp, respectively; however,no target bands were amplified from blast susceptible control Lijiangxintuanheigu, which was exactly the same as the results of conventional single mark detection by Shi et al.[15]and Yang et al.[22], indicating that these materials all harbor blast resistance genes Pi-ta and Pi-b.

    Multiplex PCR system for the detection of blast susceptibility genes pi-ta and pi-b Similarly, the multiplex PCR system for detection of blast susceptibility genes pi-ta and pi-b involves primers YL183/YL87 and Lys145F/Lys145R.Based on repeated system optimization, multiplex PCR system II was established. The total multiplex PCR reaction volume was 20 μl, containing 2.0 μl of DNA template(approximately 20 ng/μl),2.0 μl of 10×PCR buffer (25 mmol/L), 2.0 μl of dNTPs(2.5 mmol/L),and 0.8-1.2 μl of each of primers (10 μmol/L); ddH2O was added to a final volume of 20 μl.

    As shown in Fig.2, among 12 rice varieties detected with multiplex PCR system II, the same fragments were amplified from ten materials such as Xudao 3 and Xudao 4 as blast susceptible control Lijiangxintuanheigu,which were 1042 bp and 803 bp, respectively; however, no target bands were amplified from blast resistant control Jia 33, which was exactly thesame as the results of conventional single mark detection by Yang et al.[22]and He et al.(to be published),indicating that these materials all harbor blast susceptibility genes pi-ta and pi-b.

    Table 2 Distribution of blast resistance genes(Pi-ta and Pi-b)and susceptibility genes(pi-ta and pi-b)in 336 japonica rice lines

    Detection of blast resistance genes in high generation rice lines using multiplex PCR systems

    By using two established multiplex PCR systems, blast resistance genes (Pi-ta and Pi-b)and blast susceptibility genes (pi-ta and pi-b) were detected in 336 high generation breeding materials bred independently by Jiangsu Academy of Agricultural Sciences. According to the results,among 336 experimental materials,119 rice varieties harbor only blast resistance gene Pi-ta, accounting for 35.42%of the total number of experimental materials; 319 rice varieties harbor only blast resistance gene Pi-b, accounting for 94.94% of the total number of experimental materials; 1 042 bp and 365 bp specific fragments of blast resistance genes were amplified from 112 rice varieties(33.33%), which were consistent with that amplified from blast resistant control Jia 33, indicating that these varieties all harbor blast resistance genes Pi-ta and Pi-b; 1 042 bp and 803 bp specific fragments of blast susceptibility genes were amplified from 10 materials (3.0%), which were consistent with that amplified from blast susceptible control Lijiangxintuanheigu, indicating that these varieties all harbor blast susceptibility genes pi-ta and pi-b; 1 042 bp specific fragment of blast resistance gene and 803 bp specific fragment of blast susceptibility gene were amplified from seven materials (2.1%),indicating that these varieties harbor blast resistance gene Pi-ta and blast susceptibility gene pi-b;1 042 bp specific fragment of blast susceptibility gene and 365 bp specific fragment of blast resistance gene were amplified from 207 materials(61.61%),indicating that these varieties harbor blast susceptibility gene pi-ta and blast resistance gene Pi-b (Table 2). The above detection results were exactly the same as that of conventional single mark detection by He et al.(to be published). The detection results of blast resistance and susceptibility genes in different rice varieties were shown in Fig.3 and Fig.4.

    According to the above analysis,rice varieties harboring two blast resistance genes account for a small proportion of high generation breeding materials; the distribution frequency of blast resistance gene Pi-b is significantly higher than that of blast resistance gene Pi-ta.

    Discussion

    Advantages of multiplex PCR systems in detection of blast resistance genes Pi-ta and Pi-b

    The development of molecular biology greatly promotes the process of genetic research of blast resistance. A large number of mapped rice blast resistance genes lay a solid foundation for breeding blast resistant rice with MAS technologies.Developing an efficient method that is not subject to restrictions of seasons or sample types to detect resistance genes in rice at early growth stage is conducive to accelerating the progress of genetic improvement of blast resistant rice.Conventional blast resistance genotyping depends on disease resistance identification and phenotypic selection, with long breeding cycle,low selection efficiency, heavy workload, complicated operation and other shortcomings.Molecular marker techniques can detect any tissues of plants,and the sampling is not subject to restrictions of growing seasons or sample types,with relatively simple operation. Compared with single mark detection method,multiplex PCR can detect several target genes simultaneously with low cost, simple operation, high efficiency and other advantages, which is suitable for molecular-assisted selection and breeding. Compared with single PCR detection systems established previously,the multiplex PCR systems established in the present study involve more sites with better specificity and sensitivity, higher detection efficiency, which is more suitable for screening and molecular breeding of rice resources harboring blast resistance genes Pi-ta and Pi-b.

