• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    2015-12-13 01:54:26YangDu
    Computers Materials&Continua 2015年9期

    Q.W.Yang,S.G.Du,2

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    Q.W.Yang1,S.G.Du1,2

    Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions.In this study,size effect on concrete cubic compressive strength is modeled with a back-propagation neural network.The main advantage in using an artificial neural network(ANN)technique is that the network is built directly from experimental data without any simplifying assumptions via the self-organizing capabilities of the neural network.The proposed ANN model is verified by using 27 experimental data sets collected from the literature.For the large specimens,a modified ANN is developed in the paper to further improve the forecast accuracy.The results demonstrate that the ANN-based size effect model has a strong potential to predict the cubic compressive strength of concrete.

    concrete;size effect;compressive strength;artificial neural network back-propagation.

    1 Introduction

    The size effect is a problem of scaling,which is central to every physical theory[Bazant(1999);Hoover and Bazant(2013);Chiroiu,Munteanu,and Delsanto(2010);Mustapha(2014)].The size effect in solid mechanics is understood as the effect of the characteristic structure size(dimension)on the nominal strength of structure when geometrically similar structures are compared.Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions.Kani(1967)was one of the first to demonstrate the size effect in concrete structures.It has been shown that the shear strength of similar concrete beams decreases with increasing beam depth.Manic,Taric,Serif i,and Ristovski(2015)analyzes research on the formula proposed by Bazant,where the existence of size effect is shown.Alam,Kotronis,Loukili(2013)present the experimental and numerical investigations on the influence of size effect on crack opening,crack length and crack propagation.An isotropic non-local strain softening damage model is adopted for the numerical model.Sinaie,Heidarpour,Zhao,and Sanjayan(2015)carry out an experimental program to investigate the relation between size and the cyclic response of cylindrical concrete samples.The results show that diameter and the aspect ratio of the sample have the most influence on the reloading strength and reloading tangent of the cyclic response.Mahmud,Yang,and Hassan(2013)investigate the size effects on flexural strength of similar notched ultra high performance steel fibre reinforced concrete(UHPFRC)beams under three-point bending tests.Both numerical and experimental studies have showed that the size effect on the nominal flexural strength of these beams up to 150mm depth is very little.Kalfat and Mahaidi(2014)present the first comprehensive experimental program into the size effect fiber reinforced polymer patch anchors.A series of uniaxial tension experiments has been conducted by van Vliet and van Mier(2000)to investigate the size effect on strength and fracture energy of concrete and sandstone.Depending on the material and the curing conditions a stronger or weaker size effect on the nominal strength occurred in the tests.The observed size effect has to be attributed to a combination of statistical size effect and strain gradients in the cross section of the specimens,which were caused by the specimen shape,load eccentricity and material inhomogeneity.Syroka-Korol and Tejchman(2014)carried out the laboratory tests on concrete beams with longitudinal bars and without shear reinforcement.A pronounced size effect was measured in these concrete beams.Ray and Kishen(2011)proposed an analytical model for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis.It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results.Through a sensitivity analysis,it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation.Ashour and Kara(2014)present test results of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer(CFRP)bars and without vertical shear reinforcement.A simplified,empirical equation accounting for size effect as well as all other shear design parameters was developed in their work based on the well-known design-by-testing approach.Karihaloo,Abdalla,and Xiao(2003)carry out an experimental investigation into the size effect in the strength of hardened cement paste(nominal compressive strength 40 MPa)and high strength concrete(nominal compressive strength 110 MPa)as measured in three point bending.Improvements to Karihaloo’s size effect formula have been proposed in this study.Belgin and?Sener(2008)present the results of full-scale failure of singly reinforced four-point-bend beams of different sizes containing deformed longitudinal reinforcing bars.The results revealed the existence of a significant size effect,which can approximately be described by the size effect law previously proposed by Bazant.The size effect is found to be stronger in two-dimensional similarities than for one and three-dimensional similarities.N-guyen,Kim,Ryu,and Koh(2013)study the size effect on the flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete(UHPHFRC).Both UHPHFRCs demonstrated clear size effect on flexural strength,normalized deflection,and normalized energy absorption capacity.Furthermore,the flexural behavior of UHP-HFRC1,with its lower tensile ductility,was more sensitive to the size of the specimen.In order to investigate the size effect of concrete cubic compressive strength,Su and Fang(2014)performed a series of compression tests on 135groups of cubic specimens with three different strength grades and three different aggregate mixtures.Test and analysis results show that the strength grade influences the size effect of concrete cubic compressive strength greatly.

    The size effect in concrete is a result influenced by multi-factors,such as water/cement ratio,cement content,water content,sand ratio,maximum aggregate size,aggregate type,and other mix design parameters.According to the existing experiments,we can deduce several functions which can describe the size effect in concrete as shown in the above literatures.However,considering that the factors are too complex to be modeled and solved by classical mathematic and traditional processes,artificial neural network(ANN)may be a promising tool to accurately describe the size effect in concrete.The main benefit of an ANN-based method is that the ANN is built directly from the experimental test data without any simplifying assumptions.This paper thoroughly investigates to evaluate whether ANN can be used to forecast the size effect of concrete cubic compressive strength correctly.The ANN model is constructed,trained and tested using 27 available sets of experimental data obtained from the reference of Su and Fang(2014).The data used in ANN model are arranged in a format of seven input parameters that cover the cement(C),silica fume(SF),fine aggregate(FA),coarse aggregate(CA),water(W),superplasticizer(SP),and side length of specimen(L).The ANN model,which performs in Matlab,predicts the cubic compressive strength of the concrete.It will be shown that the ANN-based size effect model on concrete cubic compressive strength is reliable and very promising.

