• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    2015-12-13 01:54:25CaoZhengzhengZhouYuejinZhangQiandWangErqian
    Computers Materials&Continua 2015年9期

    Cao Zhengzheng,Zhou Yuejin,2,Zhang Qiand Wang Erqian

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    Cao Zhengzheng1,Zhou Yuejin1,2,Zhang Qi1and Wang Erqian1

    Gas fracturing technology is the key to the exploration for unconventional petroleum resources and other engineering industries,so the research on the coupled gas-solid-thermal model during rock damage has the important significance to the development of gas fracturing technology.By introducing rock damage variable,the coupled gas-solid-thermal model during rock damage is established in this paper,besides,the rock damage constitutive is written with MATLAB software,which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation.Based on this,the damage rule of rock mass around drilling under high pressure gas is analyzed.The results show when the ratio between x direction local stress σxand y direction local stress σyis 1,the rock failure is dominated by shear damage due to the effect of gas;when the ratio between x direction local stress σxand y direction local stress σyis 1/10,pull damage appears on both sides of drilling in the direction of Y because of the effect of gas;with the passage of time,the pore pressure in the rock mass increases gradually,while the pressure gradient decreases gradually;the primary temperature of rock mass has little influence on the pore pressure.

    gas-solid-thermal model,rock damage,gas fracturing technology,damage variable.

    1 Introduction

    As the successful exploitation of shale gas is launched extensively in America in recent year,the shale gas resource is increasingly becoming an important supplement for conventional energy sources,which has revolutionized a new energy industry in the world[Li,Yang,Tang,Huang and Li(2006);Tong,Jing and Zimmerman(2010);Ge,Mei,Jia,Lu and Xia(2014)].It is commonly known that the perme-ability of shale rock is very low(less than 1mD)and most of the shale gas reservoirs need stimulation to enhance the gas productivity[Fowler and Scott(1996);Zhu and Tang(2004);Pankow,Waas and Yen(2012);Ning,Wang,Liu,Qian and Sun(2014)].After the completion of shale gas drilling,only the drilling with natural fractures which are well developed can be put into production directly,more than 90%of the wells need to process through acidizing,fracturing and other stimulation to get the ideal output[Li,Kong and Lu(2003);Xia(2010);Wang,Zhang,Shao,Li and Zuo(2015)].According to the experience of United States,the conventional hydraulic fracturing technology,which requires large quantities of water,can make the clay in the reservoir swelled seriously and decrease the permeability of shale rock,thereby reducing the gas productivity[Shen,Zhao and Duan(1997);Zhu,Wei,Tian,Yang and Tang(2009);Zhou,Guo,Cao and Zhang(2013)].Besides,many shale gas formations are water-wet and under-saturated where the initial water saturation in the reservoir is less than the capillary equilibrium irreducible water saturation.The use of water-based fracturing fluids causes water to be trapped in the near-wellbore region,thereby significantly impairing the ability of gas to flow[Tang,Ma,Li and Liu(2007);Al-Ajmi and Benjeddou(2011);Cao,Zhou,Xu and Li(2014)].

    In view of the weakness in hydraulic fracturing technology,the gas fracturing technology is introduced to improve the reservoir penetration to increase to shale gas production[Mahadevan,Sharma and Yortsos(2007);Xie,Gao,Ju,Fu and Zhou(2012);Xie,Xu,Wang,Guo and Liu(2014)].The related experiment results indicate that the high pressure gas,with the characteristics of low viscosity and surface tension,will penetrate into the rock easily during the gas fracturing processes,and its threshold pressure is far smaller than that of water,especially with a high penetration rate.By introducing rock damage variable,the paper builds the coupled gassolid-thermal mechanical model during rock damage,and the damage constitutive is written with Matlab,which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation,then rock mass damage rule around drilling under high pressure gas is analyzed.

    2 The coupled gas-solid-thermal model during rock damage

    Since the gas seepage flow,rock deformation and heat flow process are involved in the coupled gas-solid-thermal process during rock damage,the paper establishes a gas-solid-thermal coupling mechanical model during rock damage,based on the seepage mechanics equation,the thermodynamic principle and elastic damage theory.

    2.1 The control equation of rock deformation

    The rock mass is simplified to be a linear elastic isotropic porous medium,then the constitutive equation of rock mass involving stress,strain,pore pressure and temperature is obtained,

    In equation(1),G represents the shear modulus;μ represents Poisson’s ratio;δijrepresents Kronecker symbol;α =1-K/Ksrepresents Biot’s coefficient;K represents the bulk modulus;αTrepresents the thermal expansion coefficient.

