• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    2015-12-13 01:54:26YangDu
    Computers Materials&Continua 2015年9期

    Q.W.Yang,S.G.Du,2

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    Q.W.Yang1,S.G.Du1,2

    Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions.In this study,size effect on concrete cubic compressive strength is modeled with a back-propagation neural network.The main advantage in using an artificial neural network(ANN)technique is that the network is built directly from experimental data without any simplifying assumptions via the self-organizing capabilities of the neural network.The proposed ANN model is verified by using 27 experimental data sets collected from the literature.For the large specimens,a modified ANN is developed in the paper to further improve the forecast accuracy.The results demonstrate that the ANN-based size effect model has a strong potential to predict the cubic compressive strength of concrete.

    concrete;size effect;compressive strength;artificial neural network back-propagation.

    1 Introduction

    The size effect is a problem of scaling,which is central to every physical theory[Bazant(1999);Hoover and Bazant(2013);Chiroiu,Munteanu,and Delsanto(2010);Mustapha(2014)].The size effect in solid mechanics is understood as the effect of the characteristic structure size(dimension)on the nominal strength of structure when geometrically similar structures are compared.Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions.Kani(1967)was one of the first to demonstrate the size effect in concrete structures.It has been shown that the shear strength of similar concrete beams decreases with increasing beam depth.Manic,Taric,Serif i,and Ristovski(2015)analyzes research on the formula proposed by Bazant,where the existence of size effect is shown.Alam,Kotronis,Loukili(2013)present the experimental and numerical investigations on the influence of size effect on crack opening,crack length and crack propagation.An isotropic non-local strain softening damage model is adopted for the numerical model.Sinaie,Heidarpour,Zhao,and Sanjayan(2015)carry out an experimental program to investigate the relation between size and the cyclic response of cylindrical concrete samples.The results show that diameter and the aspect ratio of the sample have the most influence on the reloading strength and reloading tangent of the cyclic response.Mahmud,Yang,and Hassan(2013)investigate the size effects on flexural strength of similar notched ultra high performance steel fibre reinforced concrete(UHPFRC)beams under three-point bending tests.Both numerical and experimental studies have showed that the size effect on the nominal flexural strength of these beams up to 150mm depth is very little.Kalfat and Mahaidi(2014)present the first comprehensive experimental program into the size effect fiber reinforced polymer patch anchors.A series of uniaxial tension experiments has been conducted by van Vliet and van Mier(2000)to investigate the size effect on strength and fracture energy of concrete and sandstone.Depending on the material and the curing conditions a stronger or weaker size effect on the nominal strength occurred in the tests.The observed size effect has to be attributed to a combination of statistical size effect and strain gradients in the cross section of the specimens,which were caused by the specimen shape,load eccentricity and material inhomogeneity.Syroka-Korol and Tejchman(2014)carried out the laboratory tests on concrete beams with longitudinal bars and without shear reinforcement.A pronounced size effect was measured in these concrete beams.Ray and Kishen(2011)proposed an analytical model for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis.It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results.Through a sensitivity analysis,it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation.Ashour and Kara(2014)present test results of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer(CFRP)bars and without vertical shear reinforcement.A simplified,empirical equation accounting for size effect as well as all other shear design parameters was developed in their work based on the well-known design-by-testing approach.Karihaloo,Abdalla,and Xiao(2003)carry out an experimental investigation into the size effect in the strength of hardened cement paste(nominal compressive strength 40 MPa)and high strength concrete(nominal compressive strength 110 MPa)as measured in three point bending.Improvements to Karihaloo’s size effect formula have been proposed in this study.Belgin and?Sener(2008)present the results of full-scale failure of singly reinforced four-point-bend beams of different sizes containing deformed longitudinal reinforcing bars.The results revealed the existence of a significant size effect,which can approximately be described by the size effect law previously proposed by Bazant.The size effect is found to be stronger in two-dimensional similarities than for one and three-dimensional similarities.N-guyen,Kim,Ryu,and Koh(2013)study the size effect on the flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete(UHPHFRC).Both UHPHFRCs demonstrated clear size effect on flexural strength,normalized deflection,and normalized energy absorption capacity.Furthermore,the flexural behavior of UHP-HFRC1,with its lower tensile ductility,was more sensitive to the size of the specimen.In order to investigate the size effect of concrete cubic compressive strength,Su and Fang(2014)performed a series of compression tests on 135groups of cubic specimens with three different strength grades and three different aggregate mixtures.Test and analysis results show that the strength grade influences the size effect of concrete cubic compressive strength greatly.

    The size effect in concrete is a result influenced by multi-factors,such as water/cement ratio,cement content,water content,sand ratio,maximum aggregate size,aggregate type,and other mix design parameters.According to the existing experiments,we can deduce several functions which can describe the size effect in concrete as shown in the above literatures.However,considering that the factors are too complex to be modeled and solved by classical mathematic and traditional processes,artificial neural network(ANN)may be a promising tool to accurately describe the size effect in concrete.The main benefit of an ANN-based method is that the ANN is built directly from the experimental test data without any simplifying assumptions.This paper thoroughly investigates to evaluate whether ANN can be used to forecast the size effect of concrete cubic compressive strength correctly.The ANN model is constructed,trained and tested using 27 available sets of experimental data obtained from the reference of Su and Fang(2014).The data used in ANN model are arranged in a format of seven input parameters that cover the cement(C),silica fume(SF),fine aggregate(FA),coarse aggregate(CA),water(W),superplasticizer(SP),and side length of specimen(L).The ANN model,which performs in Matlab,predicts the cubic compressive strength of the concrete.It will be shown that the ANN-based size effect model on concrete cubic compressive strength is reliable and very promising.