    Distribution of blast resistance genes Pi-ta and Pi-b in high generation rice varieties (lines) and suggestions for breeding blast resistant rice

    Previous studies have shown that Pi-ta and Pi-b genes exhibited high resistance to Magnaporthe grisea strains in Jiangsu, Yunnan, Jilin and other regions[23-26]. In this study, molecular detection results show that the distribution frequency of Pi-ta and Pi-b genes in different rice varieties varies significantly; the distribution frequency of Pi-b is remarkably higher than that of Pi-ta. Analysis results of the blast resistance of rice varieties harboring only Pi-ta or Pi-b indicate that the incidence of rice varieties harboring only Pi-b is significantly higher than that of rice varieties harboring only Pi-ta;Magnaporthe grisea strains demonstrate high race specificity. In subsequent breeding of blast resistant rice,the constitution of resistance genes in existing rice varieties should be improved to polymerize blast resistance genes at various loci into the same variety, thereby breeding new varieties with excellent blast resistance.

    Suggestions for establishment of multiplex PCR systems

    The experimental design for multiple PCR is more complex than single PCR with great technical difficulties.Therefore, in the establishment of multiplex PCR systems, the main components and reaction conditions should be optimized repeatedly[27]. According to practical experience,the efficiency of multiplex PCR systems may be improved with the following approaches. Firstly, multiplex PCR systems can be combined using genetic markers with large differences in the amplified products,thus ensuring easy and accurate distinguishing of the results by agarose gel electrophoresis.Secondly, in multiplex PCR, annealing temperature is one of the most important factors to be adjusted.Commonly,the annealing temperature is selected based on the melting temperature of the primers, but the results are not necessarily consistent with the expectations. The simplest way is to amplify single gene by gradient PCR with each primer, thereby identifying the optimal annealing temperature that is appropriate for multiple PCR amplification of each target gene. In multiplex PCR systems with no consistent annealing temperature, touch-down PCR can be employed. Thirdly, in the establishment of multiple PCR systems, the amount of primers with weak amplification should be increased, while that with strong amplification should be reduced. By continuously adjusting the relative amounts of primers, sufficient PCR products can be amplified with each primer ultimately. Although primer selection is the most critical factor determining the success of multiplex PCR, DNA template, chemical reagents (PCR buffer, Mg2+, Taq DNA polymerase and dNTPs) and instruments (PCR amplifier and electrophoresis apparatus) can also affect the results of multiple PCR.Therefore,in the initial period, reagents produced by different companies and PCR amplifiers with different types can be used to determine the optimal multiplex PCR system and procedures; after that, consistent instruments and reagents should be used in subsequent research. Moreover, each primer should be diluted and preserved in aliquots without mixing. Other reagents such as dNTPs should be preserved at 4 ℃ without repeated freezing and thawing. Compared with conventional single mark detection,multiplex PCR exhibits significantly reduced reagent costs and remarkably shortened detection time. The multiplex PCR systems for detection of blast resistance genes can be combined with field resistance identification for breeding blast resistant rice,thus effectively enhancing the efficiency of blast resistance improvement of rice.

    Conclusion

    In this study, two multiplex PCR systems were established for detection of blast resistance genes (Pi-ta and Pi-b) and blast susceptibility genes (pi-ta and pi-b), which led to stable and reliable identification results with low costs and could be applied in rice parent evaluation and marker-assisted selection to polymerize multiple genes for blast resistance in hybrid breeding. Among 336 high generation breeding materials detected with these two multiplex PCR systems, 112 rice varieties harbor blast resistance genes Pi-ta and Pi-b; seven rice varieties harbor only blast resistance gene Pi-ta; 207 varieties harbor only blast resistance gene Pi-b; 10 varieties harbor blast susceptibility genes pi-ta and pi-b.

