• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    2015-12-13 01:54:26YangDu
    Computers Materials&Continua 2015年9期

    Q.W.Yang,S.G.Du,2

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    Q.W.Yang1,S.G.Du1,2

    Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions.In this study,size effect on concrete cubic compressive strength is modeled with a back-propagation neural network.The main advantage in using an artificial neural network(ANN)technique is that the network is built directly from experimental data without any simplifying assumptions via the self-organizing capabilities of the neural network.The proposed ANN model is verified by using 27 experimental data sets collected from the literature.For the large specimens,a modified ANN is developed in the paper to further improve the forecast accuracy.The results demonstrate that the ANN-based size effect model has a strong potential to predict the cubic compressive strength of concrete.

    concrete;size effect;compressive strength;artificial neural network back-propagation.

    1 Introduction

    The size effect is a problem of scaling,which is central to every physical theory[Bazant(1999);Hoover and Bazant(2013);Chiroiu,Munteanu,and Delsanto(2010);Mustapha(2014)].The size effect in solid mechanics is understood as the effect of the characteristic structure size(dimension)on the nominal strength of structure when geometrically similar structures are compared.Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions.Kani(1967)was one of the first to demonstrate the size effect in concrete structures.It has been shown that the shear strength of similar concrete beams decreases with increasing beam depth.Manic,Taric,Serif i,and Ristovski(2015)analyzes research on the formula proposed by Bazant,where the existence of size effect is shown.Alam,Kotronis,Loukili(2013)present the experimental and numerical investigations on the influence of size effect on crack opening,crack length and crack propagation.An isotropic non-local strain softening damage model is adopted for the numerical model.Sinaie,Heidarpour,Zhao,and Sanjayan(2015)carry out an experimental program to investigate the relation between size and the cyclic response of cylindrical concrete samples.The results show that diameter and the aspect ratio of the sample have the most influence on the reloading strength and reloading tangent of the cyclic response.Mahmud,Yang,and Hassan(2013)investigate the size effects on flexural strength of similar notched ultra high performance steel fibre reinforced concrete(UHPFRC)beams under three-point bending tests.Both numerical and experimental studies have showed that the size effect on the nominal flexural strength of these beams up to 150mm depth is very little.Kalfat and Mahaidi(2014)present the first comprehensive experimental program into the size effect fiber reinforced polymer patch anchors.A series of uniaxial tension experiments has been conducted by van Vliet and van Mier(2000)to investigate the size effect on strength and fracture energy of concrete and sandstone.Depending on the material and the curing conditions a stronger or weaker size effect on the nominal strength occurred in the tests.The observed size effect has to be attributed to a combination of statistical size effect and strain gradients in the cross section of the specimens,which were caused by the specimen shape,load eccentricity and material inhomogeneity.Syroka-Korol and Tejchman(2014)carried out the laboratory tests on concrete beams with longitudinal bars and without shear reinforcement.A pronounced size effect was measured in these concrete beams.Ray and Kishen(2011)proposed an analytical model for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis.It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results.Through a sensitivity analysis,it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation.Ashour and Kara(2014)present test results of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer(CFRP)bars and without vertical shear reinforcement.A simplified,empirical equation accounting for size effect as well as all other shear design parameters was developed in their work based on the well-known design-by-testing approach.Karihaloo,Abdalla,and Xiao(2003)carry out an experimental investigation into the size effect in the strength of hardened cement paste(nominal compressive strength 40 MPa)and high strength concrete(nominal compressive strength 110 MPa)as measured in three point bending.Improvements to Karihaloo’s size effect formula have been proposed in this study.Belgin and?Sener(2008)present the results of full-scale failure of singly reinforced four-point-bend beams of different sizes containing deformed longitudinal reinforcing bars.The results revealed the existence of a significant size effect,which can approximately be described by the size effect law previously proposed by Bazant.The size effect is found to be stronger in two-dimensional similarities than for one and three-dimensional similarities.N-guyen,Kim,Ryu,and Koh(2013)study the size effect on the flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete(UHPHFRC).Both UHPHFRCs demonstrated clear size effect on flexural strength,normalized deflection,and normalized energy absorption capacity.Furthermore,the flexural behavior of UHP-HFRC1,with its lower tensile ductility,was more sensitive to the size of the specimen.In order to investigate the size effect of concrete cubic compressive strength,Su and Fang(2014)performed a series of compression tests on 135groups of cubic specimens with three different strength grades and three different aggregate mixtures.Test and analysis results show that the strength grade influences the size effect of concrete cubic compressive strength greatly.

    The size effect in concrete is a result influenced by multi-factors,such as water/cement ratio,cement content,water content,sand ratio,maximum aggregate size,aggregate type,and other mix design parameters.According to the existing experiments,we can deduce several functions which can describe the size effect in concrete as shown in the above literatures.However,considering that the factors are too complex to be modeled and solved by classical mathematic and traditional processes,artificial neural network(ANN)may be a promising tool to accurately describe the size effect in concrete.The main benefit of an ANN-based method is that the ANN is built directly from the experimental test data without any simplifying assumptions.This paper thoroughly investigates to evaluate whether ANN can be used to forecast the size effect of concrete cubic compressive strength correctly.The ANN model is constructed,trained and tested using 27 available sets of experimental data obtained from the reference of Su and Fang(2014).The data used in ANN model are arranged in a format of seven input parameters that cover the cement(C),silica fume(SF),fine aggregate(FA),coarse aggregate(CA),water(W),superplasticizer(SP),and side length of specimen(L).The ANN model,which performs in Matlab,predicts the cubic compressive strength of the concrete.It will be shown that the ANN-based size effect model on concrete cubic compressive strength is reliable and very promising.