    2 ANN-based size effect model

    2.1 Background for ANN

    ANN is a mathematical or computational model that tries to simulate the structure or functional aspects of biological neural networks.The first advantage of ANN is its capability of learning directly from examples,i.e.the relationships between input and output variables are generated by the data themselves.The other ad-vantages of ANN are its accurate response to incomplete tasks,its extraction of information from noisy or poor data,and its production of generalized results from the new examples[Arslan and Ince(1996)].Due to the above features,ANN has successfully been used in many engineering problems over the last two decades.Ince(2004)presented a fracture model based on ANN to predict fracture parameters of cementitious materials.It has been shown that the fracture model based on ANN predictions is more reliable than the Two-Parameter model based on regression analysis.?zta?s,Pala,?zbay,Kanca,,and Bhatti(2006)used a back-propagation neural network to predict the compressive strength and slump of high strength concrete.The results showed that ANN has strong potential as a feasible tool for predicting compressive strength and slump values.Li and Yang(2008)developed a method of damage identification for beam using artificial neural network based on statistical properties of structural dynamic responses.Mehrjoo,Khaji,Moharrami,and Bahreininejad(2008)proposed a method for estimating the damage intensities of joints for truss bridge structures using a back-propagation neural network.Duan,Kou,and Poon(2013)employed an artificial neural network to predict the compressive strength of recycled aggregate concrete.Yan,Ren,Xia,Shen,and Gu(2015)developed two models to predict the two fracture parameters in the scale effect model of concrete using the artificial neural network methodology.Wang,Man,and Jin(2015)developed the artificial neural network for predicting the free expansion strain of self-stressing concrete under wet curing conditions.

    Among various ANN models,the most fundamental and widely used architecture is the back-propagation neural network,which will be used in this study.As shown in Figure 1,a typical structure of the back-propagation neural network consists of an input layer,one or more hidden layers and an output layer,and each layer consists of numerous neurons.The ANN-based modeling process involves four main aspects[Duan,Kou,and Poon(2013);Yan,Ren,Xia,Shen,and Gu(2015)]:(1)data acquisition,analysis and problem representation;(2)architecture determination;(3)training of the network;and(4)validation and test of the trained network for generalization evaluation.The training process of ANN is divided into two phases.In the first phase(feed-forward),the input layer neurons pass the input pattern values onto the hidden layer.Subsequently each of the hidden layer neurons computes a weighted sum of its input,and passes the sum through its activation function and gives the activation value to the output layer.Following the computation of a weighted sum of each neuron in the output layer,the sum is passed through its activation function,resulting in one of the output values for the network.In the second stage(back-propagation),the error between actual output and target output can be calculated layer by layer in recursion and the weights are accordingly adjusted until the expectant output is obtained in the out layer.More details on construction of ANN can be found in the references[Grossberg(1988);Hornik,Stinchcombe,and White(1989);Hornik(1991);Hornik,Stinchcombe,and White(1990);Gallant and White(1992);Oishi and Yoshimura(2007);Kerh,Lai,Gunaratnam,and Saunders(2008)].

    Figure 1:The architecture of the ANN model

    2.2 Input and Output of the ANN

    In this research,the size effect of concrete cubic compressive strength was predicted using the ANN model.Table 1 presents the experimental data taken from the existing size effect tests in the reference of Su and Fang(2014).In this experimental study,the overall dimensions of the specimens tested are as follows:100×100×100,150×150×150,and 200×200×200mm.From table 1,the seven parameters,i.e.,cement(C),silica fume(SF),fine aggregate(FA),coarse aggregate(CA),water(W),superplasticizer(SP),and side length of specimen(L),are chosen as the input variables for ANN.Whereas the statistical average value of 28day compressive strength(fcu)is chosen as the output variable of ANN.

    2.3 Construction of the ANN

    A back-propagation ANN architecture was employed in this study.As described in section 2.2,the ANN model used in this study has seven neurons(variables)in the input layer(ni=7)and one neuron in the output layer(no=1).So far as know,there are no reasonable theory for determining the optimum number of hidden layers and the optimum number of neurons in each hidden layer.In this research,a single hidden layer is used in the ANN,since many investigations[Arslan and Ince(1996);Ince(2004);?zta?s,Pala,?zbay,Kanca,,and Bhatti(2006);Li and Yang(2008);Mehrjoo,Khaji,Moharrami,and Bahreininejad(2008)]have showed that ANN with one hidden layer is sufficient to simulate most of engineering problems.As for the number of neurons in the hidden layer,too few neurons will not

    allow the network to produce accurate maps from the input to the desired output,while too many neurons will result in difficulties dealing with new types of input patterns.In practice,the neuron number range of a hidden layer can be calculated by the following equation[Yan,Ren,Xia,Shen,and Gu(2015);Wang,Man,and Jin(2015)]:

    Table 1:The experimental data taken from reference Su and Fang(2014)for ANN

    where nh,niand noare the neuron number of hidden,input and output layers,respectively,and a is a fixed value ranging from 0 to 10.According to equation(1),the number of hidden layer neurons in this research can be between 3 and 13.In this research,the optimum number of neurons in the unique hidden layer is set to 11(nh=11).The following discussion will show that when more neurons in the hidden layer are used,the network would not converge.If the network was smaller,it would not converge either.

