• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    2015-12-13 01:54:25CaoZhengzhengZhouYuejinZhangQiandWangErqian
    Computers Materials&Continua 2015年9期

    Cao Zhengzheng,Zhou Yuejin,2,Zhang Qiand Wang Erqian

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    Cao Zhengzheng1,Zhou Yuejin1,2,Zhang Qi1and Wang Erqian1

    Gas fracturing technology is the key to the exploration for unconventional petroleum resources and other engineering industries,so the research on the coupled gas-solid-thermal model during rock damage has the important significance to the development of gas fracturing technology.By introducing rock damage variable,the coupled gas-solid-thermal model during rock damage is established in this paper,besides,the rock damage constitutive is written with MATLAB software,which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation.Based on this,the damage rule of rock mass around drilling under high pressure gas is analyzed.The results show when the ratio between x direction local stress σxand y direction local stress σyis 1,the rock failure is dominated by shear damage due to the effect of gas;when the ratio between x direction local stress σxand y direction local stress σyis 1/10,pull damage appears on both sides of drilling in the direction of Y because of the effect of gas;with the passage of time,the pore pressure in the rock mass increases gradually,while the pressure gradient decreases gradually;the primary temperature of rock mass has little influence on the pore pressure.

    gas-solid-thermal model,rock damage,gas fracturing technology,damage variable.

    1 Introduction

    As the successful exploitation of shale gas is launched extensively in America in recent year,the shale gas resource is increasingly becoming an important supplement for conventional energy sources,which has revolutionized a new energy industry in the world[Li,Yang,Tang,Huang and Li(2006);Tong,Jing and Zimmerman(2010);Ge,Mei,Jia,Lu and Xia(2014)].It is commonly known that the perme-ability of shale rock is very low(less than 1mD)and most of the shale gas reservoirs need stimulation to enhance the gas productivity[Fowler and Scott(1996);Zhu and Tang(2004);Pankow,Waas and Yen(2012);Ning,Wang,Liu,Qian and Sun(2014)].After the completion of shale gas drilling,only the drilling with natural fractures which are well developed can be put into production directly,more than 90%of the wells need to process through acidizing,fracturing and other stimulation to get the ideal output[Li,Kong and Lu(2003);Xia(2010);Wang,Zhang,Shao,Li and Zuo(2015)].According to the experience of United States,the conventional hydraulic fracturing technology,which requires large quantities of water,can make the clay in the reservoir swelled seriously and decrease the permeability of shale rock,thereby reducing the gas productivity[Shen,Zhao and Duan(1997);Zhu,Wei,Tian,Yang and Tang(2009);Zhou,Guo,Cao and Zhang(2013)].Besides,many shale gas formations are water-wet and under-saturated where the initial water saturation in the reservoir is less than the capillary equilibrium irreducible water saturation.The use of water-based fracturing fluids causes water to be trapped in the near-wellbore region,thereby significantly impairing the ability of gas to flow[Tang,Ma,Li and Liu(2007);Al-Ajmi and Benjeddou(2011);Cao,Zhou,Xu and Li(2014)].

    In view of the weakness in hydraulic fracturing technology,the gas fracturing technology is introduced to improve the reservoir penetration to increase to shale gas production[Mahadevan,Sharma and Yortsos(2007);Xie,Gao,Ju,Fu and Zhou(2012);Xie,Xu,Wang,Guo and Liu(2014)].The related experiment results indicate that the high pressure gas,with the characteristics of low viscosity and surface tension,will penetrate into the rock easily during the gas fracturing processes,and its threshold pressure is far smaller than that of water,especially with a high penetration rate.By introducing rock damage variable,the paper builds the coupled gassolid-thermal mechanical model during rock damage,and the damage constitutive is written with Matlab,which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation,then rock mass damage rule around drilling under high pressure gas is analyzed.

    2 The coupled gas-solid-thermal model during rock damage

    Since the gas seepage flow,rock deformation and heat flow process are involved in the coupled gas-solid-thermal process during rock damage,the paper establishes a gas-solid-thermal coupling mechanical model during rock damage,based on the seepage mechanics equation,the thermodynamic principle and elastic damage theory.

    2.1 The control equation of rock deformation

    The rock mass is simplified to be a linear elastic isotropic porous medium,then the constitutive equation of rock mass involving stress,strain,pore pressure and temperature is obtained,

    In equation(1),G represents the shear modulus;μ represents Poisson’s ratio;δijrepresents Kronecker symbol;α =1-K/Ksrepresents Biot’s coefficient;K represents the bulk modulus;αTrepresents the thermal expansion coefficient.

    According to the deformation continuity conditions,the geometric equation is shown as follows,

    Putting equation(1)and equation(2)to the equilibrium equation,the modified form of the Navier equation involving displacement,pore pressure and temperature is deduced as follows,

    2.2 The gas seepage equation

    The conservation of mass is satisfied in the process of gas seepage,

    In equation(4),m represents the gas mass per volume of rock;ρgrepresents the gas density;qgrepresents the Darcy seepage velocity of the gas;Qmrepresents the source origin;t represents the time variable.