    According to the deformation continuity conditions,the geometric equation is shown as follows,

    Putting equation(1)and equation(2)to the equilibrium equation,the modified form of the Navier equation involving displacement,pore pressure and temperature is deduced as follows,

    2.2 The gas seepage equation

    The conservation of mass is satisfied in the process of gas seepage,

    In equation(4),m represents the gas mass per volume of rock;ρgrepresents the gas density;qgrepresents the Darcy seepage velocity of the gas;Qmrepresents the source origin;t represents the time variable.

    The gas seepage flow in fractured medium under the drive of pressure gradient is commonly used as follows,

    In equation(5),μfrepresents the dynamic viscosity coefficient;k represents the permeability of gas.

    Since the gas is compressible,it could be regarded as the ideal gas,therefore the relationship between the density and pressure is obtained,

    In equation(6),Mgrepresents relative molecular mass of the gas;R represents the constant value of ideal gas;T represents the absolute temperature.

    Putting equation(5)and equation(6)into equation(4),the gas seepage continuity equation is deduced as follows,

    The deformation of rock mass occurs under the action of gas pressure,thus changing the porosity of rock mass,and affecting the gas seepage in rock mass.The dynamic evolution model of rock porosity is obtained as follows,

    In equation(8),φ0represents the initial porosity;εvrepresents the volume strain;Δp represents the variation of gas pressure;Ksrepresents the bulk modulus of basic frame of rock mass.

    According to the Kozeny-Carman equation in seepage mechanics,the permeability expression k could be obtained as follows,

    2.3 The law of energy conservation

    According to the Fourier’s law,the constitutive equation of heat transfer is shown as follows,

    In equation(10),qTrepresents heat flow amount;λM=(1-φ)λs+φλg,λsand λgare the heat transfer coefficient of the solid(rock mass)and the fluid(gas),respectively.

    As the thermal equilibrium between rock mass and the gas is constantly kept,the heat balance equation can be expressed as follows,In equation(11),(ρC)Mrepresents the heat capacity;the first item is the variable rate of internal energy,and the second item is the heat dissipation caused by thermal expansion,and the third item is the additional item caused by deformation energy.If the internal heat source,the initial conditions and boundary conditions are given,the temperature in the rock mass in different time can be obtained.

    2.4 The damage evolution equation

    The tensile damage and shear damage in rock mass occur if the maximum tensile stress criterion and Mohr-Coulomb criterion is satisfied,respectively,which is shown in figure 1.

    In equation(12),σ1and σ3is the maximum principal stress and minimum principal stress,respectively;ftand fcis the uniaxial tensile strength and uniaxial compressive strength,respectively.

    Figure 1:The constitutive law of rock under uniaxial stress condition

    According to the elastic damage theory,the modulus of elasticity is shown below,

    In equation(13),E0represents the modulus of elasticity before the damage occurs.

    The damage variable of rock mass is shown in the following equations,

    In equation(14),ε1and ε3is the maximum principal strain and minimum principal strain,respectively; εtand εcis the maximum tensile principal strain and the maximum compressible principal strain.

    Due to the highly nonlinear characteristics in coupled equations,the finite element numerical method is introduced.COMSOL Multiphysics is the finite element numerical analysis software designed for multiphysical field coupling problem,and it also owns the powerful programming function based on MATLAB language or COMSOL script.In this paper,the rock damage constitutive is written with MATLAB,which is embedded in the multiphysics coupling software COMSOL in the process of numerical computation.

    3 The rock damage simulation under high pressure in different in-situ stress

    In order to research the rock mass damage rule under high pressure,high pressure gas is injected in drilling under the condition of initial ground stress,and then rock mass damage rule around drilling under high pressure gas is analyzed.

    The numerical model is the cube 10m×10m×1m,whose center is the borehole(the radius 0.1 m).The elastic modulus and strength of the model unit present the rule of Weibull distribution.Assume that the initial temperature of rock mass is 55°C,and the mechanical parameters of rock mass and the coupling parameters are shown in table 1.The left and lateral boundary condition of the numerical model is the displacement constraint,while the right and upper boundary condition of the numerical model is applied external boundary stress;the pressure in the borehole increases gradually.

    In order to study the influence of the gas pressure on rock mass in different in-situ stress level,two numerical models are established as follows,the stress ratio in case I is σx/σy=1/1,and the stress ratio in case II is σx/σy=1/10.For each case,two kinds of working condition are discussed.The first working condition is to simulate the damage zone distribution of surrounding rock in the stress ratio without the gas pressure,and external boundary stress(Δσy=1MPa)increases according to the stress ratio(σx/σy).The second working condition is to simulate the influence of gas pressure on rock mass,and initial boundary stress(σy=10MPa)increasesaccording to the stress ratio(σx/σy),and the gas pressure in the drill hole increases gradually(Δp=0.1MPa).