    2.4 Training and testing of the ANN

    As stated before,back-propagation training algorithm is used in this ANN model.The program of the ANN model is developed and performed under MATLAB.Training and testing data of this model came from experimental results as shown in Table 1.To test the generalization ability of the ANN model,we select 9 samples with the same size as the test set,while the remaining 18 samples are used to train the network.Thus the three cases will be studied in the following.

    2.4.1 Case 1:the samples with the side length of 150mm are used as the test set.Case 1 is used to show the performance of the ANN when the test sample size ranges from the minimum size to the maximum size of the training samples.Table 2 shows the R-square results of ANN training and testing data when the neuron number of the hidden layer varies from 3 to 13.One can see from table 2 that the R-square values are both the largest when the neuron number of the hidden layer is 11 for the training and testing sets.Therefore,the neuron number of the unique hidden layer is set to 11 in this research(nh=11).As shown in figure 2,the training phase of the ANN for case 1 took 6 epochs using the given data.Figures 3 and 4 present all the experimental data,as well as the training and testing results obtained from the ANN model.The linear optimized fitted straight together with its function and the R value is shown in these figures.In addition,the mean of squared error(MSE)between the predicted value and the experimental value is also given in the title of the figure.Table 3 presents the comparison of experimental compressive strength with ANN predicted compressive strength for the testing set.From these results,one can see that the compressive strength values predicted by the ANN model are very closer to the experimental values.It has been shown that the proposed ANN model is very accurate for predicting the compressive strength of those samples whose sizes range from the minimum size to the maximum size of the training samples.

    Figure 2:Variations of overall error against number of iterations for Case 1

    Figure 3:Performance of training set for Case 1(MSE=4.0629×10-22)

    Figure 4:Performance of testing set for Case 1(MSE=0.1733)

    Table 2:The R-square values for case 1 when the neuron number of the unique hidden layer changes

    2.4.2 Case 2:the samples with the side length of 200mm are used as the test set.

    Case 2 is used to show the performance of the ANN when the test sample size is greater than the maximum size of the training samples.As shown in figure 5,the training phase of the ANN for case 2 took 7 epochs using the given data.Figures 6 and 7 give the results for case 2 by using the ANN model.Obviously,the results show better fit in the training set than in the testing set.Table 4 presents the comparison of experimental values with ANN predicted values for the compressivestrength of testing set.Compared with the results in case 1,the prediction accuracy of the ANN for case 2 decreases.It has been shown that the generalization ability of the ANN will weaken when the test sample size is greater than the maximum size of the training samples.

    Table 3:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 1)

    Figure 5:Variations of overall error against number of iterations for Case 2

    2.4.3 Case 3:the samples with the side length of 100mm are used as the test set.

    Figure 6:Performance of training set for Case 2(MSE=6.5914×10-29)

    Figure 7:Performance of testing set for Case 2(MSE=3.4525)

    Case 3 is used to show the performance of the ANN when the test sample size is less than the minimum size of the training samples.Figures 8–10 present the training phase of the ANN and the results predicted by ANN.Table 5 presents the comparison of experimental values with ANN predicted values for this case.From these results,one can see that the generalization ability of the ANN also weakened when the test sample size is less than the minimum size of the training samples.

    Table 4:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 2)

    Figure 8:Variations of overall error against number of iterations for Case 3

    2.5 Improvement of the ANN-base size effect model

    As stated previously,the ANN is very accurate in predicting the compressive strength of the sample whose size ranges from the minimum size to the maximum size of the training samples,but not enough accurate for the other sample whose size is out of range.However,it is the most important to predict the size effect for scale ranges which can not be tested under laboratory conditions,especially for the sample whose size is far greater than the maximum size of the training samples.In view of this,a modified ANN is developed in this section to improve the forecast accuracy for the large specimens.According to the existing theories,the size effect in concrete will significantly decline with an increase in the specimen size.Using this principle,the original ANN model in case 2 can be improved to obtain more accurate predicted values of the compressive strength for the samples with the side length of 200mm.The modifications of ANN include the following respects.First,in addition to all the 100×100×100 and 150×150×150 specimens,nine suppositional oversized specimens as shown in table 6 with the side length of 1400mm are added to the training set in the modified ANN.Second,the change rate(CR)of the compressive strength is used as the new output variable in the modified ANN,which is defined as the following equation:

    Figure 9:Performance of training set for Case 3(MSE=1.4796×10-28)

    Figure 10:Performance of testing set for Case 3(MSE=7.3963)

    Table 5:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 3)

    Table 6:The nine suppositional oversized specimens

    Figure 11:Variations of overall error against number of iterations for Case 2 using the modified ANN

    Figure 12:Performance of training set for Case 2 using the modified ANN(MSE=1.1954×10-27)

    where CRLis the change rate of the compressive strength for the L×L×L specimen,fcu,Lis the cubic compressive strength of the sample with the side length of L(mm),and fcu,L-50is the cubic compressive strength of the sample with the side length of(L-50).For the 100×100×100 specimens,the fcu,50used in the calculation of CR100is obtained by the original ANN model.For the suppositional oversized specimens,the CR1400can be set to 0 because that the size effect can be ignored for these oversized specimens.Figures 11–13 present the training phase of the modified ANN and the results predicted by the modified ANN.From figure 11,the training phase of the modified ANN for case 2 took 50 epochs using the given data.Table 7 and figure 14 give the comparisons of the experimental values and the predicted ones by using the original ANN and modified ANN for these 200×200×200 specimens.One can see that the predicted values obtained by the modified ANN have less error compared with the results obtained by the original ANN.In other words,the modified ANN is more accurate than the original ANN in predicting the compressive strength of the large concrete specimen.