    2 ANN-based size effect model

    2.1 Background for ANN

    ANN is a mathematical or computational model that tries to simulate the structure or functional aspects of biological neural networks.The first advantage of ANN is its capability of learning directly from examples,i.e.the relationships between input and output variables are generated by the data themselves.The other ad-vantages of ANN are its accurate response to incomplete tasks,its extraction of information from noisy or poor data,and its production of generalized results from the new examples[Arslan and Ince(1996)].Due to the above features,ANN has successfully been used in many engineering problems over the last two decades.Ince(2004)presented a fracture model based on ANN to predict fracture parameters of cementitious materials.It has been shown that the fracture model based on ANN predictions is more reliable than the Two-Parameter model based on regression analysis.?zta?s,Pala,?zbay,Kanca,,and Bhatti(2006)used a back-propagation neural network to predict the compressive strength and slump of high strength concrete.The results showed that ANN has strong potential as a feasible tool for predicting compressive strength and slump values.Li and Yang(2008)developed a method of damage identification for beam using artificial neural network based on statistical properties of structural dynamic responses.Mehrjoo,Khaji,Moharrami,and Bahreininejad(2008)proposed a method for estimating the damage intensities of joints for truss bridge structures using a back-propagation neural network.Duan,Kou,and Poon(2013)employed an artificial neural network to predict the compressive strength of recycled aggregate concrete.Yan,Ren,Xia,Shen,and Gu(2015)developed two models to predict the two fracture parameters in the scale effect model of concrete using the artificial neural network methodology.Wang,Man,and Jin(2015)developed the artificial neural network for predicting the free expansion strain of self-stressing concrete under wet curing conditions.

    Among various ANN models,the most fundamental and widely used architecture is the back-propagation neural network,which will be used in this study.As shown in Figure 1,a typical structure of the back-propagation neural network consists of an input layer,one or more hidden layers and an output layer,and each layer consists of numerous neurons.The ANN-based modeling process involves four main aspects[Duan,Kou,and Poon(2013);Yan,Ren,Xia,Shen,and Gu(2015)]:(1)data acquisition,analysis and problem representation;(2)architecture determination;(3)training of the network;and(4)validation and test of the trained network for generalization evaluation.The training process of ANN is divided into two phases.In the first phase(feed-forward),the input layer neurons pass the input pattern values onto the hidden layer.Subsequently each of the hidden layer neurons computes a weighted sum of its input,and passes the sum through its activation function and gives the activation value to the output layer.Following the computation of a weighted sum of each neuron in the output layer,the sum is passed through its activation function,resulting in one of the output values for the network.In the second stage(back-propagation),the error between actual output and target output can be calculated layer by layer in recursion and the weights are accordingly adjusted until the expectant output is obtained in the out layer.More details on construction of ANN can be found in the references[Grossberg(1988);Hornik,Stinchcombe,and White(1989);Hornik(1991);Hornik,Stinchcombe,and White(1990);Gallant and White(1992);Oishi and Yoshimura(2007);Kerh,Lai,Gunaratnam,and Saunders(2008)].

    Figure 1:The architecture of the ANN model

    2.2 Input and Output of the ANN

    In this research,the size effect of concrete cubic compressive strength was predicted using the ANN model.Table 1 presents the experimental data taken from the existing size effect tests in the reference of Su and Fang(2014).In this experimental study,the overall dimensions of the specimens tested are as follows:100×100×100,150×150×150,and 200×200×200mm.From table 1,the seven parameters,i.e.,cement(C),silica fume(SF),fine aggregate(FA),coarse aggregate(CA),water(W),superplasticizer(SP),and side length of specimen(L),are chosen as the input variables for ANN.Whereas the statistical average value of 28day compressive strength(fcu)is chosen as the output variable of ANN.

    2.3 Construction of the ANN

    A back-propagation ANN architecture was employed in this study.As described in section 2.2,the ANN model used in this study has seven neurons(variables)in the input layer(ni=7)and one neuron in the output layer(no=1).So far as know,there are no reasonable theory for determining the optimum number of hidden layers and the optimum number of neurons in each hidden layer.In this research,a single hidden layer is used in the ANN,since many investigations[Arslan and Ince(1996);Ince(2004);?zta?s,Pala,?zbay,Kanca,,and Bhatti(2006);Li and Yang(2008);Mehrjoo,Khaji,Moharrami,and Bahreininejad(2008)]have showed that ANN with one hidden layer is sufficient to simulate most of engineering problems.As for the number of neurons in the hidden layer,too few neurons will not

    allow the network to produce accurate maps from the input to the desired output,while too many neurons will result in difficulties dealing with new types of input patterns.In practice,the neuron number range of a hidden layer can be calculated by the following equation[Yan,Ren,Xia,Shen,and Gu(2015);Wang,Man,and Jin(2015)]:

    Table 1:The experimental data taken from reference Su and Fang(2014)for ANN

    where nh,niand noare the neuron number of hidden,input and output layers,respectively,and a is a fixed value ranging from 0 to 10.According to equation(1),the number of hidden layer neurons in this research can be between 3 and 13.In this research,the optimum number of neurons in the unique hidden layer is set to 11(nh=11).The following discussion will show that when more neurons in the hidden layer are used,the network would not converge.If the network was smaller,it would not converge either.