    2 ANN-based size effect model

    2.1 Background for ANN

    ANN is a mathematical or computational model that tries to simulate the structure or functional aspects of biological neural networks.The first advantage of ANN is its capability of learning directly from examples,i.e.the relationships between input and output variables are generated by the data themselves.The other ad-vantages of ANN are its accurate response to incomplete tasks,its extraction of information from noisy or poor data,and its production of generalized results from the new examples[Arslan and Ince(1996)].Due to the above features,ANN has successfully been used in many engineering problems over the last two decades.Ince(2004)presented a fracture model based on ANN to predict fracture parameters of cementitious materials.It has been shown that the fracture model based on ANN predictions is more reliable than the Two-Parameter model based on regression analysis.?zta?s,Pala,?zbay,Kanca,,and Bhatti(2006)used a back-propagation neural network to predict the compressive strength and slump of high strength concrete.The results showed that ANN has strong potential as a feasible tool for predicting compressive strength and slump values.Li and Yang(2008)developed a method of damage identification for beam using artificial neural network based on statistical properties of structural dynamic responses.Mehrjoo,Khaji,Moharrami,and Bahreininejad(2008)proposed a method for estimating the damage intensities of joints for truss bridge structures using a back-propagation neural network.Duan,Kou,and Poon(2013)employed an artificial neural network to predict the compressive strength of recycled aggregate concrete.Yan,Ren,Xia,Shen,and Gu(2015)developed two models to predict the two fracture parameters in the scale effect model of concrete using the artificial neural network methodology.Wang,Man,and Jin(2015)developed the artificial neural network for predicting the free expansion strain of self-stressing concrete under wet curing conditions.

    Among various ANN models,the most fundamental and widely used architecture is the back-propagation neural network,which will be used in this study.As shown in Figure 1,a typical structure of the back-propagation neural network consists of an input layer,one or more hidden layers and an output layer,and each layer consists of numerous neurons.The ANN-based modeling process involves four main aspects[Duan,Kou,and Poon(2013);Yan,Ren,Xia,Shen,and Gu(2015)]:(1)data acquisition,analysis and problem representation;(2)architecture determination;(3)training of the network;and(4)validation and test of the trained network for generalization evaluation.The training process of ANN is divided into two phases.In the first phase(feed-forward),the input layer neurons pass the input pattern values onto the hidden layer.Subsequently each of the hidden layer neurons computes a weighted sum of its input,and passes the sum through its activation function and gives the activation value to the output layer.Following the computation of a weighted sum of each neuron in the output layer,the sum is passed through its activation function,resulting in one of the output values for the network.In the second stage(back-propagation),the error between actual output and target output can be calculated layer by layer in recursion and the weights are accordingly adjusted until the expectant output is obtained in the out layer.More details on construction of ANN can be found in the references[Grossberg(1988);Hornik,Stinchcombe,and White(1989);Hornik(1991);Hornik,Stinchcombe,and White(1990);Gallant and White(1992);Oishi and Yoshimura(2007);Kerh,Lai,Gunaratnam,and Saunders(2008)].

    Figure 1:The architecture of the ANN model

    2.2 Input and Output of the ANN

    In this research,the size effect of concrete cubic compressive strength was predicted using the ANN model.Table 1 presents the experimental data taken from the existing size effect tests in the reference of Su and Fang(2014).In this experimental study,the overall dimensions of the specimens tested are as follows:100×100×100,150×150×150,and 200×200×200mm.From table 1,the seven parameters,i.e.,cement(C),silica fume(SF),fine aggregate(FA),coarse aggregate(CA),water(W),superplasticizer(SP),and side length of specimen(L),are chosen as the input variables for ANN.Whereas the statistical average value of 28day compressive strength(fcu)is chosen as the output variable of ANN.

    2.3 Construction of the ANN

    A back-propagation ANN architecture was employed in this study.As described in section 2.2,the ANN model used in this study has seven neurons(variables)in the input layer(ni=7)and one neuron in the output layer(no=1).So far as know,there are no reasonable theory for determining the optimum number of hidden layers and the optimum number of neurons in each hidden layer.In this research,a single hidden layer is used in the ANN,since many investigations[Arslan and Ince(1996);Ince(2004);?zta?s,Pala,?zbay,Kanca,,and Bhatti(2006);Li and Yang(2008);Mehrjoo,Khaji,Moharrami,and Bahreininejad(2008)]have showed that ANN with one hidden layer is sufficient to simulate most of engineering problems.As for the number of neurons in the hidden layer,too few neurons will not

    allow the network to produce accurate maps from the input to the desired output,while too many neurons will result in difficulties dealing with new types of input patterns.In practice,the neuron number range of a hidden layer can be calculated by the following equation[Yan,Ren,Xia,Shen,and Gu(2015);Wang,Man,and Jin(2015)]:

    Table 1:The experimental data taken from reference Su and Fang(2014)for ANN

    where nh,niand noare the neuron number of hidden,input and output layers,respectively,and a is a fixed value ranging from 0 to 10.According to equation(1),the number of hidden layer neurons in this research can be between 3 and 13.In this research,the optimum number of neurons in the unique hidden layer is set to 11(nh=11).The following discussion will show that when more neurons in the hidden layer are used,the network would not converge.If the network was smaller,it would not converge either.