    Figure 13:Performance of testing set for Case 2 using the modified ANN(MSE=1.7069)

    Table 7:Comparison of experimental values with predicted results obtained by the original and modified ANN models(Case 2)

    Figure 14:Comparison of the relative errors between the predicted values and experimental values by the original and modified ANN models(Case 2)

    3 Conclusion

    In this study,the ANN-based size effect model is assessed to see whether it can be used to predict the cubic compressive strength of the concrete.From the investigation,it can be seen that:

    (1)The proposed ANN model is very accurate for predicting the compressive strength of those samples whose sizes range from the minimum size to the maximum size of the training samples.

    (2)The generalization ability of the ANN will weaken when the test sample size is greater than the maximum size of the training samples(or less than the minimum size of the training samples).

    (3)The modified ANN is more accurate than the original ANN in predicting the compressive strength of the large concrete specimen.

    In conclusion,the ANN-based size effect model has strong potential as a feasible tool for predicting the concrete cubic compressive strength in spite of some imperfections in the study of case 3.The inaccuracy in case 3 may be mainly due to a lack of enough experimental data.Therefore,the performance of ANN-based size effect model can still be improved if more experimental parameters can be considered.

    Acknowledgement:This work is supported by National Natural Science Foundation of China(41427802,11202138,41172292)and Zhejiang Province Natural Science Foundation(LZ13D020001).

    Alam,S.Y.;Kotronis,P.;Loukili,A.(2013):Crack propagation and size effect in concrete using a non-local damage model.Engineering Fracture Mechanics,vol.109,pp.246–261.

    Arslan,A.;Ince,R.(1996):The neural network approximation to the size effect in fracture of cementitious materials.Engineering Fracture Mechanics,vol.54,pp.249–261.

    Ashour,A.F.;Kara,I.F.(2014):Size effect on shear strength of FRP reinforced concrete beams.Composites Part B:Engineering,vol.60,pp.612–620.

    Bazant,Z.P.(1999): Size effect on structural strength:a review.Archive of Applied Mechanics,vol.69,pp.703–725.

    Belgin,?.M.;?Sener,S.(2008):Size effect on failure of overreinforced concrete beams.Engineering Fracture Mechanics,vol.75,pp.2308–2319.

    Chiroiu,V.;Munteanu,L.;Delsanto,P.P.(2010):Evaluation of the Toupin-Mindlin theory for predicting the size effects in the buckling of the carbon nanotubes.Computers,Materials&Continua,vol.16,pp.75.

    Duan,Z.H.;Kou,S.C.;Poon,C.S.(2013):Prediction of compressive strength of recycled aggregate concrete using artificial neural networks.Construction and Building Materials,vol.40,pp.1200–1206.

    Gallant,A.R.;White,H.(1992):On learning the derivatives of an unknown mapping with multilayer feedforward networks.Neural Networks,vol.5,pp.129–138.

    Grossberg S.(1988):Nonlinear neural networks:Principles,mechanisms,and architectures.Neural networks,vol.1,pp.17–61.

    Hoover,C.G.;Bazant,Z.P.(2013):Comprehensive concrete fracture tests:Size effects of Types 1&2,crack length effect and postpeak.Engineering Fracture Mechanics,vol.110,pp.281–289.

    Hornik,K.(1991): Approximation capabilities of multilayer feedforward networks.Neural Networks,vol.4,pp.251–257.

    Hornik,K.;Stinchcombe,M.;White,H.(1989):Multilayer feedforward networks are universal approximators.Neural Networks,vol.2,pp.359-366.

    Hornik,K.;Stinchcombe,M.;White,H.(1990):Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks.Neural Networks,vol.3,pp.551–560.

    Ince,R.(2004):Prediction of fracture parameters of concrete by artificial neural networks.Engineering Fracture Mechanics,vol.71,pp.2143–2159.

    Kalfat,R.;Mahaidi,R.A.(2014):Experimental investigation into the size effect of bidirectional fiber patch anchors in strengthening of concrete structures.Composite Structures,vol.112,pp.134–145.

    Kani,G.N.(1967):How safe are over large concrete beams?ACI J.Proc.,vol.64,pp.128–141.

    Karihaloo,B.L.;Abdalla,H.M.;Xiao,Q.Z.(2003):Size effect in concrete beams.Engineering Fracture Mechanics,vol.70,pp.979–993.

    Kerh,T.;Lai,J.S.;Gunaratnam,D.;Saunders,R.(2008):Evaluation of seismic design values in the Taiwan building code by using artificial neural network.Computer Modeling in Engineering and Sciences,vol.26,pp.1.