    [1]ZHENG Z (鄭釗),CHEN YQ (陳由強(qiáng)),ZHANG JF (張建福), et al. Mapping cloning of rice blast resistance genes and their application(水稻稻瘟病抗性基因的定位、 克隆及應(yīng)用)[J]. Mol Plant Breed (分子植物育種), 2009, 7: 385-392.

    [2]SHEN Y(沈瑛),ZHU PL(朱培良),YUAN XP (袁筱萍), et al. Genetic diversity of Magnaporthe grisea in China(中國(guó)稻瘟病菌的遺傳多樣性)[J].Acta Phytopathol Sin(植物病理學(xué)報(bào)),1993,23:309-313.

    [3]HITTALMANI S, PARCO A, MEW TV,et al. Fine mapping and DNA markerassisted pyramiding of the three major genes for blast resistance in rice [J].Theor Appl Genet, 2000, 100: 1121-1128.

    [4]ZHAI C, LIN F, DONG ZQ, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist,2011,189:321-334.

    [5]HAYASHI N, INOUE H, KATO T, et al.Durable panicle blast resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J].Plant J,2010,64:498-510.

    [6]OKUYAMA Y, KANZAKI H, ABE A, et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes [J]. Plant J,2011,66:467-479.

    [7]YUAN B,ZHAI C,WANG WJ,et al.The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes [J]. Theor Appl Genet,2011,122:1017-1028.

    [8]TAKAHASHI A,HAYASHI N,MIYAO A,et al. Unique features of the rice blast resistance Pish locus revealed by large scale ret retrotransposon-tagging [J].BMC Plant Biol,2010,10:175.

    [9]WANG ZX, YANO M, YAMANOUCHI U,et al.The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine rich repeat class of plant resistance genes [J].Plant J, 1999, 19:55-64.

    [10]BRYAN GT, WU KS, FARRALL L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J]. Plant Cell, 2000, 12: 2033-2045.

    [11]WANG Z, JIA Y, RUTGER JN, et al.Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene[J].Plant Breed,2007,126:36-42.

    [12]LIU Y(劉洋), XU PZ(徐培洲), ZHANG HY(張紅宇),et al.Marker-assisted selection and application of blast resistant gene Pi-b in rice(水稻抗稻瘟病Pi-b基因的分子標(biāo)記輔助選擇與應(yīng)用) [J].Sci Agric Sin(中國(guó)農(nóng)業(yè)科學(xué)),2008,41:9-14.

    [13]LI JB(李進(jìn)斌),WANG T(王甜),XU MH(許明輝).Identification of Pi-ta and Pib genes for rice blast resistance of rice landraces from Yunnan Province(云南地方稻種抗稻瘟病基因Pi-ta 和Pi-b 的鑒定)[J].Chin J Rice Sci(中國(guó)水稻科學(xué)),2012,26:593-599.

    [14]LIU HZ(劉華招), LIU Y(劉延), LIU HL(劉化龍),et al.Distribution of two blast resistance genes Pi-b and Pi-ta in major rice cultivars in Heilongjiang Province in China (黑龍江省種植品種中稻瘟病抗性基因Pi-b 和Pi-ta 的分布)[J].J.Northeast Agric Univ (東北農(nóng)業(yè)大學(xué)學(xué)報(bào)),2011,42(1):27-31.

    [15]SHI K(時(shí)克),LEI CL(雷財(cái)林),CHENG ZJ (程治軍), et al. Distribution of two blast resistance genes Pi-ta and Pi-b in major rice cultivars in China (稻瘟病抗性基因Pi-ta 和Pi-b 在我國(guó)水稻主栽品種中的分布)[J]. J Plant Genet Resour (植物遺傳資源學(xué)報(bào)), 2009, 10:21-26.

    [16]MA W, ZHANG W, GALE KR. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat [J]. Euphytica,2003,134:51-60.

    [17]NAKAMURA T, VRINTEN P, SAITO M, et al. Rapid classification of partial waxy wheat using PCR-based markers[J].Genome,2002,45:1150-1156.

    [18]DAI XJ (戴小軍),YANG YZ (楊遠(yuǎn)柱),ZHOU L (周亮), et al. Distribution research of blast resistance genes Pi-ta,Pi-b, Pi-9 and Pikm in blast-resistant rice resources(抗稻瘟病水稻資源抗性基因Pi-ta、Pi-b、Pi-9 以及Pikm 的分布研究)[J].Life Sci Res(生命科學(xué)研究),2012,16:340-344.