    2.4 Training and testing of the ANN

    As stated before,back-propagation training algorithm is used in this ANN model.The program of the ANN model is developed and performed under MATLAB.Training and testing data of this model came from experimental results as shown in Table 1.To test the generalization ability of the ANN model,we select 9 samples with the same size as the test set,while the remaining 18 samples are used to train the network.Thus the three cases will be studied in the following.

    2.4.1 Case 1:the samples with the side length of 150mm are used as the test set.Case 1 is used to show the performance of the ANN when the test sample size ranges from the minimum size to the maximum size of the training samples.Table 2 shows the R-square results of ANN training and testing data when the neuron number of the hidden layer varies from 3 to 13.One can see from table 2 that the R-square values are both the largest when the neuron number of the hidden layer is 11 for the training and testing sets.Therefore,the neuron number of the unique hidden layer is set to 11 in this research(nh=11).As shown in figure 2,the training phase of the ANN for case 1 took 6 epochs using the given data.Figures 3 and 4 present all the experimental data,as well as the training and testing results obtained from the ANN model.The linear optimized fitted straight together with its function and the R value is shown in these figures.In addition,the mean of squared error(MSE)between the predicted value and the experimental value is also given in the title of the figure.Table 3 presents the comparison of experimental compressive strength with ANN predicted compressive strength for the testing set.From these results,one can see that the compressive strength values predicted by the ANN model are very closer to the experimental values.It has been shown that the proposed ANN model is very accurate for predicting the compressive strength of those samples whose sizes range from the minimum size to the maximum size of the training samples.

    Figure 2:Variations of overall error against number of iterations for Case 1

    Figure 3:Performance of training set for Case 1(MSE=4.0629×10-22)

    Figure 4:Performance of testing set for Case 1(MSE=0.1733)

    Table 2:The R-square values for case 1 when the neuron number of the unique hidden layer changes

    2.4.2 Case 2:the samples with the side length of 200mm are used as the test set.

    Case 2 is used to show the performance of the ANN when the test sample size is greater than the maximum size of the training samples.As shown in figure 5,the training phase of the ANN for case 2 took 7 epochs using the given data.Figures 6 and 7 give the results for case 2 by using the ANN model.Obviously,the results show better fit in the training set than in the testing set.Table 4 presents the comparison of experimental values with ANN predicted values for the compressivestrength of testing set.Compared with the results in case 1,the prediction accuracy of the ANN for case 2 decreases.It has been shown that the generalization ability of the ANN will weaken when the test sample size is greater than the maximum size of the training samples.

    Table 3:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 1)

    Figure 5:Variations of overall error against number of iterations for Case 2

    2.4.3 Case 3:the samples with the side length of 100mm are used as the test set.

    Figure 6:Performance of training set for Case 2(MSE=6.5914×10-29)

    Figure 7:Performance of testing set for Case 2(MSE=3.4525)

    Case 3 is used to show the performance of the ANN when the test sample size is less than the minimum size of the training samples.Figures 8–10 present the training phase of the ANN and the results predicted by ANN.Table 5 presents the comparison of experimental values with ANN predicted values for this case.From these results,one can see that the generalization ability of the ANN also weakened when the test sample size is less than the minimum size of the training samples.

    Table 4:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 2)

    Figure 8:Variations of overall error against number of iterations for Case 3

    2.5 Improvement of the ANN-base size effect model

    As stated previously,the ANN is very accurate in predicting the compressive strength of the sample whose size ranges from the minimum size to the maximum size of the training samples,but not enough accurate for the other sample whose size is out of range.However,it is the most important to predict the size effect for scale ranges which can not be tested under laboratory conditions,especially for the sample whose size is far greater than the maximum size of the training samples.In view of this,a modified ANN is developed in this section to improve the forecast accuracy for the large specimens.According to the existing theories,the size effect in concrete will significantly decline with an increase in the specimen size.Using this principle,the original ANN model in case 2 can be improved to obtain more accurate predicted values of the compressive strength for the samples with the side length of 200mm.The modifications of ANN include the following respects.First,in addition to all the 100×100×100 and 150×150×150 specimens,nine suppositional oversized specimens as shown in table 6 with the side length of 1400mm are added to the training set in the modified ANN.Second,the change rate(CR)of the compressive strength is used as the new output variable in the modified ANN,which is defined as the following equation:

    Figure 9:Performance of training set for Case 3(MSE=1.4796×10-28)

    Figure 10:Performance of testing set for Case 3(MSE=7.3963)

    Table 5:Comparison of experimental compressive strength with ANN predicted compressive strength for testing set(Case 3)

    Table 6:The nine suppositional oversized specimens

    Figure 11:Variations of overall error against number of iterations for Case 2 using the modified ANN