    Leshno,M.;Lin,V.Y.;Pinkus,A.;Schocken,S.(1993):Multilayer feedforward networks with a nonpolynomial activation function can approximate any function.Neural Networks,vol.6,pp.861–867.

    Li,Z.X.;Yang,X.M.(2008):Damage identification for beams using ANN based on statistical property of structural responses.Computers&structures,vol.86,pp.64–71.

    Mahmud,G.H.;Yang,Z.;Hassan,A.M.T.(2013):Experimental and numerical studies of size effects of ultra high performance steel fiber reinforced concrete beams.Construction and Building Materials,vol.48,pp.1027–1034.

    Manic N.;Taric M.;Serif iV.;Ristovski A.(2015):Analysis of the existence of size effect on different concrete types.Procedia Technology,vol.19,pp.379–386.

    Mehrjoo,M.;Khaji,N.;Moharrami,H.;Bahreininejad,A.(2008):Damage detection of truss bridge joints using Artificial Neural Networks.Expert Systems with Applications,vol.35,pp.1122–1131.

    Mustapha,K.B.(2014):Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels.Computers,Materials&Continua,vol.42,no.2,pp.141–174.

    Nguyen,D.L.;Kim,D.J.;Ryu,G.S.;Koh,K.T.(2013):Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete.Composites Part B:Engineering,vol.45,pp.1104–1116.

    Oishi,A.;Yoshimura,S.(2007): A new local contact search method using a multi-layer neural network.Computer Modeling in Engineering and Sciences,vol.21,pp.93.

    ?zta?s,A.;Pala,M.;?zbay,E.;Kanca,E.;,N.;Bhatti,M.A.(2006):Predicting the compressive strength and slump of high strength concrete using neural network.Construction and Building Materials,vol.20,pp.769–775.

    Ray,S.;Kishen,J.M.C.(2011):Fatigue crack propagation model and size effect in concrete using dimensional analysis.Mechanics of Materials,vol.43,pp.75–86.

    Sinaie,S.;Heidarpour,A.;Zhao,X.L.;Sanjayan,J.G.(2015):Effect of size on the response of cylindrical concrete samples under cyclic loading.Construction and Building Materials,vol.84,pp.399–408.

    Su,J.;Fang,Z.(2014): Experimental study on impact of aggregate mixture on dimensional effect of concrete cubic compressive strength.Journal of Building Structures,vol.35,pp.152–157.(in Chinese)

    Syroka-Korol,E.;Tejchman,J.(2014):Experimental investigations of size effect in reinforced concrete beams failing by shear.Engineering Structures,vol.58,pp.63–78.

    Van Vliet,M.R.A.;Van Mier,J.G.M.(2000):Experimental investigation of size effect in concrete and sandstone under uniaxial tension.Engineering Fracture Mechanics,vol.65,pp.165–188.

    Wang,B.;Man,T.;Jin,H.(2015):Prediction of expansion behavior of selfstressing concrete by artificial neural networks and fuzzy inference systems.Construction and Building Materials,vol.84,pp.184–191.

    White,H.(1990):Connectionist nonparametric regression:Multilayer feedforward networks can learn arbitrary mappings.Neural Networks,vol.3,pp.535–549.

    Yan,Y.;Ren,Q.;Xia,N.;Shen,L.;Gu,J.(2015):Artificial neural network approach to predict the fracture parameters of the size effect model for concrete.Fatigue&Fracture of Engineering Materials&Structures,DOI:10.1111/ffe.12309.

    1Department of Civil Engineering,Shaoxing University,Shaoxing,312000,P.R.China

    2Corresponding author.E-mail:dushigui@126.com;Tel:+86-575-88326229;Fax:+86-575-88341503