    Table 1:Physical-mechanical parameters of rock and gas

    Figure 2:The distribution of damage zone without gas pressure for case I(σy=24MPa)

    In order to distinguish the tensile crack and shear crack,the damage value in tensile crack is negative,while the damage value in shear crack is positive.The distribution of damage zone without gas pressure for case I(σy=24MPa)is present in figure 2.A great deal of shear crack appears around the borehole rock mass under the effect of in-situ stress,without the tensile crack.The crack and damage area increase gradually with the increase of boundary stress.The shear damage is the dominant fracture form of surrounding rock in the increase process of boundary stress,and the stress concentration appears in surrounding rock mass around the drill hole,destroying the surrounding rock mass and the overall damaged area appears.

    Figure 3:The distribution of damage zone with gas pressure for case I(σy=10MPa,p=7MPa)

    The distribution of damage zone with gas pressure for case I(σy=10MPa,p=7MPa)is shown in figure 3.σyis the boundary stress in Y direction,and p is the gas pressure injected in the borehole.When the gas pressure is applied,the effective stress reaches the tensile strength of rock mass gradually with the increase of pore pressure.Tensile crack occurs in the rock mass around borehole,and it expands along with the increase of pore pressure.Compared with the figure 2,tensile damage is the dominant form in this working condition,and some tensile cracks appear.It is believed that the existence of pore pressure has the inhibitory effect on the shear damage.Since the uniaxial tensile strength of rock mass is far less than the uniaxial compressive strength,the gas pressure for rock damage is smaller.

    The distribution of damage zone without gas pressure for case II(σy=22MPa)is shown in figure 4.Since the in-situ stress in X direction stress is less than that in Y direction,the tensile crack appears in the upper and down sides of drill hole due to the tensile stress,while the compression-shear crack occurs in the left and right sides under compressive stress in Y direction,and the dominant damage area appears around the drill hole.

    Figure 4:The distribution of damage zone without gas pressure for case II(σy=22MPa)

    Figure 5:The distribution of damage zone with gas pressure for case II(σy=10MPa,p=6.2MPa)

    The distribution of damage zone with gas pressure for case II(σy=10MPa,p=6.2MPa)is shown in figure 5.When the gas pressure is applied,the tensile crack occurs in upper and down sides,and expands inY direction.Since the in-situ stress in Y direction is larger than that in X direction,the maximum principal stress in upper and down sides is greater than the maximum principal stress in left and right sides of the rock drilling.When the high pressure gas is injected in the drill hole,the rock mass in upper and down sides tends to be destroyed.

    Figure 6:The distribution of fluid pressure around the borehole at different times(T=328K)

    Figure 7:The distribution of temperature around the borehole under different temperature(t=1e6s)

    The gas(2MPa)is injected in the drill hole in different initial temperature,the pore pressure of rock mass from different distances of borehole is observed.The distribution of fluid pressure around the borehole at different times(T=328K)is shown in figure 6,and the distribution of temperature around the borehole under different temperatures(t=1e6s)is shown in figure 7.In figure 6,as time goes on,the pore pressure in rock mass increas esgradually.The farther the distance from the borehole is,the smaller the pressure gradient is,and the pressure curve is leveling off.In figure 7,it is believed that the change of pore pressure from the different distances of borehole with temperature is not significant in initial temperature25°C,55°C and 85°C.Therefore,the initial temperature of rock mass has little influence on the pore pressure.

    4 Conclusions

    Based on the rock mechanics,elastic mechanics and thermodynamics theory,the coupled gas-solid-thermal model during rock damage is established,and the rock damage constitutive is written with MATLAB,which is embedded in the multiphysics coupling software COMSOL in the process of numerical computation,then damage rule of rock mass around drilling under high pressure gas is analyzed.The conclusions are shown as follows,

    (1)When the ratio between x direction local stress and y direction local stress is 1,the rock failure is dominated by shear damage due to the effect of gas;when the ratio between x direction local stress and y direction local stress is 1/10,pull damage appears on both sides of drilling in the direction of Y because of the effect of gas.

    (2)The tensile damage is the dominant form of rock mass under high gas pressure,as the pore pressure has the inhibitory effect on the shear damage.Since the uniaxial tensile strength of rock mass is far less than the uniaxial compressive strength,the gas pressure for rock damage is smaller.

    (3)As time goes on,the pore pressure in the rock increases gradually,while the pressure gradient decreases gradually.Besides,the initial temperature of rock mass has little effect on the pore pressure.

    Acknowledgement:This work was supported by the Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation(KYLX15_1407),the National Natural Science Foundation of China(51374201,51322401,51323004),the National Basic Research Program of China(2013CB227900),the Innovative Project of Undergraduate Student in China University of Mining and Technology(201507),the Science and Technology Major Project of Shanxi Province(2012110 1008).