    2.4 Training and testing of the ANN

    As stated before,back-propagation training algorithm is used in this ANN model.The program of the ANN model is developed and performed under MATLAB.Training and testing data of this model came from experimental results as shown in Table 1.To test the generalization ability of the ANN model,we select 9 samples with the same size as the test set,while the remaining 18 samples are used to train the network.Thus the three cases will be studied in the following.

    2.4.1 Case 1:the samples with the side length of 150mm are used as the test set.Case 1 is used to show the performance of the ANN when the test sample size ranges from the minimum size to the maximum size of the training samples.Table 2 shows the R-square results of ANN training and testing data when the neuron number of the hidden layer varies from 3 to 13.One can see from table 2 that the R-square values are both the largest when the neuron number of the hidden layer is 11 for the training and testing sets.Therefore,the neuron number of the unique hidden layer is set to 11 in this research(nh=11).As shown in figure 2,the training phase of the ANN for case 1 took 6 epochs using the given data.Figures 3 and 4 present all the experimental data,as well as the training and testing results obtained from the ANN model.The linear optimized fitted straight together with its function and the R value is shown in these figures.In addition,the mean of squared error(MSE)between the predicted value and the experimental value is also given in the title of the figure.Table 3 presents the comparison of experimental compressive strength with ANN predicted compressive strength for the testing set.From these results,one can see that the compressive strength values predicted by the ANN model are very closer to the experimental values.It has been shown that the proposed ANN model is very accurate for predicting the compressive strength of those samples whose sizes range from the minimum size to the maximum size of the training samples.

    Figure 2:Variations of overall error against number of iterations for Case 1

    Figure 3:Performance of training set for Case 1(MSE=4.0629×10-22)

    Figure 4:Performance of testing set for Case 1(MSE=0.1733)

    Table 2:The R-square values for case 1 when the neuron number of the unique hidden layer changes

    2.4.2 Case 2:the samples with the side length of 200mm are used as the test set.

    Case 2 is used to show the performance of the ANN when the test sample size is greater than the maximum size of the training samples.As shown in figure 5,the training phase of the ANN for case 2 took 7 epochs using the given data.Figures 6 and 7 give the results for case 2 by using the ANN model.Obviously,the results show better fit in the training set than in the testing set.Table 4 presents the comparison of experimental values with ANN predicted values for the compressivestrength of testing set.Compared with the results in case 1,the prediction accuracy of the ANN for case 2 decreases.It has been shown that the generalization ability of the ANN will weaken when the test sample size is greater than the maximum size of the training samples.

    Table 3:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 1)

    Figure 5:Variations of overall error against number of iterations for Case 2

    2.4.3 Case 3:the samples with the side length of 100mm are used as the test set.

    Figure 6:Performance of training set for Case 2(MSE=6.5914×10-29)

    Figure 7:Performance of testing set for Case 2(MSE=3.4525)

    Case 3 is used to show the performance of the ANN when the test sample size is less than the minimum size of the training samples.Figures 8–10 present the training phase of the ANN and the results predicted by ANN.Table 5 presents the comparison of experimental values with ANN predicted values for this case.From these results,one can see that the generalization ability of the ANN also weakened when the test sample size is less than the minimum size of the training samples.

    Table 4:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 2)

    Figure 8:Variations of overall error against number of iterations for Case 3

    2.5 Improvement of the ANN-base size effect model

    As stated previously,the ANN is very accurate in predicting the compressive strength of the sample whose size ranges from the minimum size to the maximum size of the training samples,but not enough accurate for the other sample whose size is out of range.However,it is the most important to predict the size effect for scale ranges which can not be tested under laboratory conditions,especially for the sample whose size is far greater than the maximum size of the training samples.In view of this,a modified ANN is developed in this section to improve the forecast accuracy for the large specimens.According to the existing theories,the size effect in concrete will significantly decline with an increase in the specimen size.Using this principle,the original ANN model in case 2 can be improved to obtain more accurate predicted values of the compressive strength for the samples with the side length of 200mm.The modifications of ANN include the following respects.First,in addition to all the 100×100×100 and 150×150×150 specimens,nine suppositional oversized specimens as shown in table 6 with the side length of 1400mm are added to the training set in the modified ANN.Second,the change rate(CR)of the compressive strength is used as the new output variable in the modified ANN,which is defined as the following equation:

    Figure 9:Performance of training set for Case 3(MSE=1.4796×10-28)

    Figure 10:Performance of testing set for Case 3(MSE=7.3963)

    Table 5:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 3)

    Table 6:The nine suppositional oversized specimens

    Figure 11:Variations of overall error against number of iterations for Case 2 using the modified ANN

    Figure 12:Performance of training set for Case 2 using the modified ANN(MSE=1.1954×10-27)

    where CRLis the change rate of the compressive strength for the L×L×L specimen,fcu,Lis the cubic compressive strength of the sample with the side length of L(mm),and fcu,L-50is the cubic compressive strength of the sample with the side length of(L-50).For the 100×100×100 specimens,the fcu,50used in the calculation of CR100is obtained by the original ANN model.For the suppositional oversized specimens,the CR1400can be set to 0 because that the size effect can be ignored for these oversized specimens.Figures 11–13 present the training phase of the modified ANN and the results predicted by the modified ANN.From figure 11,the training phase of the modified ANN for case 2 took 50 epochs using the given data.Table 7 and figure 14 give the comparisons of the experimental values and the predicted ones by using the original ANN and modified ANN for these 200×200×200 specimens.One can see that the predicted values obtained by the modified ANN have less error compared with the results obtained by the original ANN.In other words,the modified ANN is more accurate than the original ANN in predicting the compressive strength of the large concrete specimen.