    Figure 12:Performance of training set for Case 2 using the modified ANN(MSE=1.1954×10-27)

    where CRLis the change rate of the compressive strength for the L×L×L specimen,fcu,Lis the cubic compressive strength of the sample with the side length of L(mm),and fcu,L-50is the cubic compressive strength of the sample with the side length of(L-50).For the 100×100×100 specimens,the fcu,50used in the calculation of CR100is obtained by the original ANN model.For the suppositional oversized specimens,the CR1400can be set to 0 because that the size effect can be ignored for these oversized specimens.Figures 11–13 present the training phase of the modified ANN and the results predicted by the modified ANN.From figure 11,the training phase of the modified ANN for case 2 took 50 epochs using the given data.Table 7 and figure 14 give the comparisons of the experimental values and the predicted ones by using the original ANN and modified ANN for these 200×200×200 specimens.One can see that the predicted values obtained by the modified ANN have less error compared with the results obtained by the original ANN.In other words,the modified ANN is more accurate than the original ANN in predicting the compressive strength of the large concrete specimen.

    Figure 13:Performance of testing set for Case 2 using the modified ANN(MSE=1.7069)

    Table 7:Comparison of experimental values with predicted results obtained by the original and modified ANN models(Case 2)

    Figure 14:Comparison of the relative errors between the predicted values and experimental values by the original and modified ANN models(Case 2)

    3 Conclusion

    In this study,the ANN-based size effect model is assessed to see whether it can be used to predict the cubic compressive strength of the concrete.From the investigation,it can be seen that:

    (1)The proposed ANN model is very accurate for predicting the compressive strength of those samples whose sizes range from the minimum size to the maximum size of the training samples.

    (2)The generalization ability of the ANN will weaken when the test sample size is greater than the maximum size of the training samples(or less than the minimum size of the training samples).

    (3)The modified ANN is more accurate than the original ANN in predicting the compressive strength of the large concrete specimen.

    In conclusion,the ANN-based size effect model has strong potential as a feasible tool for predicting the concrete cubic compressive strength in spite of some imperfections in the study of case 3.The inaccuracy in case 3 may be mainly due to a lack of enough experimental data.Therefore,the performance of ANN-based size effect model can still be improved if more experimental parameters can be considered.

    Acknowledgement:This work is supported by National Natural Science Foundation of China(41427802,11202138,41172292)and Zhejiang Province Natural Science Foundation(LZ13D020001).

    Alam,S.Y.;Kotronis,P.;Loukili,A.(2013):Crack propagation and size effect in concrete using a non-local damage model.Engineering Fracture Mechanics,vol.109,pp.246–261.

    Arslan,A.;Ince,R.(1996):The neural network approximation to the size effect in fracture of cementitious materials.Engineering Fracture Mechanics,vol.54,pp.249–261.

    Ashour,A.F.;Kara,I.F.(2014):Size effect on shear strength of FRP reinforced concrete beams.Composites Part B:Engineering,vol.60,pp.612–620.

    Bazant,Z.P.(1999): Size effect on structural strength:a review.Archive of Applied Mechanics,vol.69,pp.703–725.

    Belgin,?.M.;?Sener,S.(2008):Size effect on failure of overreinforced concrete beams.Engineering Fracture Mechanics,vol.75,pp.2308–2319.

    Chiroiu,V.;Munteanu,L.;Delsanto,P.P.(2010):Evaluation of the Toupin-Mindlin theory for predicting the size effects in the buckling of the carbon nanotubes.Computers,Materials&Continua,vol.16,pp.75.

    Duan,Z.H.;Kou,S.C.;Poon,C.S.(2013):Prediction of compressive strength of recycled aggregate concrete using artificial neural networks.Construction and Building Materials,vol.40,pp.1200–1206.

    Gallant,A.R.;White,H.(1992):On learning the derivatives of an unknown mapping with multilayer feedforward networks.Neural Networks,vol.5,pp.129–138.

    Grossberg S.(1988):Nonlinear neural networks:Principles,mechanisms,and architectures.Neural networks,vol.1,pp.17–61.

    Hoover,C.G.;Bazant,Z.P.(2013):Comprehensive concrete fracture tests:Size effects of Types 1&2,crack length effect and postpeak.Engineering Fracture Mechanics,vol.110,pp.281–289.

    Hornik,K.(1991): Approximation capabilities of multilayer feedforward networks.Neural Networks,vol.4,pp.251–257.

    Hornik,K.;Stinchcombe,M.;White,H.(1989):Multilayer feedforward networks are universal approximators.Neural Networks,vol.2,pp.359-366.

    Hornik,K.;Stinchcombe,M.;White,H.(1990):Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks.Neural Networks,vol.3,pp.551–560.

    Ince,R.(2004):Prediction of fracture parameters of concrete by artificial neural networks.Engineering Fracture Mechanics,vol.71,pp.2143–2159.

    Kalfat,R.;Mahaidi,R.A.(2014):Experimental investigation into the size effect of bidirectional fiber patch anchors in strengthening of concrete structures.Composite Structures,vol.112,pp.134–145.

    Kani,G.N.(1967):How safe are over large concrete beams?ACI J.Proc.,vol.64,pp.128–141.