    Al-Ajmi,M.;Benjeddou,A.(2011):A new discrete-layer finite element for electromechanically coupled analyses of piezoelectric adaptive composite structures.CMC:Computers Materials&Continua,vol.23,no.3,pp.265–285.

    Cao,Z.Z.;Zhou,Y.J.;Xu,P.;Li,J.W.(2014):Mechanical response analysis and safety assessment of shallow-buried pipeline under the influence of mining.CMES:Computer Modeling in Engineering&Sciences,vol.101,no.5,pp.351–364.

    Fowler,A.C.;Scott,D.R.(1996):Hydraulic crack propagation in a porous medium.Geophysical Journal International,vol.127,no.3,pp.595–604.

    Ge,Z.L.;Mei,X.L.;Jia,Y.J.;Lu,Y.Y.;Xia,B.W.(2014):Influence radius of slotted borehole drainage by high pressure water jet.Journal of Mining&Safety Engineering,vol.31,no.4,pp.657–664.

    Li,L.C.;Yang,T.H.;Tang,C.A.;Huang,X.L.;Li,X.B.(2006):Study on coupled thermal-mechanical-damage model in rock failure process.Rock and Soil Mechanics,vol.27,no.10,pp.1727–1732.

    Li,P.C.;Kong,X.Y.;Lu,D.T.(2003):Mathematical modeling of flow insaturated porous media on account of coupling effect.Journal of Hydrodynamics,vol.18,no.4,pp.419–426.

    Mahadevan,J.;Sharma,M.M.;Yortsos,Y.C.(2007):Capillary wicking in gas wells.SPE Journal,vol.12,no.4,pp.429–437.

    Ning,J.G.;Wang,J.;Liu,X.S.;Qian,K.;Sun,B.(2014):Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst.International Journal of Mining Science and Technology,vol.24,no.6,pp.805–810.

    Pankow,M.;Waas,A.M.;Yen,C.F.(2012):Modeling the response of 3D textile composites under compressive loads to predict compressive strength.CMC:Computers Materials&Continua,vol.32,no.2,pp.81-106.

    Shen,J.;Zhao,Y.S.;Duan,K.L.(1997):Numerical simulation of hydraulic fracture in low permeable coal and rock mass.Journal of China Coal Society,vol.22,no.6,pp.580–585.

    Tang,C.A.;Ma,T.H.;Li,L.C.;Liu,H.Y.(2007):Rock failure issues in geological disposal of high-level radioactive wastes under multi-field coupling function.Chinese Journal of Rock Mechanics and Engineering,vol.26(Supp.2),pp.3932–3938.

    Tong,F.G.;Jing,L.;Zimmerman,R.W.(2010):A fully coupled thermo-hydromechanical model for simulating multiphase flow,deformation and heat transfer in buffer material and rock masses.International Journal of Rock Mechanics and Mining Sciences,vol.47,no.2,pp.205–217.

    Wang,G.G.;Zhang,J.L.;Shao,J.G.;Li,K.J.;Zuo,H.B.(2015):Investigation of non-isothermal and isothermal gasification process of coal char using different kinetic model International Journal of Mining Science and Technology,vol.25,no.1,pp.15–21.

    Xia,Y.Q.(2010):The challenges of water resources and the environmental impact of marcellus shale gas drilling.Science&Technology Review,no.18,pp.103–110.

    Xie,J.L.;Xu,J.L.;Wang,F.;Guo,J.L.;Liu,D.L.(2014):Deformation effect of lateral roof roadway in close coal seams after repeated mining.International Journal of Mining Science and Technology,vol.24,no.5,pp.597–601.

    Xie,H.P.;Gao,F.;Ju,Y.;Fu,Q.;Zhou,F.B.(2012):Unconventional theories and strategies for fracturing treatments of shale gas strata.Journal of Sichuan University(Engineering Science Edition),vol.44,no.6,pp.1-6.

    Zhou,Y.J.;Guo,H.Z.;Cao,Z.Z.;Zhang,J.G.(2013):Mechanismandcontrol of water seepage of vertical feeding borehole for solid materials in backfilling coal mining.International Journal of Mining Science and Technology,vol.23,no.5,pp.675-679.

    Zhu,W.C.;Tang,C.A.(2004):Micromechanical model for simulating the fracture process of rock.Rock Mechanics and Rock Engineering,vol.37,no.1,pp.25-56.

    Zhu,W.C.;Wei,C.H.;Tian,J.;Yang,T.H.;Tang,C.A.(2009):Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application.Rock and Soil Mechanics,vol.30,no.12,pp.3851–3857.

    1State Key Laboratory for Geomechanics&Deep Underground Engineering,School of Mechanics&Civil Engineering,China University of Mining&Technology,Xuzhou 221008,China.