    Figure 13:Performance of testing set for Case 2 using the modified ANN(MSE=1.7069)

    Table 7:Comparison of experimental values with predicted results obtained by the original and modified ANN models(Case 2)

    Figure 14:Comparison of the relative errors between the predicted values and experimental values by the original and modified ANN models(Case 2)

    3 Conclusion

    In this study,the ANN-based size effect model is assessed to see whether it can be used to predict the cubic compressive strength of the concrete.From the investigation,it can be seen that:

    (1)The proposed ANN model is very accurate for predicting the compressive strength of those samples whose sizes range from the minimum size to the maximum size of the training samples.

    (2)The generalization ability of the ANN will weaken when the test sample size is greater than the maximum size of the training samples(or less than the minimum size of the training samples).

    (3)The modified ANN is more accurate than the original ANN in predicting the compressive strength of the large concrete specimen.

    In conclusion,the ANN-based size effect model has strong potential as a feasible tool for predicting the concrete cubic compressive strength in spite of some imperfections in the study of case 3.The inaccuracy in case 3 may be mainly due to a lack of enough experimental data.Therefore,the performance of ANN-based size effect model can still be improved if more experimental parameters can be considered.

    Acknowledgement:This work is supported by National Natural Science Foundation of China(41427802,11202138,41172292)and Zhejiang Province Natural Science Foundation(LZ13D020001).

    Alam,S.Y.;Kotronis,P.;Loukili,A.(2013):Crack propagation and size effect in concrete using a non-local damage model.Engineering Fracture Mechanics,vol.109,pp.246–261.

    Arslan,A.;Ince,R.(1996):The neural network approximation to the size effect in fracture of cementitious materials.Engineering Fracture Mechanics,vol.54,pp.249–261.

    Ashour,A.F.;Kara,I.F.(2014):Size effect on shear strength of FRP reinforced concrete beams.Composites Part B:Engineering,vol.60,pp.612–620.

    Bazant,Z.P.(1999): Size effect on structural strength:a review.Archive of Applied Mechanics,vol.69,pp.703–725.

    Belgin,?.M.;?Sener,S.(2008):Size effect on failure of overreinforced concrete beams.Engineering Fracture Mechanics,vol.75,pp.2308–2319.

    Chiroiu,V.;Munteanu,L.;Delsanto,P.P.(2010):Evaluation of the Toupin-Mindlin theory for predicting the size effects in the buckling of the carbon nanotubes.Computers,Materials&Continua,vol.16,pp.75.

    Duan,Z.H.;Kou,S.C.;Poon,C.S.(2013):Prediction of compressive strength of recycled aggregate concrete using artificial neural networks.Construction and Building Materials,vol.40,pp.1200–1206.

    Gallant,A.R.;White,H.(1992):On learning the derivatives of an unknown mapping with multilayer feedforward networks.Neural Networks,vol.5,pp.129–138.

    Grossberg S.(1988):Nonlinear neural networks:Principles,mechanisms,and architectures.Neural networks,vol.1,pp.17–61.

    Hoover,C.G.;Bazant,Z.P.(2013):Comprehensive concrete fracture tests:Size effects of Types 1&2,crack length effect and postpeak.Engineering Fracture Mechanics,vol.110,pp.281–289.

    Hornik,K.(1991): Approximation capabilities of multilayer feedforward networks.Neural Networks,vol.4,pp.251–257.

    Hornik,K.;Stinchcombe,M.;White,H.(1989):Multilayer feedforward networks are universal approximators.Neural Networks,vol.2,pp.359-366.

    Hornik,K.;Stinchcombe,M.;White,H.(1990):Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks.Neural Networks,vol.3,pp.551–560.

    Ince,R.(2004):Prediction of fracture parameters of concrete by artificial neural networks.Engineering Fracture Mechanics,vol.71,pp.2143–2159.

    Kalfat,R.;Mahaidi,R.A.(2014):Experimental investigation into the size effect of bidirectional fiber patch anchors in strengthening of concrete structures.Composite Structures,vol.112,pp.134–145.

    Kani,G.N.(1967):How safe are over large concrete beams?ACI J.Proc.,vol.64,pp.128–141.

    Karihaloo,B.L.;Abdalla,H.M.;Xiao,Q.Z.(2003):Size effect in concrete beams.Engineering Fracture Mechanics,vol.70,pp.979–993.

    Kerh,T.;Lai,J.S.;Gunaratnam,D.;Saunders,R.(2008):Evaluation of seismic design values in the Taiwan building code by using artificial neural network.Computer Modeling in Engineering and Sciences,vol.26,pp.1.

    Leshno,M.;Lin,V.Y.;Pinkus,A.;Schocken,S.(1993):Multilayer feedforward networks with a nonpolynomial activation function can approximate any function.Neural Networks,vol.6,pp.861–867.

    Li,Z.X.;Yang,X.M.(2008):Damage identification for beams using ANN based on statistical property of structural responses.Computers&structures,vol.86,pp.64–71.

    Mahmud,G.H.;Yang,Z.;Hassan,A.M.T.(2013):Experimental and numerical studies of size effects of ultra high performance steel fiber reinforced concrete beams.Construction and Building Materials,vol.48,pp.1027–1034.