    Karihaloo,B.L.;Abdalla,H.M.;Xiao,Q.Z.(2003):Size effect in concrete beams.Engineering Fracture Mechanics,vol.70,pp.979–993.

    Kerh,T.;Lai,J.S.;Gunaratnam,D.;Saunders,R.(2008):Evaluation of seismic design values in the Taiwan building code by using artificial neural network.Computer Modeling in Engineering and Sciences,vol.26,pp.1.

    Leshno,M.;Lin,V.Y.;Pinkus,A.;Schocken,S.(1993):Multilayer feedforward networks with a nonpolynomial activation function can approximate any function.Neural Networks,vol.6,pp.861–867.

    Li,Z.X.;Yang,X.M.(2008):Damage identification for beams using ANN based on statistical property of structural responses.Computers&structures,vol.86,pp.64–71.

    Mahmud,G.H.;Yang,Z.;Hassan,A.M.T.(2013):Experimental and numerical studies of size effects of ultra high performance steel fiber reinforced concrete beams.Construction and Building Materials,vol.48,pp.1027–1034.

    Manic N.;Taric M.;Serif iV.;Ristovski A.(2015):Analysis of the existence of size effect on different concrete types.Procedia Technology,vol.19,pp.379–386.

    Mehrjoo,M.;Khaji,N.;Moharrami,H.;Bahreininejad,A.(2008):Damage detection of truss bridge joints using Artificial Neural Networks.Expert Systems with Applications,vol.35,pp.1122–1131.

    Mustapha,K.B.(2014):Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels.Computers,Materials&Continua,vol.42,no.2,pp.141–174.

    Nguyen,D.L.;Kim,D.J.;Ryu,G.S.;Koh,K.T.(2013):Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete.Composites Part B:Engineering,vol.45,pp.1104–1116.

    Oishi,A.;Yoshimura,S.(2007): A new local contact search method using a multi-layer neural network.Computer Modeling in Engineering and Sciences,vol.21,pp.93.

    ?zta?s,A.;Pala,M.;?zbay,E.;Kanca,E.;,N.;Bhatti,M.A.(2006):Predicting the compressive strength and slump of high strength concrete using neural network.Construction and Building Materials,vol.20,pp.769–775.

    Ray,S.;Kishen,J.M.C.(2011):Fatigue crack propagation model and size effect in concrete using dimensional analysis.Mechanics of Materials,vol.43,pp.75–86.

    Sinaie,S.;Heidarpour,A.;Zhao,X.L.;Sanjayan,J.G.(2015):Effect of size on the response of cylindrical concrete samples under cyclic loading.Construction and Building Materials,vol.84,pp.399–408.

    Su,J.;Fang,Z.(2014): Experimental study on impact of aggregate mixture on dimensional effect of concrete cubic compressive strength.Journal of Building Structures,vol.35,pp.152–157.(in Chinese)

    Syroka-Korol,E.;Tejchman,J.(2014):Experimental investigations of size effect in reinforced concrete beams failing by shear.Engineering Structures,vol.58,pp.63–78.

    Van Vliet,M.R.A.;Van Mier,J.G.M.(2000):Experimental investigation of size effect in concrete and sandstone under uniaxial tension.Engineering Fracture Mechanics,vol.65,pp.165–188.

    Wang,B.;Man,T.;Jin,H.(2015):Prediction of expansion behavior of selfstressing concrete by artificial neural networks and fuzzy inference systems.Construction and Building Materials,vol.84,pp.184–191.

    White,H.(1990):Connectionist nonparametric regression:Multilayer feedforward networks can learn arbitrary mappings.Neural Networks,vol.3,pp.535–549.

    Yan,Y.;Ren,Q.;Xia,N.;Shen,L.;Gu,J.(2015):Artificial neural network approach to predict the fracture parameters of the size effect model for concrete.Fatigue&Fracture of Engineering Materials&Structures,DOI:10.1111/ffe.12309.

    1Department of Civil Engineering,Shaoxing University,Shaoxing,312000,P.R.China

    2Corresponding author.E-mail:dushigui@126.com;Tel:+86-575-88326229;Fax:+86-575-88341503