    [19]LI W,LEI CL,CHENG ZJ,et al.Identification of SSR markers for a broadspectrum blast resistance gene Pi20(t)for marker-assisted breeding [J]. Mol Breed,2008,22:141-149.

    [20]WANG ZH (王忠華),JIA YL (賈育林),WU DX ( 吳殿星), et al, Molecular marker-assisted selection of the rice blast resistance gene Pi-ta (水稻抗稻瘟病基因Pi-ta 的分子標(biāo)記輔助選擇)[J]. Acta Agron Sin (作物學(xué)報(bào)), 2004,30:1259-1265.

    [21]FJELLSTROM R, CONAWAY-BORMANS CA, MCCLUNG AM, et al. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grlsea pathotypes [J]. Crop Sci,2004,44:1790-1798.

    [22]YANG J (楊杰), YANG JH (楊金歡),WANG J (王軍), et al. Distribution of two blast resistant genes Pi-ta and Pib in landrace rice in China(稻瘟病抗病基因Pi-ta 和Pi-b 在中國(guó)水稻地方品種中的分布)[J].Acta Agric Boreali-Sin(華北農(nóng)學(xué)報(bào)),2011,26(3):1-6.

    [23]LI JB(李進(jìn)斌),LI CY(李成云),CHEN Y(陳艷), et al. Utilization value of twenty-two blast resistance genes in Yunnan(二十二個(gè)抗稻瘟病基因在云南的利用價(jià)值評(píng)價(jià)) [J].Acta Phytophy Sin(植物保護(hù)學(xué)報(bào)),2005,6:113-119.

    [24]WANG GZ(王國(guó)珍), RU QH(茹慶華),GAO LY (高立原), et al. Studies on genes for resistance blast fungus in Ningxia region(日本水稻抗瘟基因?qū)幭牡疚敛【目剐匝芯?[J].Acta Agric Bori-Occide Sin(西北農(nóng)業(yè)學(xué)報(bào)),1997,6(3):1-4.

    [25]LU F(陸凡),CHEN ZY(陳志誼),LIU YF(劉永鋒), et al. Analysis of population virulences of Magnaporthe grisea in Jiangsu Province (江蘇省稻瘟病菌毒性的群體結(jié)構(gòu)分析)[J].Acta Phytophy Sin (植物保護(hù)學(xué)報(bào)), 2002, 29: 289-294.

    [26]REN JP (任金平),GUO XL (郭曉莉),ZHENG M (鄭民), et al. Studies on pathogenic spectrum of rice varieties with Magnaporth grisea in Jilin Province (吉林省稻瘟病菌對(duì)水稻品種的致病譜研究) [J]. J Jilin Agric Sci(吉林農(nóng)業(yè)科學(xué)),2006,31(6):35-37.

    [27]LIU ZB, GAO QR, WANG RX, et al.Application of multiplex PCR to studies on plant biology [J]. Mol Plant Breed,2005,3:261-268.