    精品福利观看| 久久久久久国产a免费观看| 国内毛片毛片毛片毛片毛片| 久久久久性生活片| a级一级毛片免费在线观看| 欧美激情久久久久久爽电影| 少妇丰满av| 久久久精品欧美日韩精品| 久久久久九九精品影院| 极品教师在线视频| 久久久久国产精品人妻aⅴ院| 亚洲 国产 在线| 国产精品一区二区三区四区久久| 午夜精品久久久久久毛片777| 乱码一卡2卡4卡精品| 日本五十路高清| ponron亚洲| 韩国av一区二区三区四区| 亚洲最大成人手机在线| 亚洲内射少妇av| 中文字幕av成人在线电影| 亚洲成人久久性| 亚洲av不卡在线观看| 两人在一起打扑克的视频| 日韩有码中文字幕| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲国产高清在线一区二区三| 最新中文字幕久久久久| 欧美成人性av电影在线观看| 精品久久久久久成人av| 99国产精品一区二区三区| 日本与韩国留学比较| 色综合站精品国产| 国产美女午夜福利| 搡老熟女国产l中国老女人| 精品人妻偷拍中文字幕| 亚洲无线在线观看| xxxwww97欧美| 老司机深夜福利视频在线观看| 午夜福利在线在线| 亚洲av第一区精品v没综合| 久久99热6这里只有精品| 日日摸夜夜添夜夜添小说| 亚洲成人久久性| 五月玫瑰六月丁香| 国产亚洲精品久久久com| 精品久久久久久久久久久久久| 成人国产综合亚洲| 日韩欧美一区二区三区在线观看| 十八禁人妻一区二区| 日本三级黄在线观看| 成人国产综合亚洲| 丰满人妻一区二区三区视频av| 日本 欧美在线| 久久精品国产亚洲av天美| 黄色一级大片看看| 日韩中字成人| 一区二区三区免费毛片| 十八禁国产超污无遮挡网站| 亚洲精品在线美女| 精品午夜福利在线看| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看 | 欧美黄色淫秽网站| 亚洲,欧美,日韩| 久久人人精品亚洲av| 露出奶头的视频| 国产麻豆成人av免费视频| 亚洲三级黄色毛片| 国产精品久久久久久亚洲av鲁大| 偷拍熟女少妇极品色| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 美女大奶头视频| 欧美成人性av电影在线观看| 国产综合懂色| 两个人的视频大全免费| 舔av片在线| 国产视频内射| 婷婷亚洲欧美| 在线免费观看的www视频| 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| av在线蜜桃| 亚洲av成人av| 久9热在线精品视频| 中文字幕久久专区| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 色综合欧美亚洲国产小说| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 久久性视频一级片| 午夜免费男女啪啪视频观看 | 日本黄大片高清| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 精品国内亚洲2022精品成人| 久久热精品热| av在线天堂中文字幕| 老司机午夜福利在线观看视频| 日本熟妇午夜| 国产精品,欧美在线| 99riav亚洲国产免费| 国产 一区 欧美 日韩| 日本成人三级电影网站| 成人av一区二区三区在线看| ponron亚洲| 欧美在线黄色| 国产成人福利小说| 1024手机看黄色片| 亚洲无线观看免费| 国产伦精品一区二区三区视频9| 夜夜爽天天搞| 脱女人内裤的视频| 亚洲专区中文字幕在线| 亚洲av一区综合| 色综合欧美亚洲国产小说| 亚洲专区国产一区二区| 国产一区二区激情短视频| 国产成人av教育| 国产午夜精品论理片| 亚洲精品日韩av片在线观看| 午夜福利在线观看吧| 国产 一区 欧美 日韩| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 中文字幕久久专区| 一级a爱片免费观看的视频| 成人午夜高清在线视频| 精品一区二区三区av网在线观看| 日本免费一区二区三区高清不卡| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| 久久香蕉精品热| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 成人特级黄色片久久久久久久| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 中文字幕av在线有码专区| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 国产成人aa在线观看| 午夜免费男女啪啪视频观看 | 亚洲三级黄色毛片| 亚洲 欧美 日韩 在线 免费| 我的女老师完整版在线观看| 日韩欧美精品免费久久 | 天堂√8在线中文| 亚洲欧美激情综合另类| 中文亚洲av片在线观看爽| 色哟哟·www| 成人鲁丝片一二三区免费| 欧美不卡视频在线免费观看| 少妇的逼好多水| 老司机午夜十八禁免费视频| 在线天堂最新版资源| 九色成人免费人妻av| 在线看三级毛片| 少妇熟女aⅴ在线视频| 国产精品一及| 桃色一区二区三区在线观看| 国产毛片a区久久久久| 亚洲av.av天堂| 99在线视频只有这里精品首页| 99久久99久久久精品蜜桃| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 久久这里只有精品中国| 国产日本99.免费观看| 在线十欧美十亚洲十日本专区| 他把我摸到了高潮在线观看| 欧美日韩福利视频一区二区| 黄色一级大片看看| 一二三四社区在线视频社区8| 老司机午夜十八禁免费视频| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 91狼人影院| 色噜噜av男人的天堂激情| 一边摸一边抽搐一进一小说| 91九色精品人成在线观看| 久久精品久久久久久噜噜老黄 | 99热这里只有是精品50| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 丁香六月欧美| 黄色女人牲交| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 亚洲自偷自拍三级| 色综合欧美亚洲国产小说| 不卡一级毛片| 91久久精品国产一区二区成人| 日本一本二区三区精品| 一级a爱片免费观看的视频| 国产精华一区二区三区| netflix在线观看网站| 