    免费观看a级毛片全部| 黄片小视频在线播放| 99国产综合亚洲精品| 国产黄色免费在线视频| 一级毛片电影观看| 97人妻天天添夜夜摸| 丁香六月天网| 国产一区二区激情短视频 | 飞空精品影院首页| 九草在线视频观看| 亚洲人成电影观看| 国产视频首页在线观看| 不卡av一区二区三区| 熟妇人妻不卡中文字幕| 国产在线视频一区二区| 少妇被粗大猛烈的视频| 午夜福利视频精品| 久久精品国产鲁丝片午夜精品| 老汉色av国产亚洲站长工具| 波多野结衣一区麻豆| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 国产日韩欧美亚洲二区| 叶爱在线成人免费视频播放| 日本vs欧美在线观看视频| 日本av手机在线免费观看| 久久人人爽人人片av| tube8黄色片| 亚洲人成77777在线视频| 欧美bdsm另类| 好男人视频免费观看在线| 香蕉精品网在线| 18禁国产床啪视频网站| 婷婷色麻豆天堂久久| 午夜久久久在线观看| 国产片特级美女逼逼视频| 午夜影院在线不卡| 男的添女的下面高潮视频| 久久久久国产一级毛片高清牌| 一级毛片我不卡| 精品99又大又爽又粗少妇毛片| 老汉色av国产亚洲站长工具| 欧美日韩精品成人综合77777| 色视频在线一区二区三区| 日韩中文字幕欧美一区二区 | 天天影视国产精品| 一级片免费观看大全| 大片电影免费在线观看免费| 侵犯人妻中文字幕一二三四区| 夫妻性生交免费视频一级片| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 久久精品夜色国产| 18禁国产床啪视频网站| 又大又黄又爽视频免费| 美国免费a级毛片| 国产日韩欧美亚洲二区| 高清黄色对白视频在线免费看| 中国三级夫妇交换| 人妻少妇偷人精品九色| 18+在线观看网站| 1024视频免费在线观看| 人人澡人人妻人| 久久久精品区二区三区| 欧美日本中文国产一区发布| 性少妇av在线| 又黄又粗又硬又大视频| 日韩电影二区| 久久99精品国语久久久| 久久 成人 亚洲| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 少妇人妻久久综合中文| 亚洲一区中文字幕在线| 宅男免费午夜| 免费播放大片免费观看视频在线观看| 午夜日韩欧美国产| 精品亚洲成国产av| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 如何舔出高潮| 人体艺术视频欧美日本| 国产男女内射视频| 国产 精品1| 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到 | 一级毛片电影观看| 国产精品久久久久久久久免| av.在线天堂| 啦啦啦在线观看免费高清www| 国产精品嫩草影院av在线观看| 欧美在线黄色| 在线观看免费日韩欧美大片| av国产久精品久网站免费入址| 涩涩av久久男人的天堂| 日韩一本色道免费dvd| 精品一区在线观看国产| 丰满饥渴人妻一区二区三| 欧美+日韩+精品| 成人黄色视频免费在线看| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影| 免费女性裸体啪啪无遮挡网站| 在线观看三级黄色| 麻豆精品久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 美女国产视频在线观看| 亚洲一区中文字幕在线| 亚洲久久久国产精品| 日韩中字成人| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| 国产福利在线免费观看视频| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 日韩在线高清观看一区二区三区| 视频区图区小说| 午夜91福利影院| 一级爰片在线观看| 男女啪啪激烈高潮av片| 久久97久久精品| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 黄片播放在线免费| 午夜福利视频在线观看免费| 麻豆av在线久日| 人人澡人人妻人| 久久人人97超碰香蕉20202| 精品国产一区二区三区久久久樱花| xxx大片免费视频| 一级a爱视频在线免费观看| 熟女av电影| 一区在线观看完整版| 男男h啪啪无遮挡| 老女人水多毛片| 永久免费av网站大全| 国产片内射在线| 久久精品久久久久久久性| 免费大片黄手机在线观看| 十分钟在线观看高清视频www| 男人爽女人下面视频在线观看| 美女中出高潮动态图| 免费人妻精品一区二区三区视频| 9191精品国产免费久久| 18禁国产床啪视频网站| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 成年女人在线观看亚洲视频| 又大又黄又爽视频免费| 一二三四在线观看免费中文在| 中文字幕人妻丝袜一区二区 | 亚洲国产最新在线播放| 美女中出高潮动态图| 两性夫妻黄色片| 国产精品久久久久久av不卡| 两个人免费观看高清视频| 91国产中文字幕| 少妇猛男粗大的猛烈进出视频| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 久久 成人 亚洲| 亚洲第一av免费看| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕| 波多野结衣一区麻豆| 一本久久精品| 99re6热这里在线精品视频| 日本vs欧美在线观看视频| 欧美精品亚洲一区二区| 欧美日韩综合久久久久久| 亚洲内射少妇av| 性色av一级| 老司机影院毛片| 午夜激情久久久久久久| 在线亚洲精品国产二区图片欧美| 人成视频在线观看免费观看| 好男人视频免费观看在线| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 黑丝袜美女国产一区| 久久久精品94久久精品| 97在线人人人人妻| 2022亚洲国产成人精品| 9191精品国产免费久久| 欧美人与善性xxx| 色吧在线观看| 香蕉精品网在线| 制服丝袜香蕉在线| 黄色毛片三级朝国网站| 国产午夜精品一二区理论片| 桃花免费在线播放| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 午夜影院在线不卡| 成人黄色视频免费在线看| 欧美人与性动交α欧美软件| 