    Manic N.;Taric M.;Serif iV.;Ristovski A.(2015):Analysis of the existence of size effect on different concrete types.Procedia Technology,vol.19,pp.379–386.

    Mehrjoo,M.;Khaji,N.;Moharrami,H.;Bahreininejad,A.(2008):Damage detection of truss bridge joints using Artificial Neural Networks.Expert Systems with Applications,vol.35,pp.1122–1131.

    Mustapha,K.B.(2014):Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels.Computers,Materials&Continua,vol.42,no.2,pp.141–174.

    Nguyen,D.L.;Kim,D.J.;Ryu,G.S.;Koh,K.T.(2013):Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete.Composites Part B:Engineering,vol.45,pp.1104–1116.

    Oishi,A.;Yoshimura,S.(2007): A new local contact search method using a multi-layer neural network.Computer Modeling in Engineering and Sciences,vol.21,pp.93.

    ?zta?s,A.;Pala,M.;?zbay,E.;Kanca,E.;,N.;Bhatti,M.A.(2006):Predicting the compressive strength and slump of high strength concrete using neural network.Construction and Building Materials,vol.20,pp.769–775.

    Ray,S.;Kishen,J.M.C.(2011):Fatigue crack propagation model and size effect in concrete using dimensional analysis.Mechanics of Materials,vol.43,pp.75–86.

    Sinaie,S.;Heidarpour,A.;Zhao,X.L.;Sanjayan,J.G.(2015):Effect of size on the response of cylindrical concrete samples under cyclic loading.Construction and Building Materials,vol.84,pp.399–408.

    Su,J.;Fang,Z.(2014): Experimental study on impact of aggregate mixture on dimensional effect of concrete cubic compressive strength.Journal of Building Structures,vol.35,pp.152–157.(in Chinese)

    Syroka-Korol,E.;Tejchman,J.(2014):Experimental investigations of size effect in reinforced concrete beams failing by shear.Engineering Structures,vol.58,pp.63–78.

    Van Vliet,M.R.A.;Van Mier,J.G.M.(2000):Experimental investigation of size effect in concrete and sandstone under uniaxial tension.Engineering Fracture Mechanics,vol.65,pp.165–188.

    Wang,B.;Man,T.;Jin,H.(2015):Prediction of expansion behavior of selfstressing concrete by artificial neural networks and fuzzy inference systems.Construction and Building Materials,vol.84,pp.184–191.

    White,H.(1990):Connectionist nonparametric regression:Multilayer feedforward networks can learn arbitrary mappings.Neural Networks,vol.3,pp.535–549.

    Yan,Y.;Ren,Q.;Xia,N.;Shen,L.;Gu,J.(2015):Artificial neural network approach to predict the fracture parameters of the size effect model for concrete.Fatigue&Fracture of Engineering Materials&Structures,DOI:10.1111/ffe.12309.

    1Department of Civil Engineering,Shaoxing University,Shaoxing,312000,P.R.China

    2Corresponding author.E-mail:dushigui@126.com;Tel:+86-575-88326229;Fax:+86-575-88341503