在线观看一区二区三区| 一级作爱视频免费观看| 亚洲经典国产精华液单 | 国产伦在线观看视频一区| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 一本综合久久免费| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 久久久久国产精品人妻aⅴ院| 欧美精品国产亚洲| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 丰满乱子伦码专区| 精品一区二区三区av网在线观看| 我的老师免费观看完整版| 我要搜黄色片| 美女被艹到高潮喷水动态| 少妇丰满av| 精品人妻熟女av久视频| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 国产av一区在线观看免费| 大型黄色视频在线免费观看| www.www免费av| 中文字幕av在线有码专区| 久久99热这里只有精品18| 少妇人妻精品综合一区二区 | 最近中文字幕高清免费大全6 | 亚洲无线观看免费| 国产成年人精品一区二区| 最新在线观看一区二区三区| 色哟哟哟哟哟哟| 69人妻影院| 国内精品久久久久精免费| eeuss影院久久| 最近在线观看免费完整版| 国产精品一区二区三区四区免费观看 | 天天一区二区日本电影三级| 精品久久国产蜜桃| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 日本黄色片子视频| 91午夜精品亚洲一区二区三区 | 精品人妻一区二区三区麻豆 | 日韩欧美在线乱码| 日韩成人在线观看一区二区三区| 3wmmmm亚洲av在线观看| 色av中文字幕| h日本视频在线播放| 欧美午夜高清在线| 两个人视频免费观看高清| 欧美3d第一页| 一个人看视频在线观看www免费| 国内揄拍国产精品人妻在线| 久久午夜亚洲精品久久| 18+在线观看网站| 美女免费视频网站| 午夜福利视频1000在线观看| 赤兔流量卡办理| 美女免费视频网站| 在线观看午夜福利视频| 久久精品国产亚洲av天美| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 大型黄色视频在线免费观看| 天堂√8在线中文| 国产成人aa在线观看| 波多野结衣巨乳人妻| 精品人妻1区二区| 淫秽高清视频在线观看| 亚洲成人久久爱视频| 99热这里只有是精品50| 国产精品一区二区性色av| 精品午夜福利在线看| 熟女人妻精品中文字幕| 白带黄色成豆腐渣| 亚洲av熟女| 欧美日本视频| 亚洲狠狠婷婷综合久久图片| 观看免费一级毛片| 久久精品久久久久久噜噜老黄 | 精品99又大又爽又粗少妇毛片 | 亚洲熟妇熟女久久| 午夜久久久久精精品| 3wmmmm亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 午夜福利18| 久9热在线精品视频| 成人国产综合亚洲| 亚洲黑人精品在线| 免费观看精品视频网站| 亚洲三级黄色毛片| 在线天堂最新版资源| 欧美性猛交黑人性爽| 亚洲av不卡在线观看| 精品一区二区三区人妻视频| 国产一区二区亚洲精品在线观看| 国产美女午夜福利| 免费av不卡在线播放| 丰满人妻一区二区三区视频av| 十八禁人妻一区二区| 99国产精品一区二区三区| 国产蜜桃级精品一区二区三区| 国产精品美女特级片免费视频播放器| 亚洲色图av天堂| 床上黄色一级片| bbb黄色大片| 亚洲av成人精品一区久久| 亚洲精品成人久久久久久| a级毛片a级免费在线| 国产精品爽爽va在线观看网站| 久久久久国内视频| 欧美潮喷喷水| 搡老岳熟女国产| 女人十人毛片免费观看3o分钟| 看免费av毛片| 成人国产一区最新在线观看| 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 国产精品,欧美在线| 99热6这里只有精品| 久久久久久久久久成人| 91麻豆精品激情在线观看国产| 性插视频无遮挡在线免费观看| 亚洲第一电影网av| 全区人妻精品视频| 国产伦人伦偷精品视频| 中文字幕久久专区| 每晚都被弄得嗷嗷叫到高潮| 国产伦精品一区二区三区视频9| 日本a在线网址| 三级毛片av免费| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 国内精品久久久久精免费| 国产一区二区在线观看日韩| 亚洲av免费高清在线观看| 久久久久精品国产欧美久久久| 日韩免费av在线播放| 老鸭窝网址在线观看| 窝窝影院91人妻| 午夜影院日韩av| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 露出奶头的视频| 久久久久久久亚洲中文字幕 | 男女床上黄色一级片免费看| 久久精品国产99精品国产亚洲性色| 黄色一级大片看看| 亚洲熟妇熟女久久| 成人亚洲精品av一区二区| 国产精品亚洲一级av第二区| 国产高清视频在线观看网站| 国产欧美日韩一区二区精品| 欧美+日韩+精品| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 国产亚洲精品综合一区在线观看| 久久国产乱子免费精品| 丝袜美腿在线中文| 高潮久久久久久久久久久不卡| 久久久久亚洲av毛片大全| 99久久无色码亚洲精品果冻| 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 99国产精品一区二区蜜桃av| 国产高清三级在线| 久久久久久九九精品二区国产| av视频在线观看入口| 国产av一区在线观看免费| 搡女人真爽免费视频火全软件 | 久久久久久久精品吃奶| 黄色日韩在线| 久久午夜福利片| 久久国产精品影院| 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| 午夜激情欧美在线| 亚洲美女黄片视频| 欧美极品一区二区三区四区| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av香蕉五月| 直男gayav资源| 免费av毛片视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美激情综合另类| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 97超视频在线观看视频| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 