    2Corresponding author:Zhou Yuejin.Tel:+86-13914884696.Email:yuejinzh@163.com

    19禁男女啪啪无遮挡网站| 亚洲一区二区三区色噜噜 | 又黄又爽又免费观看的视频| 啦啦啦 在线观看视频| 中文字幕精品免费在线观看视频| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 交换朋友夫妻互换小说| 乱人伦中国视频| 久久九九热精品免费| 亚洲第一av免费看| 热re99久久精品国产66热6| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久免费视频了| 欧美日韩一级在线毛片| 免费观看人在逋| 国产在线观看jvid| 亚洲av五月六月丁香网| 成人三级做爰电影| 亚洲aⅴ乱码一区二区在线播放 | 曰老女人黄片| 亚洲人成电影免费在线| 午夜福利在线免费观看网站| 欧美日韩亚洲高清精品| 成熟少妇高潮喷水视频| 国产精品av久久久久免费| 亚洲熟女毛片儿| 婷婷丁香在线五月| 19禁男女啪啪无遮挡网站| 欧美日韩精品网址| 日本vs欧美在线观看视频| 欧美人与性动交α欧美软件| 一级黄色大片毛片| av免费在线观看网站| √禁漫天堂资源中文www| 可以免费在线观看a视频的电影网站| 91av网站免费观看| 亚洲国产欧美日韩在线播放| 可以在线观看毛片的网站| 一级作爱视频免费观看| 啪啪无遮挡十八禁网站| 999久久久国产精品视频| 女警被强在线播放| 亚洲熟妇中文字幕五十中出 | 色在线成人网| 色老头精品视频在线观看| 欧美成人性av电影在线观看| 男女下面进入的视频免费午夜 | 两性午夜刺激爽爽歪歪视频在线观看 | 色婷婷久久久亚洲欧美| 成年女人毛片免费观看观看9| 久热这里只有精品99| 欧美精品亚洲一区二区| 亚洲欧美精品综合久久99| 久久久久久久精品吃奶| 国产精品香港三级国产av潘金莲| 麻豆成人av在线观看| 亚洲av片天天在线观看| 色尼玛亚洲综合影院| 欧美日韩乱码在线| 一级a爱视频在线免费观看| 麻豆一二三区av精品| 桃色一区二区三区在线观看| 黄色视频,在线免费观看| 自线自在国产av| 欧美乱色亚洲激情| 啦啦啦在线免费观看视频4| 亚洲成a人片在线一区二区| 女生性感内裤真人,穿戴方法视频| 欧美黑人精品巨大| 一边摸一边做爽爽视频免费| 黄色丝袜av网址大全| 性欧美人与动物交配| 99国产精品一区二区蜜桃av| 五月开心婷婷网| 精品国产美女av久久久久小说| 精品电影一区二区在线| 99国产精品99久久久久| 国产精品永久免费网站| 欧美日韩一级在线毛片| 久久人妻熟女aⅴ| 黄片小视频在线播放| av天堂在线播放| 一区二区三区激情视频| 999精品在线视频| 天堂俺去俺来也www色官网| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区免费| 啦啦啦在线免费观看视频4| 成熟少妇高潮喷水视频| 国产精品美女特级片免费视频播放器 | 91字幕亚洲| 国产免费男女视频| 欧美激情 高清一区二区三区| 久久九九热精品免费| 国产成人欧美| 精品久久久久久久久久免费视频 | 国产无遮挡羞羞视频在线观看| 国产日韩一区二区三区精品不卡| 欧美日韩视频精品一区| 久久中文字幕人妻熟女| 在线观看一区二区三区激情| 在线十欧美十亚洲十日本专区| 亚洲精品国产色婷婷电影| 国产极品粉嫩免费观看在线| 人成视频在线观看免费观看| 国产午夜精品久久久久久| 午夜免费成人在线视频| www日本在线高清视频| 国产成人啪精品午夜网站| 国产欧美日韩综合在线一区二区| 国内毛片毛片毛片毛片毛片| 啦啦啦免费观看视频1| 亚洲成人免费电影在线观看| 窝窝影院91人妻| 夜夜夜夜夜久久久久| 国产精品爽爽va在线观看网站 | 色哟哟哟哟哟哟| 两个人看的免费小视频| av超薄肉色丝袜交足视频| 黄色女人牲交| 动漫黄色视频在线观看| 久久精品国产综合久久久| 国产日韩一区二区三区精品不卡| 国产精品美女特级片免费视频播放器 | 在线观看www视频免费| 不卡一级毛片| 无人区码免费观看不卡| 精品一品国产午夜福利视频| 欧美乱码精品一区二区三区| 级片在线观看| 性欧美人与动物交配| 两性夫妻黄色片| 啪啪无遮挡十八禁网站| 大陆偷拍与自拍| 99在线人妻在线中文字幕| 国产精品国产av在线观看| 日本欧美视频一区| 最好的美女福利视频网| 999精品在线视频| 午夜两性在线视频| 国产乱人伦免费视频| 不卡av一区二区三区| 在线观看免费高清a一片| 国产人伦9x9x在线观看| 国产97色在线日韩免费| 别揉我奶头~嗯~啊~动态视频| 国产精品偷伦视频观看了| 人成视频在线观看免费观看| 久久香蕉国产精品| 日本精品一区二区三区蜜桃| 午夜免费观看网址| 少妇被粗大的猛进出69影院| 精品人妻在线不人妻| 午夜福利欧美成人| av中文乱码字幕在线| 大型黄色视频在线免费观看| 老司机靠b影院| 亚洲人成网站在线播放欧美日韩| 一二三四在线观看免费中文在| av电影中文网址| 