    猜你喜歡
    植物保護(hù)稻瘟病抗性
    植物保護(hù):不珍稀才了不起
    基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候選基因
    一個(gè)控制超強(qiáng)電離輻射抗性開(kāi)關(guān)基因的研究進(jìn)展
    植物保護(hù)中含噠嗪結(jié)構(gòu)化合物的應(yīng)用
    海南大學(xué)植物保護(hù)學(xué)院
    甲基對(duì)硫磷抗性菌的篩選及特性研究
    不同藥劑防治苗稻瘟病、葉稻瘟病效果試驗(yàn)研究
    甜玉米常見(jiàn)病害的抗性鑒定及防治
    生物綠肥在稻瘟病防治中的應(yīng)用與示范
    用于黃瓜白粉病抗性鑒定的InDel標(biāo)記
    亚洲18禁久久av| 日韩av不卡免费在线播放| 成年av动漫网址| 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3| 老师上课跳d突然被开到最大视频| 熟妇人妻不卡中文字幕| 成人鲁丝片一二三区免费| 三级毛片av免费| 91精品国产九色| 国产人妻一区二区三区在| 最近的中文字幕免费完整| 女人被狂操c到高潮| 免费在线观看成人毛片| 久久久精品免费免费高清| 成人高潮视频无遮挡免费网站| 亚洲电影在线观看av| 精品一区二区三区人妻视频| 日韩人妻高清精品专区| 欧美三级亚洲精品| 99久国产av精品国产电影| 舔av片在线| 97热精品久久久久久| 欧美丝袜亚洲另类| 麻豆精品久久久久久蜜桃| 日韩视频在线欧美| 伦精品一区二区三区| 在线天堂最新版资源| 五月伊人婷婷丁香| 亚洲欧洲日产国产| 国产视频首页在线观看| 日本av手机在线免费观看| 亚洲精品影视一区二区三区av| 一级毛片久久久久久久久女| 天堂俺去俺来也www色官网 | 天堂俺去俺来也www色官网 | 2018国产大陆天天弄谢| 亚洲精品亚洲一区二区| 日本熟妇午夜| 内射极品少妇av片p| 成年女人看的毛片在线观看| 亚洲乱码一区二区免费版| 高清视频免费观看一区二区 | 一级毛片 在线播放| 五月玫瑰六月丁香| 丰满少妇做爰视频| 最近视频中文字幕2019在线8| 69人妻影院| 久久97久久精品| 国产成人免费观看mmmm| 日韩成人av中文字幕在线观看| 亚洲av电影在线观看一区二区三区 | 国产午夜福利久久久久久| 最后的刺客免费高清国语| 亚洲精品456在线播放app| 国产老妇伦熟女老妇高清| 亚洲av电影不卡..在线观看| 亚洲av成人精品一区久久| 日本三级黄在线观看| 最近最新中文字幕大全电影3| 一区二区三区乱码不卡18| 欧美性感艳星| 亚洲欧美日韩无卡精品| 久久久精品94久久精品| 麻豆乱淫一区二区| 蜜桃久久精品国产亚洲av| 国产美女午夜福利| 欧美丝袜亚洲另类| 日本三级黄在线观看| 99久久精品一区二区三区| 一级毛片aaaaaa免费看小| av专区在线播放| 尾随美女入室| 看十八女毛片水多多多| 国产午夜福利久久久久久| 国产亚洲5aaaaa淫片| 日本wwww免费看| 99久久中文字幕三级久久日本| 亚州av有码| 亚洲精品乱久久久久久| 狂野欧美白嫩少妇大欣赏| 精品久久久噜噜| 成人毛片60女人毛片免费| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 赤兔流量卡办理| 亚洲精品,欧美精品| 深爱激情五月婷婷| 精品亚洲乱码少妇综合久久| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 久久国内精品自在自线图片| 99热这里只有是精品50| 91久久精品电影网| 精品一区在线观看国产| 亚洲精品456在线播放app| 大香蕉久久网| 2018国产大陆天天弄谢| 免费看日本二区| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 精品久久久久久久末码| 国产淫语在线视频| 街头女战士在线观看网站| 国产黄色小视频在线观看| 特大巨黑吊av在线直播| 国产精品久久久久久久电影| 五月玫瑰六月丁香| 免费看av在线观看网站| 大陆偷拍与自拍| 国产黄频视频在线观看| 亚洲国产欧美在线一区| 国产不卡一卡二| 91aial.com中文字幕在线观看| 97超视频在线观看视频| 色播亚洲综合网| 国产淫片久久久久久久久| 麻豆乱淫一区二区| 国产精品一二三区在线看| 99热网站在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 蜜桃亚洲精品一区二区三区| 又爽又黄a免费视频| 精品久久久久久久人妻蜜臀av| 成人高潮视频无遮挡免费网站| 日日啪夜夜撸| 国国产精品蜜臀av免费| 日韩亚洲欧美综合| 99热全是精品| 99热这里只有精品一区| 日韩一区二区视频免费看| 亚洲,欧美,日韩| 国产精品一区二区性色av| 五月玫瑰六月丁香| 国产美女午夜福利| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 