    真人做人爱边吃奶动态| 色精品久久人妻99蜜桃| 大型黄色视频在线免费观看| 免费在线观看亚洲国产| a在线观看视频网站| 国产一区二区三区视频了| 十分钟在线观看高清视频www| 日韩欧美一区视频在线观看| 夜夜躁狠狠躁天天躁| 露出奶头的视频| 香蕉久久夜色| av福利片在线| 91麻豆精品激情在线观看国产 | 久久精品国产清高在天天线| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 一个人免费在线观看的高清视频| 免费一级毛片在线播放高清视频 | xxxhd国产人妻xxx| 亚洲精品中文字幕一二三四区| 日韩精品青青久久久久久| 一区二区三区国产精品乱码| 午夜精品久久久久久毛片777| 女性生殖器流出的白浆| 纯流量卡能插随身wifi吗| 最新美女视频免费是黄的| 最近最新免费中文字幕在线| 丁香欧美五月| a级毛片黄视频| 欧美中文日本在线观看视频| 狠狠狠狠99中文字幕| 黄色女人牲交| 一二三四在线观看免费中文在| 91麻豆av在线| 18美女黄网站色大片免费观看| 国产精品一区二区三区四区久久 | av免费在线观看网站| 在线播放国产精品三级| 久久性视频一级片| 99精品欧美一区二区三区四区| 午夜激情av网站| 熟女少妇亚洲综合色aaa.| 亚洲人成77777在线视频| 国产深夜福利视频在线观看| 9色porny在线观看| 电影成人av| 精品一区二区三卡| 国产精品电影一区二区三区| 亚洲人成电影观看| 亚洲片人在线观看| 国产成人精品久久二区二区免费| 99在线视频只有这里精品首页| 欧美黑人精品巨大| 欧美日韩瑟瑟在线播放| 亚洲欧美激情综合另类| av有码第一页| 久久人人97超碰香蕉20202| 日日夜夜操网爽| 午夜精品久久久久久毛片777| 99热只有精品国产| 亚洲精品成人av观看孕妇| 欧美另类亚洲清纯唯美| 国产精品av久久久久免费| av天堂在线播放| 国产aⅴ精品一区二区三区波| 性少妇av在线| 中国美女看黄片| 欧美精品亚洲一区二区| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 亚洲男人的天堂狠狠| 巨乳人妻的诱惑在线观看| 亚洲激情在线av| 久久精品91无色码中文字幕| 国产片内射在线| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 午夜视频精品福利| 黄片大片在线免费观看| 亚洲欧美激情在线| 中亚洲国语对白在线视频| 国产午夜精品久久久久久| ponron亚洲| 最近最新中文字幕大全电影3 | 国产精品日韩av在线免费观看 | 精品国产国语对白av| 国产成人欧美在线观看| 电影成人av| 90打野战视频偷拍视频| 99re在线观看精品视频| 久久久久久免费高清国产稀缺| 一本大道久久a久久精品| 久久影院123| 国产97色在线日韩免费| 久久精品亚洲av国产电影网| 男女之事视频高清在线观看| 成年人免费黄色播放视频| 男女下面进入的视频免费午夜 | 天天躁夜夜躁狠狠躁躁| 亚洲一区中文字幕在线| 国产成人免费无遮挡视频| 色尼玛亚洲综合影院| 很黄的视频免费| 超色免费av| 男女之事视频高清在线观看| www.999成人在线观看| avwww免费| 日韩精品青青久久久久久| 黄色成人免费大全| 国产亚洲精品综合一区在线观看 | 啪啪无遮挡十八禁网站| 91精品三级在线观看| 欧美日本亚洲视频在线播放| 日本黄色视频三级网站网址| 在线十欧美十亚洲十日本专区| 国产成人免费无遮挡视频| 男女高潮啪啪啪动态图| 性欧美人与动物交配| 国产极品粉嫩免费观看在线| 亚洲一区二区三区欧美精品| 久久中文字幕一级| 国产精品二区激情视频| 色在线成人网| 亚洲成人久久性| 国产亚洲精品综合一区在线观看 | 一级a爱片免费观看的视频| 9热在线视频观看99| 亚洲情色 制服丝袜| 精品欧美一区二区三区在线| 91国产中文字幕| 男女下面插进去视频免费观看| 亚洲第一青青草原| 久久久国产欧美日韩av| 夜夜看夜夜爽夜夜摸 | 精品久久久精品久久久| 国产日韩一区二区三区精品不卡| 两人在一起打扑克的视频| 亚洲人成电影观看| 色精品久久人妻99蜜桃| 五月开心婷婷网| 精品国产一区二区三区四区第35| 超碰97精品在线观看| 国产精品乱码一区二三区的特点 | 国产亚洲欧美在线一区二区| 日韩成人在线观看一区二区三区| 欧美精品亚洲一区二区| 午夜91福利影院| 在线观看免费视频网站a站| 免费在线观看视频国产中文字幕亚洲| 一级毛片女人18水好多| 午夜久久久在线观看| 免费在线观看亚洲国产| 日韩大码丰满熟妇| 中文字幕人妻丝袜一区二区| 无遮挡黄片免费观看| 天堂俺去俺来也www色官网| 9热在线视频观看99| 热99国产精品久久久久久7| 又黄又爽又免费观看的视频| 精品一区二区三区视频在线观看免费 | 久久精品国产亚洲av高清一级| 天堂动漫精品| 欧美黄色片欧美黄色片| 黄片小视频在线播放| 国产精品久久久人人做人人爽| 最好的美女福利视频网| 男女午夜视频在线观看| 日韩欧美国产一区二区入口| 好看av亚洲va欧美ⅴa在| 真人做人爱边吃奶动态| 一级毛片高清免费大全| 亚洲av片天天在线观看| 国产亚洲精品综合一区在线观看 | 免费人成视频x8x8入口观看| 亚洲av日韩精品久久久久久密| 久久精品国产清高在天天线| 亚洲成人免费av在线播放| 黑人巨大精品欧美一区二区蜜桃| 麻豆久久精品国产亚洲av | 亚洲成av片中文字幕在线观看| 日韩欧美一区二区三区在线观看| 一a级毛片在线观看| 在线观看免费视频网站a站| 国产成人系列免费观看| 精品久久久久久,| 乱人伦中国视频| 12—13女人毛片做爰片一| 亚洲成人久久性| 午夜精品国产一区二区电影| 欧美日韩亚洲高清精品| 每晚都被弄得嗷嗷叫到高潮| 国产99白浆流出| 亚洲精品国产区一区二| 国产一区二区三区视频了| 身体一侧抽搐| 黄色 视频免费看| 亚洲成人免费电影在线观看| 欧美精品亚洲一区二区| 国产亚洲精品久久久久久毛片| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一出视频| 色婷婷久久久亚洲欧美| 亚洲色图av天堂| 曰老女人黄片| 老熟妇乱子伦视频在线观看| 欧美不卡视频在线免费观看 | 99香蕉大伊视频| 中文欧美无线码| 黄片大片在线免费观看| 亚洲七黄色美女视频| 欧美日韩乱码在线| 