午夜日韩欧美国产| 黄片播放在线免费| 黄色怎么调成土黄色| 亚洲在线自拍视频| 中文字幕最新亚洲高清| 美女扒开内裤让男人捅视频| 亚洲一区高清亚洲精品| 97超级碰碰碰精品色视频在线观看| 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区91| 久久精品国产亚洲av高清一级| 日韩欧美免费精品| 性色av乱码一区二区三区2| 国产精品自产拍在线观看55亚洲| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频 | 亚洲av五月六月丁香网| 日韩人妻精品一区2区三区| 亚洲aⅴ乱码一区二区在线播放 | 成人三级黄色视频| 久久国产乱子伦精品免费另类| 最好的美女福利视频网| 日韩成人在线观看一区二区三区| 亚洲第一av免费看| 天天影视国产精品| 国产成人系列免费观看| 搡老岳熟女国产| 午夜福利欧美成人| 久热这里只有精品99| 午夜福利一区二区在线看| 国产精品久久久人人做人人爽| 日韩成人在线观看一区二区三区| 亚洲自拍偷在线| 美女午夜性视频免费| 欧美在线黄色| 国产午夜精品久久久久久| 色综合站精品国产| 51午夜福利影视在线观看| 后天国语完整版免费观看| 成熟少妇高潮喷水视频| 午夜免费鲁丝| 亚洲av片天天在线观看| 又紧又爽又黄一区二区| 精品一区二区三区视频在线观看免费 | 国产精华一区二区三区| av在线天堂中文字幕 | 99国产综合亚洲精品| 亚洲激情在线av| 男人舔女人下体高潮全视频| 欧美一区二区精品小视频在线| 国产亚洲精品久久久久久毛片| 水蜜桃什么品种好| 美女国产高潮福利片在线看| 欧美国产精品va在线观看不卡| 色综合婷婷激情| 久久久久久久久中文| 成人永久免费在线观看视频| 亚洲一区二区三区色噜噜 | 高清欧美精品videossex| 麻豆成人av在线观看| 亚洲欧美激情在线| 在线观看www视频免费| 亚洲精品在线观看二区| 久久精品91蜜桃| 国产欧美日韩一区二区三区在线| 男女午夜视频在线观看| 欧美在线黄色| 日韩欧美一区二区三区在线观看| 一二三四社区在线视频社区8| 亚洲狠狠婷婷综合久久图片| 精品福利永久在线观看| 桃红色精品国产亚洲av| 午夜老司机福利片| 国产亚洲欧美98| 高清在线国产一区| 久久精品亚洲精品国产色婷小说| 精品福利观看| 久久久久久免费高清国产稀缺| 18禁观看日本| 久久亚洲精品不卡| 亚洲九九香蕉| 99国产精品一区二区蜜桃av| 麻豆国产av国片精品| 97超级碰碰碰精品色视频在线观看| 人妻久久中文字幕网| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 亚洲精品一卡2卡三卡4卡5卡| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美日韩无卡精品| 免费高清视频大片| 午夜福利,免费看| www.999成人在线观看| 国产成人精品在线电影| 电影成人av| av超薄肉色丝袜交足视频| 国产成人av教育| 美女扒开内裤让男人捅视频| 免费观看精品视频网站| 搡老熟女国产l中国老女人| 亚洲国产欧美日韩在线播放| 亚洲熟妇熟女久久| 亚洲色图 男人天堂 中文字幕| www.www免费av| 免费在线观看黄色视频的| 欧美成人免费av一区二区三区| 国产精品一区二区免费欧美| 日韩国内少妇激情av| 激情视频va一区二区三区| 婷婷精品国产亚洲av在线| 在线观看免费视频网站a站| 成人亚洲精品一区在线观看| 两人在一起打扑克的视频| 国产精品一区二区免费欧美| 一本综合久久免费| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 日本精品一区二区三区蜜桃| 亚洲精品美女久久久久99蜜臀| 90打野战视频偷拍视频| 午夜福利在线观看吧| 亚洲欧美激情综合另类| 国产av一区在线观看免费| 脱女人内裤的视频| 欧美精品亚洲一区二区| 无遮挡黄片免费观看| 亚洲视频免费观看视频| 久久精品国产亚洲av高清一级| 青草久久国产| 色综合欧美亚洲国产小说| 一级毛片女人18水好多| 高清欧美精品videossex| 亚洲精品在线观看二区| 老熟妇仑乱视频hdxx| 国产不卡一卡二| www.999成人在线观看| 交换朋友夫妻互换小说| 一区在线观看完整版| 可以免费在线观看a视频的电影网站| av网站在线播放免费| 黄片播放在线免费| 岛国在线观看网站| 亚洲成人免费av在线播放| 男女下面进入的视频免费午夜 | 精品国产一区二区三区四区第35| 婷婷精品国产亚洲av在线| 中文字幕人妻丝袜一区二区| 99国产综合亚洲精品| 国产av又大| 国产在线精品亚洲第一网站| 97人妻天天添夜夜摸| 欧美不卡视频在线免费观看 | 国产精品国产高清国产av| 亚洲国产精品合色在线| 纯流量卡能插随身wifi吗| 99re在线观看精品视频| 人人妻人人爽人人添夜夜欢视频| 成在线人永久免费视频| 亚洲人成伊人成综合网2020| 日日夜夜操网爽| 