秋霞在线观看毛片| 亚洲经典国产精华液单| 777米奇影视久久| 国产美女午夜福利| 一个人看的www免费观看视频| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 日韩国内少妇激情av| 久久这里只有精品中国| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 深夜a级毛片| 亚洲高清免费不卡视频| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 午夜福利视频1000在线观看| 亚洲精品乱码久久久v下载方式| 成人亚洲精品一区在线观看 | 国产熟女欧美一区二区| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 国产女主播在线喷水免费视频网站 | 亚洲人与动物交配视频| 在线播放无遮挡| 日韩中字成人| 久99久视频精品免费| av在线亚洲专区| 草草在线视频免费看| 午夜精品在线福利| 久久久久国产网址| 亚洲欧洲日产国产| 直男gayav资源| 91久久精品电影网| 欧美成人a在线观看| 亚洲在线观看片| 国产极品天堂在线| 禁无遮挡网站| 日本熟妇午夜| 久久久久久国产a免费观看| 欧美日韩亚洲高清精品| ponron亚洲| 搡老妇女老女人老熟妇| 大又大粗又爽又黄少妇毛片口| 中文欧美无线码| 好男人视频免费观看在线| 精品一区二区三卡| 亚洲美女视频黄频| 日韩一区二区三区影片| 欧美三级亚洲精品| 色播亚洲综合网| 国产探花在线观看一区二区| 久久99热这里只有精品18| 插阴视频在线观看视频| 内射极品少妇av片p| 97超视频在线观看视频| 欧美成人精品欧美一级黄| 日本免费在线观看一区| 69人妻影院| 黄色欧美视频在线观看| 成人国产麻豆网| 国产精品熟女久久久久浪| 国产亚洲精品av在线| 亚洲伊人久久精品综合| 国产v大片淫在线免费观看| 身体一侧抽搐| 丝袜美腿在线中文| 小蜜桃在线观看免费完整版高清| 我的老师免费观看完整版| 久久国产乱子免费精品| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区免费观看| 成年av动漫网址| 久久精品国产亚洲av涩爱| 免费av不卡在线播放| 国产黄色免费在线视频| 黄片无遮挡物在线观看| 最近最新中文字幕免费大全7| 精品一区在线观看国产| av女优亚洲男人天堂| 成年女人在线观看亚洲视频 | 免费观看精品视频网站| av天堂中文字幕网| 又大又黄又爽视频免费| 久久精品综合一区二区三区| 亚洲精品中文字幕在线视频 | 国产av在哪里看| 国产av不卡久久| 亚洲欧美中文字幕日韩二区| 欧美潮喷喷水| 国产高潮美女av| 国产成人福利小说| 亚洲国产色片| 韩国高清视频一区二区三区| 欧美不卡视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 成人无遮挡网站| 国产大屁股一区二区在线视频| 两个人的视频大全免费| 久久久久久国产a免费观看| 国产精品久久久久久精品电影小说 | 婷婷色麻豆天堂久久| 一级片'在线观看视频| 秋霞在线观看毛片| 成人高潮视频无遮挡免费网站| 黄片wwwwww| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美精品专区久久| 国产国拍精品亚洲av在线观看| 亚洲精品成人久久久久久| 久久久久久久久大av| 亚洲欧洲日产国产| 亚洲综合精品二区| 国产综合懂色| 日本-黄色视频高清免费观看| 爱豆传媒免费全集在线观看| 能在线免费观看的黄片| 97超碰精品成人国产| 国产乱来视频区| 国产淫片久久久久久久久| 日本一本二区三区精品| 天堂影院成人在线观看| 欧美高清成人免费视频www| 亚洲av日韩在线播放| 草草在线视频免费看| 久久国内精品自在自线图片| 国产单亲对白刺激| 伦精品一区二区三区| 亚洲av日韩在线播放| 日韩欧美三级三区| 日本欧美国产在线视频| videos熟女内射| 欧美区成人在线视频| 免费不卡的大黄色大毛片视频在线观看 | 我的女老师完整版在线观看| 男人和女人高潮做爰伦理| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 少妇的逼好多水| 久久久久性生活片| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 欧美日韩国产mv在线观看视频 | 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 国产有黄有色有爽视频| 国产一区二区三区av在线| 日本免费a在线| 国产精品蜜桃在线观看| 国产成人freesex在线| 久久久久久久久大av| 99久久精品国产国产毛片| 小蜜桃在线观看免费完整版高清| 男人舔女人下体高潮全视频| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 老司机影院毛片| 69人妻影院| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 午夜精品一区二区三区免费看| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 久久精品国产自在天天线| 天堂俺去俺来也www色官网 | 亚洲av免费高清在线观看| .