狠狠狠狠99中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 成在线人永久免费视频| 亚洲精品国产精品久久久不卡| 国产一区二区三区综合在线观看| 精品一品国产午夜福利视频| 国产男靠女视频免费网站| 每晚都被弄得嗷嗷叫到高潮| 激情在线观看视频在线高清| 女性被躁到高潮视频| 国产精品自产拍在线观看55亚洲| 免费在线观看完整版高清| 欧美午夜高清在线| 1024香蕉在线观看| 免费在线观看完整版高清| 成年人免费黄色播放视频| 91成年电影在线观看| 性色av乱码一区二区三区2| 亚洲aⅴ乱码一区二区在线播放 | 在线天堂中文资源库| 黑丝袜美女国产一区| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频| 午夜久久久在线观看| 国产精品一区二区在线不卡| 国产成人av激情在线播放| 国产精品 欧美亚洲| 狂野欧美激情性xxxx| 国产av一区在线观看免费| 亚洲第一欧美日韩一区二区三区| av福利片在线| 一区二区三区精品91| 色精品久久人妻99蜜桃| tocl精华| 免费在线观看亚洲国产| 欧美中文综合在线视频| 欧美最黄视频在线播放免费 | 国产精品99久久99久久久不卡| 黄网站色视频无遮挡免费观看| 日韩免费av在线播放| 欧美日本亚洲视频在线播放| 免费av毛片视频| 国产三级黄色录像| 久久久久久久午夜电影 | 午夜福利欧美成人| 久久久久久久精品吃奶| 亚洲欧美激情综合另类| 波多野结衣高清无吗| 亚洲精品在线美女| 超碰97精品在线观看| 99久久人妻综合| 亚洲自拍偷在线| 免费av毛片视频| 一二三四社区在线视频社区8| 色综合站精品国产| 男女下面插进去视频免费观看| 中国美女看黄片| 一级作爱视频免费观看| 亚洲免费av在线视频| svipshipincom国产片| 50天的宝宝边吃奶边哭怎么回事| 成人精品一区二区免费| 老司机在亚洲福利影院| 麻豆久久精品国产亚洲av | 视频在线观看一区二区三区| 成年人黄色毛片网站| 免费不卡黄色视频| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩高清在线视频| 在线国产一区二区在线| 欧美不卡视频在线免费观看 | 窝窝影院91人妻| 日日夜夜操网爽| 色老头精品视频在线观看| 999精品在线视频| 婷婷精品国产亚洲av在线| 亚洲成av片中文字幕在线观看| 久久中文字幕人妻熟女| 18禁裸乳无遮挡免费网站照片 | 可以免费在线观看a视频的电影网站| 伦理电影免费视频| 无限看片的www在线观看| 亚洲精品在线美女| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| 在线观看午夜福利视频| 成人国语在线视频| 黄色a级毛片大全视频| 国产伦一二天堂av在线观看| 亚洲精品国产区一区二| 国产真人三级小视频在线观看| 十八禁网站免费在线| 亚洲av第一区精品v没综合| 国产欧美日韩一区二区精品| 91麻豆av在线| 亚洲精品av麻豆狂野| 又紧又爽又黄一区二区| 亚洲自拍偷在线| 亚洲精品国产精品久久久不卡| 亚洲精华国产精华精| 久久久国产成人精品二区 | 在线观看一区二区三区| 91成年电影在线观看| 午夜精品在线福利| 亚洲精品国产一区二区精华液| 大码成人一级视频| 脱女人内裤的视频| 国产精品99久久99久久久不卡| 久久欧美精品欧美久久欧美| 国产欧美日韩精品亚洲av| 人成视频在线观看免费观看| 69精品国产乱码久久久| 国产av一区在线观看免费| 午夜成年电影在线免费观看| 美女福利国产在线| 丝袜在线中文字幕| 91麻豆精品激情在线观看国产 | 真人做人爱边吃奶动态| 亚洲精品国产区一区二| 99在线人妻在线中文字幕| 精品熟女少妇八av免费久了| www.熟女人妻精品国产| 激情在线观看视频在线高清| 精品久久久久久,| 亚洲av电影在线进入| 黄色片一级片一级黄色片| 久久热在线av| 亚洲精品成人av观看孕妇| 国产不卡一卡二| 免费观看人在逋| 亚洲成a人片在线一区二区| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 亚洲精品一二三| 1024视频免费在线观看| 熟女少妇亚洲综合色aaa.| 一本大道久久a久久精品| 日韩欧美国产一区二区入口| 久久久久久久午夜电影 | 一区二区三区激情视频| 在线观看免费视频网站a站| 香蕉丝袜av| 精品久久久久久电影网| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av | 欧美黄色淫秽网站| 真人做人爱边吃奶动态| 久久精品91蜜桃| 国产91精品成人一区二区三区| 大型av网站在线播放| 免费在线观看亚洲国产| 国产成人免费无遮挡视频| 色哟哟哟哟哟哟| 午夜福利,免费看| 丝袜人妻中文字幕| 久久久久精品国产欧美久久久| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影 | 中亚洲国语对白在线视频| www国产在线视频色| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 91精品三级在线观看| 国产成人影院久久av| 级片在线观看| 曰老女人黄片| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 青草久久国产| 法律面前人人平等表现在哪些方面| 欧美人与性动交α欧美软件| 亚洲精品在线观看二区| 久久中文字幕人妻熟女| 日本vs欧美在线观看视频| 热re99久久国产66热| 精品电影一区二区在线| 深夜精品福利| 中国美女看黄片| 亚洲成国产人片在线观看| 一级毛片高清免费大全| 国产成人欧美| 欧美日本中文国产一区发布| 久久性视频一级片| 91大片在线观看| 久热爱精品视频在线9| 亚洲精品一区av在线观看| 一个人免费在线观看的高清视频| 超色免费av| 免费av中文字幕在线| 久久精品国产综合久久久| 老汉色∧v一级毛片| 精品乱码久久久久久99久播| 国产黄色免费在线视频| 伦理电影免费视频| 欧美精品啪啪一区二区三区| 无遮挡黄片免费观看| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 精品高清国产在线一区| av中文乱码字幕在线| 