亚洲精品在线观看二区| 欧美老熟妇乱子伦牲交| 国内毛片毛片毛片毛片毛片| 又大又爽又粗| 国产单亲对白刺激| 日韩大尺度精品在线看网址 | 制服人妻中文乱码| 天堂俺去俺来也www色官网| 88av欧美| 丝袜人妻中文字幕| 国产高清videossex| 成年版毛片免费区| 久久狼人影院| 亚洲av熟女| 99久久国产精品久久久| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 99国产精品一区二区三区| 少妇 在线观看| 久久狼人影院| 亚洲av第一区精品v没综合| 久久久精品国产亚洲av高清涩受| 国产人伦9x9x在线观看| 久久久久国产精品人妻aⅴ院| 国产精品影院久久| 成人亚洲精品一区在线观看| 欧美乱妇无乱码| 男女高潮啪啪啪动态图| 欧美人与性动交α欧美软件| 亚洲少妇的诱惑av| 女性生殖器流出的白浆| 男人操女人黄网站| 成人影院久久| 国产精品免费视频内射| 国产精品香港三级国产av潘金莲| 亚洲九九香蕉| 伦理电影免费视频| 999久久久国产精品视频| 欧美日韩亚洲综合一区二区三区_| 在线播放国产精品三级| 悠悠久久av| 啦啦啦 在线观看视频| 国产精品成人在线| 最新美女视频免费是黄的| 亚洲欧美日韩另类电影网站| 午夜福利欧美成人| 在线看a的网站| 欧美中文日本在线观看视频| 美国免费a级毛片| 午夜免费成人在线视频| 女性生殖器流出的白浆| 久久香蕉激情| 我的亚洲天堂| 色哟哟哟哟哟哟| 亚洲男人天堂网一区| a级毛片在线看网站| 欧美一级毛片孕妇| 免费观看精品视频网站| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 在线观看免费午夜福利视频| 美国免费a级毛片| 在线观看一区二区三区| 国产黄色免费在线视频| 免费久久久久久久精品成人欧美视频| 国产亚洲av高清不卡| 在线观看一区二区三区激情| 99国产精品一区二区蜜桃av| 桃色一区二区三区在线观看| 久久精品亚洲熟妇少妇任你| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女 | 精品国内亚洲2022精品成人| 日韩欧美国产一区二区入口| 久久中文字幕一级| 美女 人体艺术 gogo| 性少妇av在线| 亚洲专区字幕在线| 精品国产一区二区三区四区第35| 国产精品国产av在线观看| 天堂中文最新版在线下载| 欧美日韩福利视频一区二区| 操美女的视频在线观看| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美98| 色婷婷久久久亚洲欧美| 欧美日本中文国产一区发布| 日日干狠狠操夜夜爽| 久久这里只有精品19| 一边摸一边抽搐一进一出视频| 国产av一区二区精品久久| 超色免费av| 国产成人免费无遮挡视频| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| 日本一区二区免费在线视频| 老司机深夜福利视频在线观看| 国产又色又爽无遮挡免费看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品 国内视频| 91大片在线观看| 超碰97精品在线观看| 亚洲熟妇熟女久久| 性少妇av在线| 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 久久性视频一级片| 亚洲精品久久午夜乱码| 好男人电影高清在线观看| 露出奶头的视频| 精品日产1卡2卡| 又紧又爽又黄一区二区| 精品卡一卡二卡四卡免费| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 91av网站免费观看| 亚洲avbb在线观看| 久久香蕉精品热| 久久久水蜜桃国产精品网| 日韩有码中文字幕| 久久热在线av| 咕卡用的链子| 欧美亚洲日本最大视频资源| 国产xxxxx性猛交| 90打野战视频偷拍视频| 桃红色精品国产亚洲av| 亚洲免费av在线视频| 国产aⅴ精品一区二区三区波| 久久精品国产综合久久久| 精品国产超薄肉色丝袜足j| 国产真人三级小视频在线观看| 91精品三级在线观看| 精品免费久久久久久久清纯| 后天国语完整版免费观看| 成人影院久久| 国产亚洲精品久久久久久毛片| 日本 av在线| 男女下面插进去视频免费观看| 欧美一级毛片孕妇| 欧美性长视频在线观看| 男女午夜视频在线观看| 国产精品自产拍在线观看55亚洲| 18禁裸乳无遮挡免费网站照片 | 少妇被粗大的猛进出69影院| 午夜福利免费观看在线| 91国产中文字幕| 多毛熟女@视频| 一本大道久久a久久精品| 美女大奶头视频| 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区免费| 国产精品久久久av美女十八| 亚洲一区二区三区欧美精品| 日日夜夜操网爽| 国产又爽黄色视频| 制服诱惑二区| 欧美乱码精品一区二区三区| 男女做爰动态图高潮gif福利片 | 