国产精品久久| 天美传媒精品一区二区| 国产成人一区二区在线| 日韩av免费高清视频| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 久久草成人影院| 国产av在哪里看| 水蜜桃什么品种好| 日韩一本色道免费dvd| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 免费看光身美女| 青春草亚洲视频在线观看| 欧美潮喷喷水| 久久久久久国产a免费观看| 欧美97在线视频| 国产 一区精品| 美女内射精品一级片tv| 精品少妇黑人巨大在线播放| 嫩草影院新地址| 亚洲欧美成人精品一区二区| 亚洲最大成人av| 国产v大片淫在线免费观看| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 色5月婷婷丁香| 精品一区二区免费观看| videos熟女内射| 亚洲国产av新网站| 99久久人妻综合| 日韩精品有码人妻一区| 99热这里只有精品一区| 九九久久精品国产亚洲av麻豆| 欧美 日韩 精品 国产| 亚洲精品,欧美精品| 亚洲精品第二区| 久久精品人妻少妇| 免费在线观看成人毛片| 久久99蜜桃精品久久| 国产乱来视频区| 神马国产精品三级电影在线观看| 久久99热6这里只有精品| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 国产有黄有色有爽视频| 亚洲最大成人手机在线| 日韩欧美 国产精品| 国产老妇伦熟女老妇高清| 老司机影院毛片| 精品久久久久久久末码| 在线天堂最新版资源| 欧美成人一区二区免费高清观看| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频 | eeuss影院久久| 91精品国产九色| av国产免费在线观看| 欧美成人精品欧美一级黄| 哪个播放器可以免费观看大片| 日本黄色片子视频| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 老师上课跳d突然被开到最大视频| 亚洲av男天堂| 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 国产免费又黄又爽又色| 床上黄色一级片| 可以在线观看毛片的网站| 国产亚洲午夜精品一区二区久久 | 久久精品人妻少妇| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| 内地一区二区视频在线| 久久久成人免费电影| videos熟女内射| 久久久久久久久久黄片| 成人一区二区视频在线观看| 亚洲精品国产成人久久av| 97超碰精品成人国产| 深爱激情五月婷婷| 国产精品一区二区三区四区免费观看| videossex国产| 高清午夜精品一区二区三区| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 久久韩国三级中文字幕| 夜夜看夜夜爽夜夜摸| 久久国内精品自在自线图片| 国产永久视频网站| 人妻系列 视频| 人人妻人人澡欧美一区二区| 91精品国产九色| 精品国产三级普通话版| 伊人久久国产一区二区| 亚洲18禁久久av| 欧美潮喷喷水| 18禁在线播放成人免费| 女人久久www免费人成看片| 一区二区三区免费毛片| 熟女电影av网| 国产美女午夜福利| 国产一区二区三区av在线| 午夜福利成人在线免费观看| av免费在线看不卡| av专区在线播放| 嫩草影院精品99| 国产伦在线观看视频一区| 免费观看性生交大片5| 国内精品一区二区在线观看| 欧美日韩国产mv在线观看视频 | 国产白丝娇喘喷水9色精品| av国产久精品久网站免费入址| 免费观看av网站的网址| 97精品久久久久久久久久精品| 久久久午夜欧美精品| 国产精品伦人一区二区| 免费av毛片视频| 亚洲av成人精品一区久久| 国产亚洲91精品色在线| 国产成人午夜福利电影在线观看| 嫩草影院新地址| 亚洲经典国产精华液单| 性插视频无遮挡在线免费观看| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧美人成| 啦啦啦韩国在线观看视频| 亚洲伊人久久精品综合| 99热6这里只有精品| 亚洲天堂国产精品一区在线| 中文字幕av成人在线电影| 日本猛色少妇xxxxx猛交久久| 又爽又黄无遮挡网站| 日日啪夜夜撸| 中文乱码字字幕精品一区二区三区 | 亚洲色图av天堂| 国产综合精华液| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 免费看日本二区| 天天躁夜夜躁狠狠久久av| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 国国产精品蜜臀av免费| 国产久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 亚洲av二区三区四区| 日韩亚洲欧美综合| av播播在线观看一区| 亚洲图色成人| 国产成人福利小说| 精品少妇黑人巨大在线播放| 亚洲精品国产av成人精品| 久久久久久九九精品二区国产| 日韩一区二区三区影片| 日韩制服骚丝袜av| 国产淫语在线视频| 日本爱情动作片www.