色5月婷婷丁香| 午夜亚洲福利在线播放| 国产白丝娇喘喷水9色精品| 性插视频无遮挡在线免费观看| 波野结衣二区三区在线| 午夜老司机福利剧场| 在线a可以看的网站| 亚洲精华国产精华精| 在线a可以看的网站| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 日韩有码中文字幕| 亚洲 国产 在线| 美女黄网站色视频| 久久午夜亚洲精品久久| 精品一区二区三区av网在线观看| 全区人妻精品视频| av欧美777| 成人午夜高清在线视频| 欧美黄色淫秽网站| 国产免费男女视频| 日韩欧美国产一区二区入口| 琪琪午夜伦伦电影理论片6080| 嫩草影院入口| 亚洲人成网站在线播| 欧美日韩瑟瑟在线播放| 国产真实伦视频高清在线观看 | 国产精品影院久久| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 国产免费男女视频| 亚洲美女视频黄频| 日韩高清综合在线| av黄色大香蕉| 麻豆久久精品国产亚洲av| 国产精品三级大全| 欧美乱妇无乱码| 国产精品一区二区免费欧美| 亚洲 欧美 日韩 在线 免费| 一二三四社区在线视频社区8| 亚洲真实伦在线观看| 国产精品国产高清国产av| 中文字幕人成人乱码亚洲影| 国产一区二区亚洲精品在线观看| 久久性视频一级片| 国产精品人妻久久久久久| 草草在线视频免费看| 别揉我奶头~嗯~啊~动态视频| 成人永久免费在线观看视频| 欧美午夜高清在线| 日韩有码中文字幕| 免费av不卡在线播放| 九色成人免费人妻av| 国产精品久久久久久亚洲av鲁大| 国产黄色小视频在线观看| 色5月婷婷丁香| 狠狠狠狠99中文字幕| 激情在线观看视频在线高清| 日韩高清综合在线| 日本免费一区二区三区高清不卡| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 国内久久婷婷六月综合欲色啪| 久久久久久久久久黄片| 国产伦精品一区二区三区四那| 乱人视频在线观看| 亚洲色图av天堂| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 美女高潮的动态| 午夜a级毛片| 日韩欧美国产在线观看| 成年女人永久免费观看视频| 国产伦一二天堂av在线观看| 免费搜索国产男女视频| 一区二区三区激情视频| 一级黄片播放器| 亚洲精品成人久久久久久| 级片在线观看| 少妇的逼好多水| 国产熟女xx| 99久久无色码亚洲精品果冻| 不卡一级毛片| 夜夜夜夜夜久久久久| 一区福利在线观看| 亚洲三级黄色毛片| 免费观看人在逋| 亚洲av五月六月丁香网| 亚洲精品久久国产高清桃花| 日本免费一区二区三区高清不卡| 老司机午夜福利在线观看视频| 丰满的人妻完整版| 亚洲av中文字字幕乱码综合| 两个人视频免费观看高清| 在线天堂最新版资源| 欧美xxxx性猛交bbbb| 美女免费视频网站| 国产 一区 欧美 日韩| 亚洲国产欧美人成| 搞女人的毛片| 嫩草影院入口| 亚洲精品在线美女| 免费在线观看亚洲国产| 一a级毛片在线观看| 亚洲人成网站高清观看| a级毛片a级免费在线| 黄色一级大片看看| 国产精品嫩草影院av在线观看 | 国内精品一区二区在线观看| 久久性视频一级片| 此物有八面人人有两片| 亚洲精品456在线播放app | 日日干狠狠操夜夜爽| 亚洲成人免费电影在线观看| 久久久久性生活片| 亚洲美女视频黄频| 99久久精品一区二区三区| 日本a在线网址| 日本黄色视频三级网站网址| 久久99热6这里只有精品| 99久久精品热视频| 中文字幕高清在线视频| 久久亚洲真实| 中文字幕av成人在线电影| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 欧美乱色亚洲激情| 性色avwww在线观看| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 成人特级av手机在线观看| 91在线观看av| www.www免费av| 久久久久亚洲av毛片大全| 欧美国产日韩亚洲一区| 九九热线精品视视频播放| 精品福利观看| 亚洲人与动物交配视频| 热99在线观看视频| 看片在线看免费视频| 亚洲七黄色美女视频| 日本黄大片高清| 性欧美人与动物交配| 97超视频在线观看视频| 国产伦一二天堂av在线观看| 美女cb高潮喷水在线观看| 欧美日本亚洲视频在线播放| 国产大屁股一区二区在线视频| 丰满的人妻完整版| 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 真人做人爱边吃奶动态| 国产精品精品国产色婷婷| 欧美日韩国产亚洲二区| 免费观看人在逋| 日韩精品中文字幕看吧| 97热精品久久久久久| 亚洲精品在线美女| 国产成人aa在线观看| 神马国产精品三级电影在线观看| 国产中年淑女户外野战色| 亚洲精品在线观看二区| 久久草成人影院| 草草在线视频免费看| 观看免费一级毛片| 亚洲内射少妇av| 亚洲成av人片在线播放无| 制服丝袜大香蕉在线| 亚洲色图av天堂| 午夜福利视频1000在线观看| ponron亚洲| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 宅男免费午夜| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 亚洲av免费高清在线观看| 久久国产精品影院| 亚洲av免费高清在线观看| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| av中文乱码字幕在线| 老司机福利观看| 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| 久久久久久大精品| 久久久久免费精品人妻一区二区| 欧美日韩乱码在线| 免费av不卡在线播放| 在现免费观看毛片| 中文字幕av成人在线电影| 性欧美人与动物交配| 亚洲片人在线观看| 国产单亲对白刺激| 神马国产精品三级电影在线观看| 最新在线观看一区二区三区| 少妇丰满av| av在线老鸭窝| 国产亚洲欧美在线一区二区| 国产成+人综合+亚洲专区| 岛国在线免费视频观看| 成年女人看的毛片在线观看| 成熟少妇高潮喷水视频| 久久久久久大精品| 成年女人看的毛片在线观看| 成熟少妇高潮喷水视频| 淫秽高清视频在线观看| 国产毛片a区久久久久| 日韩高清综合在线| 久久久久久九九精品二区国产| 桃色一区二区三区在线观看| 最新中文字幕久久久久| 精品久久久久久久久久免费视频| 嫩草影院新地址|