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放 | 夜夜夜夜夜久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| 中文字幕人妻熟女乱码| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 91麻豆av在线| 欧美一区二区精品小视频在线| 亚洲av熟女| 日日爽夜夜爽网站| 日本欧美视频一区| 又大又爽又粗| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三| 老司机午夜十八禁免费视频| 777久久人妻少妇嫩草av网站| 国产三级黄色录像| 色尼玛亚洲综合影院| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美网| 一进一出好大好爽视频| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频日本深夜| 高清黄色对白视频在线免费看| 色播在线永久视频| 色在线成人网| 午夜精品久久久久久毛片777| 精品福利观看| 国产精品av久久久久免费| 午夜免费鲁丝| 午夜a级毛片| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 日日干狠狠操夜夜爽| 国产1区2区3区精品| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 男女做爰动态图高潮gif福利片 | 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久久久久久大奶| 麻豆一二三区av精品| 精品国产美女av久久久久小说| 两人在一起打扑克的视频| 热re99久久精品国产66热6| 在线看a的网站| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 亚洲一区高清亚洲精品| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 精品高清国产在线一区| a级片在线免费高清观看视频| 国产精品亚洲av一区麻豆| 精品国产亚洲在线| 欧美成人性av电影在线观看| 麻豆一二三区av精品| 国产一卡二卡三卡精品| 成人国语在线视频| ponron亚洲| 又大又爽又粗| 老司机亚洲免费影院| 久久久国产精品麻豆| 9色porny在线观看| 在线观看一区二区三区| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| 在线看a的网站| 亚洲欧美一区二区三区久久| 国产欧美日韩精品亚洲av| svipshipincom国产片| 日韩成人在线观看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 97人妻天天添夜夜摸| 日韩欧美免费精品| 亚洲中文日韩欧美视频| 国产精品日韩av在线免费观看 | 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 精品乱码久久久久久99久播| 国产亚洲欧美精品永久| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| 国产精品1区2区在线观看.| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 久久久久久久久免费视频了| 一进一出好大好爽视频| 亚洲精品国产一区二区精华液| 欧美av亚洲av综合av国产av| 极品人妻少妇av视频| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 天堂俺去俺来也www色官网| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| 国产亚洲精品久久久久5区| 丝袜美足系列| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 黄片小视频在线播放| 国产高清国产精品国产三级| 精品人妻在线不人妻| 欧美中文综合在线视频| 美女大奶头视频| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 亚洲免费av在线视频| 最好的美女福利视频网| 免费在线观看亚洲国产| 日韩免费av在线播放| 国产熟女午夜一区二区三区| 国产一区二区三区视频了| 国产精品成人在线| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 又紧又爽又黄一区二区| 亚洲一区二区三区欧美精品| 黄色成人免费大全| 老鸭窝网址在线观看| 午夜激情av网站| 午夜福利在线观看吧| 一边摸一边做爽爽视频免费| 18禁裸乳无遮挡免费网站照片 | 麻豆久久精品国产亚洲av | 又黄又爽又免费观看的视频| 亚洲国产欧美一区二区综合| 亚洲成人免费电影在线观看|