在线观看| av天堂中文字幕网| 亚洲欧美一区二区三区国产| 婷婷色综合大香蕉| 精品久久久噜噜| 美女xxoo啪啪120秒动态图| 一个人看的www免费观看视频| 精品欧美国产一区二区三| 男的添女的下面高潮视频| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 亚洲在线自拍视频| 亚洲av电影在线观看一区二区三区 | 特级一级黄色大片| 好男人视频免费观看在线| 欧美精品一区二区大全| 女人被狂操c到高潮| 国产伦精品一区二区三区视频9| 大又大粗又爽又黄少妇毛片口| 青青草视频在线视频观看| av天堂中文字幕网| 亚洲人与动物交配视频| 又大又黄又爽视频免费| 亚洲丝袜综合中文字幕| 免费观看无遮挡的男女| 全区人妻精品视频| 国产乱来视频区| 九九久久精品国产亚洲av麻豆| 一级毛片aaaaaa免费看小| 日本爱情动作片www.在线观看| 你懂的网址亚洲精品在线观看| 欧美xxxx性猛交bbbb| 少妇丰满av| 中文字幕久久专区| 一夜夜www| 天堂中文最新版在线下载 | 欧美日韩亚洲高清精品| 亚洲av成人av| 99re6热这里在线精品视频| 亚洲va在线va天堂va国产| 午夜日本视频在线| 亚洲不卡免费看| 九色成人免费人妻av| 国内精品一区二区在线观看| 国产淫片久久久久久久久| 哪个播放器可以免费观看大片| 99热这里只有是精品50| 校园人妻丝袜中文字幕| 亚洲电影在线观看av| 久久精品久久久久久久性| 美女国产视频在线观看| 亚洲精品一二三| 精品久久久精品久久久| 日本与韩国留学比较| 国产在视频线在精品| 精品一区在线观看国产| 色网站视频免费| 久久久久性生活片| 色吧在线观看| 亚洲,欧美,日韩| 毛片女人毛片| 亚洲欧美精品专区久久| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 1000部很黄的大片| 欧美日韩亚洲高清精品| 国产亚洲午夜精品一区二区久久 | 三级国产精品欧美在线观看| 成人性生交大片免费视频hd| 中文天堂在线官网| 最近的中文字幕免费完整| 午夜福利高清视频| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 超碰97精品在线观看| eeuss影院久久| 欧美成人精品欧美一级黄| 日韩不卡一区二区三区视频在线| 九九爱精品视频在线观看| 日本色播在线视频| 特大巨黑吊av在线直播| 26uuu在线亚洲综合色| 午夜激情欧美在线| 午夜福利高清视频| 秋霞在线观看毛片| 日本与韩国留学比较| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区| 日本黄色片子视频| 国产高清不卡午夜福利| videossex国产| 高清午夜精品一区二区三区| av卡一久久| 亚洲最大成人中文| 国产av国产精品国产| 亚洲色图av天堂| 久久精品久久精品一区二区三区| 中文字幕av在线有码专区| 久久久午夜欧美精品| 免费黄色在线免费观看| 肉色欧美久久久久久久蜜桃 | 欧美成人a在线观看| av在线蜜桃| 99热6这里只有精品| 看非洲黑人一级黄片| 又爽又黄a免费视频| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 最近视频中文字幕2019在线8| 亚洲在久久综合| 观看美女的网站| 日本熟妇午夜| 六月丁香七月| 全区人妻精品视频| 好男人在线观看高清免费视频| 国产精品福利在线免费观看| 国产成人a区在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文天堂在线官网| 国产在视频线在精品| 天美传媒精品一区二区| 精品人妻偷拍中文字幕| 国产大屁股一区二区在线视频| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久久久按摩| av黄色大香蕉| 综合色丁香网| 日韩av不卡免费在线播放| 老师上课跳d突然被开到最大视频| 亚洲精品久久午夜乱码| 精品人妻偷拍中文字幕| 观看免费一级毛片| 免费观看性生交大片5| 日韩精品青青久久久久久| 亚洲在线自拍视频| 国产精品久久久久久av不卡| 街头女战士在线观看网站| 2021少妇久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美|