丝袜美腿诱惑在线| e午夜精品久久久久久久| 男男h啪啪无遮挡| 国产精品影院久久| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 亚洲av五月六月丁香网| 一区二区日韩欧美中文字幕| 亚洲五月天丁香| 久久人妻av系列| 亚洲熟女毛片儿| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 成人三级黄色视频| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 久久香蕉精品热| 天堂√8在线中文| 精品无人区乱码1区二区| 欧美日韩瑟瑟在线播放| 午夜福利一区二区在线看| 欧美乱妇无乱码| 看黄色毛片网站| 亚洲欧美日韩无卡精品| 18禁美女被吸乳视频| 十分钟在线观看高清视频www| 一二三四在线观看免费中文在| 日韩欧美三级三区| 国产一区二区三区在线臀色熟女 | 制服诱惑二区| www日本在线高清视频| 国产三级在线视频| 精品免费久久久久久久清纯| av天堂久久9| 亚洲全国av大片| 久久人妻熟女aⅴ| 国产av一区在线观看免费| 身体一侧抽搐| 中文字幕人妻丝袜制服| 级片在线观看| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久男人| 成人影院久久| 国产精品影院久久| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 人人妻,人人澡人人爽秒播| 人成视频在线观看免费观看| 人人澡人人妻人| 91成人精品电影| 久久久久国内视频| 亚洲午夜理论影院| 免费av毛片视频| 国产麻豆69| 欧美精品亚洲一区二区| 成人免费观看视频高清| 久久久国产一区二区| 欧美日韩黄片免| 中文字幕人妻丝袜制服| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| 又大又爽又粗| 男男h啪啪无遮挡| 午夜福利欧美成人| 制服诱惑二区| 欧美人与性动交α欧美软件| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| 亚洲专区国产一区二区| 亚洲av电影在线进入| 91大片在线观看| 国产真人三级小视频在线观看| 青草久久国产| 又黄又粗又硬又大视频| 深夜精品福利| 亚洲成国产人片在线观看| 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 亚洲片人在线观看| 热99re8久久精品国产| 欧美日韩av久久| 国产成人精品在线电影| 91大片在线观看| 精品久久久久久,| 波多野结衣一区麻豆| 不卡av一区二区三区| 99在线人妻在线中文字幕| 日韩欧美在线二视频| 波多野结衣高清无吗| 亚洲五月婷婷丁香| 色婷婷久久久亚洲欧美| videosex国产| 久久国产精品人妻蜜桃| 美女大奶头视频| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区mp4| 久久人妻福利社区极品人妻图片| 黄色怎么调成土黄色| avwww免费| 97超级碰碰碰精品色视频在线观看| 欧美成人午夜精品| 18禁美女被吸乳视频| 亚洲精品av麻豆狂野| 精品国产美女av久久久久小说| 欧美丝袜亚洲另类 | 精品卡一卡二卡四卡免费| 欧美老熟妇乱子伦牲交| 欧美一级毛片孕妇| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 国产精品野战在线观看 | 亚洲第一欧美日韩一区二区三区| 欧美亚洲日本最大视频资源| а√天堂www在线а√下载| 丝袜人妻中文字幕| 操美女的视频在线观看| 制服诱惑二区| 久9热在线精品视频| 美女 人体艺术 gogo| 欧美中文综合在线视频| 国产av一区在线观看免费| 亚洲 国产 在线| 大型av网站在线播放| 午夜福利影视在线免费观看| 久久久久久大精品| 高潮久久久久久久久久久不卡| 日本 av在线| av网站在线播放免费| 女人高潮潮喷娇喘18禁视频| tocl精华| 又紧又爽又黄一区二区| 交换朋友夫妻互换小说| 国产精品乱码一区二三区的特点 | 在线天堂中文资源库| 久久热在线av| 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面| 天天影视国产精品| 首页视频小说图片口味搜索| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费 | av欧美777| 熟女少妇亚洲综合色aaa.| 久久国产精品男人的天堂亚洲| 欧美黄色淫秽网站| 99国产极品粉嫩在线观看| 国产极品粉嫩免费观看在线| 超碰97精品在线观看| 嫁个100分男人电影在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲黑人精品在线| 日韩精品中文字幕看吧| 久久人妻熟女aⅴ| av电影中文网址| 窝窝影院91人妻| 在线免费观看的www视频| 国产片内射在线| 丰满的人妻完整版| 国产精品永久免费网站| 一a级毛片在线观看| 高清av免费在线| 99re在线观看精品视频| 狂野欧美激情性xxxx| 亚洲国产精品sss在线观看 | 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 啦啦啦免费观看视频1| 老司机午夜福利在线观看视频| 一级a爱片免费观看的视频| 久久草成人影院| 一a级毛片在线观看| www.精华液| 国产高清激情床上av| 黑人猛操日本美女一级片| 午夜免费观看网址| 黑人欧美特级aaaaaa片| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| 亚洲成av片中文字幕在线观看| 久久人妻av系列| 亚洲熟妇中文字幕五十中出 | 久久精品aⅴ一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| 成人18禁在线播放| 久久精品国产清高在天天线| 久久热在线av| 99国产精品免费福利视频| 国产精品电影一区二区三区| 国产一区二区激情短视频| 男男h啪啪无遮挡| 国产精品爽爽va在线观看网站 | 国产深夜福利视频在线观看| 久久这里只有精品19| 亚洲成人久久性| 精品国产一区二区久久|