十八禁网站网址无遮挡| 在线观看三级黄色| 丝瓜视频免费看黄片| 国产精品 国内视频| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 亚洲精品一二三| 性少妇av在线| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 日韩精品免费视频一区二区三区| 亚洲综合色惰| 韩国高清视频一区二区三区| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 国产淫语在线视频| 日韩精品有码人妻一区| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 国产精品 欧美亚洲| 自线自在国产av| 一级片免费观看大全| 99久久综合免费| 日韩在线高清观看一区二区三区| 高清av免费在线| 18禁动态无遮挡网站| 国产成人精品无人区| 久久 成人 亚洲| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 韩国av在线不卡| 99国产综合亚洲精品| 天堂8中文在线网| videos熟女内射| 久久99蜜桃精品久久| 欧美日韩国产mv在线观看视频| 亚洲国产精品999| 中国三级夫妇交换| 自线自在国产av| 日产精品乱码卡一卡2卡三| 美国免费a级毛片| 99国产精品免费福利视频| 亚洲国产欧美在线一区| 国产野战对白在线观看| 最黄视频免费看| 午夜激情av网站| 国产免费现黄频在线看| 男女高潮啪啪啪动态图| 久久狼人影院| 最近最新中文字幕免费大全7| 啦啦啦啦在线视频资源| 1024视频免费在线观看| a 毛片基地| 亚洲经典国产精华液单| 一区二区三区四区激情视频| 另类亚洲欧美激情| 夫妻午夜视频| 欧美97在线视频| 亚洲美女视频黄频| 18禁观看日本| 日韩中字成人| 美女视频免费永久观看网站| 母亲3免费完整高清在线观看 | 精品少妇黑人巨大在线播放| 欧美中文综合在线视频| 国产色婷婷99| 各种免费的搞黄视频| 18禁动态无遮挡网站| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 国产精品.久久久| 欧美精品av麻豆av| 国产成人精品一,二区| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 老鸭窝网址在线观看| 亚洲欧美一区二区三区久久| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 亚洲综合色网址| 亚洲精品国产av蜜桃| 久久精品亚洲av国产电影网| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 久久久欧美国产精品| av网站在线播放免费| 女人高潮潮喷娇喘18禁视频| 日韩一卡2卡3卡4卡2021年| 成人二区视频| 国产极品天堂在线| 一二三四在线观看免费中文在| 国产免费福利视频在线观看| 日本欧美国产在线视频| 日本免费在线观看一区| av卡一久久| 深夜精品福利| 久久热在线av| 宅男免费午夜| 久久热在线av| 高清视频免费观看一区二区| 国产视频首页在线观看| 免费看不卡的av| av网站在线播放免费| 涩涩av久久男人的天堂| 桃花免费在线播放| 老女人水多毛片| 亚洲国产av影院在线观看| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 成年av动漫网址| 欧美人与性动交α欧美精品济南到 | 日韩在线高清观看一区二区三区| av天堂久久9| 午夜福利一区二区在线看| av网站在线播放免费| av在线老鸭窝| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 汤姆久久久久久久影院中文字幕| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 久久久久网色| 男的添女的下面高潮视频| 老司机影院成人| 国产精品av久久久久免费| 午夜福利视频精品| 久久国产精品大桥未久av| 男男h啪啪无遮挡| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 91精品三级在线观看| 美女国产视频在线观看| 亚洲国产色片| 亚洲av在线观看美女高潮| 亚洲成色77777| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 我要看黄色一级片免费的| 久久av网站| 亚洲综合色惰| 欧美成人午夜精品| 欧美日韩综合久久久久久| 久久久精品94久久精品| 亚洲精品一区蜜桃| freevideosex欧美| 热re99久久国产66热| 国产成人午夜福利电影在线观看| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 国产精品av久久久久免费| 黑人欧美特级aaaaaa片| 亚洲少妇的诱惑av| 午夜日本视频在线| 一级a爱视频在线免费观看| 熟女av电影| 成人漫画全彩无遮挡| 久久av网站| 青青草视频在线视频观看| 伦精品一区二区三区| 9色porny在线观看| 不卡视频在线观看欧美| 中文字幕av电影在线播放| 欧美日本中文国产一区发布| av在线播放精品| 免费大片黄手机在线观看| av在线播放精品| 岛国毛片在线播放| 午夜91福利影院| 精品国产露脸久久av麻豆| 婷婷色综合www| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 亚洲成人一二三区av| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| 国产成人精品一,二区| 中文精品一卡2卡3卡4更新| 国产精品香港三级国产av潘金莲 | 少妇人妻久久综合中文| 国产成人精品一,二区| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲第一青青草原| 日日爽夜夜爽网站| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| 日韩一本色道免费dvd| 人妻系列 视频| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 七月丁香在线播放| 在线观看免费视频网站a站| 精品一区在线观看国产| 亚洲在久久综合| 日本爱情动作片www.在线观看| av有码第一页| 我要看黄色一级片免费的| 男女下面插进去视频免费观看| 国产成人aa在线观看| 2022亚洲国产成人精品| 久久久久久久大尺度免费视频| 精品国产一区二区久久| 天天影视国产精品| 久久ye,这里只有精品| 欧美黄色片欧美黄色片| 中文字幕av电影在线播放| 夫妻性生交免费视频一级片| 亚洲精品日本国产第一区| a级毛片在线看网站| 一区二区三区激情视频| av福利片在线| 丝袜喷水一区| 国产精品三级大全| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 制服丝袜香蕉在线| 久久人人爽人人片av| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 日韩中文字幕视频在线看片| 蜜桃在线观看..| 免费观看性生交大片5| 波野结衣二区三区在线| a级毛片黄视频| 2022亚洲国产成人精品| 999久久久国产精品视频| 日韩一卡2卡3卡4卡2021年| 免费少妇av软件| 国产亚洲最大av| 亚洲精品美女久久av网站| 精品少妇内射三级| 边亲边吃奶的免费视频| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美精品济南到 | 免费在线观看完整版高清| xxxhd国产人妻xxx| 一级毛片黄色毛片免费观看视频| 9热在线视频观看99| 丝袜人妻中文字幕| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 1024香蕉在线观看| 在线观看免费高清a一片| 日韩熟女老妇一区二区性免费视频| 夜夜骑夜夜射夜夜干| 久久免费观看电影| 纯流量卡能插随身wifi吗| 国产精品亚洲av一区麻豆 | 日韩av不卡免费在线播放| 婷婷成人精品国产| av片东京热男人的天堂| 亚洲,一卡二卡三卡| 欧美激情极品国产一区二区三区| 久久国内精品自在自线图片| 欧美日韩成人在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 午夜91福利影院| 母亲3免费完整高清在线观看 | 日韩av在线免费看完整版不卡| 欧美亚洲日本最大视频资源| 一级毛片 在线播放| 成人午夜精彩视频在线观看| 久久青草综合色| 一级毛片黄色毛片免费观看视频| 97人妻天天添夜夜摸| 日本午夜av视频| 国产日韩欧美亚洲二区| 国产亚洲最大av| 国产在线免费精品| 国产精品嫩草影院av在线观看| 一区二区三区精品91| 乱人伦中国视频| 日本猛色少妇xxxxx猛交久久| 99国产精品免费福利视频| 精品久久久精品久久久| 亚洲精品久久久久久婷婷小说| 熟妇人妻不卡中文字幕| 国产亚洲欧美精品永久| 亚洲精品美女久久av网站| 一本大道久久a久久精品| 一级片免费观看大全| 国产精品久久久久久精品古装| 99热网站在线观看| 国产淫语在线视频| 最近中文字幕高清免费大全6| 精品国产露脸久久av麻豆| 亚洲欧美日韩另类电影网站| 久久久精品国产亚洲av高清涩受| 久久精品aⅴ一区二区三区四区 | a级片在线免费高清观看视频| 男男h啪啪无遮挡| av网站免费在线观看视频| 婷婷成人精品国产| 在线观看三级黄色| 老汉色av国产亚洲站长工具| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 国产野战对白在线观看| 成人漫画全彩无遮挡| 99国产综合亚洲精品| 少妇熟女欧美另类| 亚洲国产av新网站| 在线观看免费视频网站a站| 高清不卡的av网站| 母亲3免费完整高清在线观看 | 成人手机av| 高清在线视频一区二区三区| 伦理电影免费视频| 国产av精品麻豆| 欧美精品亚洲一区二区| 日本wwww免费看| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 边亲边吃奶的免费视频| 18禁观看日本| 欧美国产精品一级二级三级| 美女高潮到喷水免费观看| av女优亚洲男人天堂| 日韩伦理黄色片| 秋霞伦理黄片| 久久国产亚洲av麻豆专区| 母亲3免费完整高清在线观看 | 男人操女人黄网站| 国产成人精品一,二区| 看免费av毛片| 满18在线观看网站| 中文字幕制服av| 国产精品三级大全| 国产精品一区二区在线观看99| 欧美精品亚洲一区二区| 亚洲国产av新网站| 国产精品不卡视频一区二区| 夜夜骑夜夜射夜夜干| 制服诱惑二区| 免费av中文字幕在线| 欧美日本中文国产一区发布| 丝袜脚勾引网站| 99热国产这里只有精品6| 两个人免费观看高清视频| 亚洲国产欧美网| 免费高清在线观看视频在线观看| 丝袜喷水一区| 免费观看性生交大片5| 边亲边吃奶的免费视频| 韩国精品一区二区三区| 中文字幕最新亚洲高清| 免费观看av网站的网址| 久热久热在线精品观看| 多毛熟女@视频| 久久久久久久久久久免费av| 99热全是精品| 成年女人毛片免费观看观看9 | 欧美激情 高清一区二区三区| 咕卡用的链子| 久久99精品国语久久久| 免费少妇av软件| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 丝袜在线中文字幕| 亚洲精品国产一区二区精华液| 亚洲成色77777| 在线免费观看不下载黄p国产| 最近最新中文字幕免费大全7| 精品少妇黑人巨大在线播放| 人妻少妇偷人精品九色| 国产成人91sexporn| 黄片小视频在线播放| 国产精品嫩草影院av在线观看| 日产精品乱码卡一卡2卡三| 国产精品久久久久久久久免| 国产97色在线日韩免费| 精品人妻在线不人妻| 精品卡一卡二卡四卡免费| 精品国产一区二区三区久久久樱花| 久久久久精品性色| 一区在线观看完整版| 国产av一区二区精品久久| 天天躁日日躁夜夜躁夜夜| 亚洲av国产av综合av卡| av线在线观看网站| 亚洲av电影在线观看一区二区三区| 大话2 男鬼变身卡| 黑人巨大精品欧美一区二区蜜桃| 黑人猛操日本美女一级片| 波野结衣二区三区在线| 婷婷色av中文字幕| 多毛熟女@视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产成人一精品久久久| 欧美精品国产亚洲| 伦理电影大哥的女人| 99热全是精品| 一级毛片 在线播放| www.av在线官网国产| a 毛片基地|