    The gas seepage flow in fractured medium under the drive of pressure gradient is commonly used as follows,

    In equation(5),μfrepresents the dynamic viscosity coefficient;k represents the permeability of gas.

    Since the gas is compressible,it could be regarded as the ideal gas,therefore the relationship between the density and pressure is obtained,

    In equation(6),Mgrepresents relative molecular mass of the gas;R represents the constant value of ideal gas;T represents the absolute temperature.

    Putting equation(5)and equation(6)into equation(4),the gas seepage continuity equation is deduced as follows,

    The deformation of rock mass occurs under the action of gas pressure,thus changing the porosity of rock mass,and affecting the gas seepage in rock mass.The dynamic evolution model of rock porosity is obtained as follows,

    In equation(8),φ0represents the initial porosity;εvrepresents the volume strain;Δp represents the variation of gas pressure;Ksrepresents the bulk modulus of basic frame of rock mass.

    According to the Kozeny-Carman equation in seepage mechanics,the permeability expression k could be obtained as follows,

    2.3 The law of energy conservation

    According to the Fourier’s law,the constitutive equation of heat transfer is shown as follows,

    In equation(10),qTrepresents heat flow amount;λM=(1-φ)λs+φλg,λsand λgare the heat transfer coefficient of the solid(rock mass)and the fluid(gas),respectively.

    As the thermal equilibrium between rock mass and the gas is constantly kept,the heat balance equation can be expressed as follows,In equation(11),(ρC)Mrepresents the heat capacity;the first item is the variable rate of internal energy,and the second item is the heat dissipation caused by thermal expansion,and the third item is the additional item caused by deformation energy.If the internal heat source,the initial conditions and boundary conditions are given,the temperature in the rock mass in different time can be obtained.

    2.4 The damage evolution equation

    The tensile damage and shear damage in rock mass occur if the maximum tensile stress criterion and Mohr-Coulomb criterion is satisfied,respectively,which is shown in figure 1.

    In equation(12),σ1and σ3is the maximum principal stress and minimum principal stress,respectively;ftand fcis the uniaxial tensile strength and uniaxial compressive strength,respectively.

    Figure 1:The constitutive law of rock under uniaxial stress condition

    According to the elastic damage theory,the modulus of elasticity is shown below,

    In equation(13),E0represents the modulus of elasticity before the damage occurs.

    The damage variable of rock mass is shown in the following equations,

    In equation(14),ε1and ε3is the maximum principal strain and minimum principal strain,respectively; εtand εcis the maximum tensile principal strain and the maximum compressible principal strain.

    Due to the highly nonlinear characteristics in coupled equations,the finite element numerical method is introduced.COMSOL Multiphysics is the finite element numerical analysis software designed for multiphysical field coupling problem,and it also owns the powerful programming function based on MATLAB language or COMSOL script.In this paper,the rock damage constitutive is written with MATLAB,which is embedded in the multiphysics coupling software COMSOL in the process of numerical computation.

    3 The rock damage simulation under high pressure in different in-situ stress

    In order to research the rock mass damage rule under high pressure,high pressure gas is injected in drilling under the condition of initial ground stress,and then rock mass damage rule around drilling under high pressure gas is analyzed.

    The numerical model is the cube 10m×10m×1m,whose center is the borehole(the radius 0.1 m).The elastic modulus and strength of the model unit present the rule of Weibull distribution.Assume that the initial temperature of rock mass is 55°C,and the mechanical parameters of rock mass and the coupling parameters are shown in table 1.The left and lateral boundary condition of the numerical model is the displacement constraint,while the right and upper boundary condition of the numerical model is applied external boundary stress;the pressure in the borehole increases gradually.

    In order to study the influence of the gas pressure on rock mass in different in-situ stress level,two numerical models are established as follows,the stress ratio in case I is σx/σy=1/1,and the stress ratio in case II is σx/σy=1/10.For each case,two kinds of working condition are discussed.The first working condition is to simulate the damage zone distribution of surrounding rock in the stress ratio without the gas pressure,and external boundary stress(Δσy=1MPa)increases according to the stress ratio(σx/σy).The second working condition is to simulate the influence of gas pressure on rock mass,and initial boundary stress(σy=10MPa)increasesaccording to the stress ratio(σx/σy),and the gas pressure in the drill hole increases gradually(Δp=0.1MPa).

    Table 1:Physical-mechanical parameters of rock and gas

    Figure 2:The distribution of damage zone without gas pressure for case I(σy=24MPa)

    In order to distinguish the tensile crack and shear crack,the damage value in tensile crack is negative,while the damage value in shear crack is positive.The distribution of damage zone without gas pressure for case I(σy=24MPa)is present in figure 2.A great deal of shear crack appears around the borehole rock mass under the effect of in-situ stress,without the tensile crack.The crack and damage area increase gradually with the increase of boundary stress.The shear damage is the dominant fracture form of surrounding rock in the increase process of boundary stress,and the stress concentration appears in surrounding rock mass around the drill hole,destroying the surrounding rock mass and the overall damaged area appears.

    Figure 3:The distribution of damage zone with gas pressure for case I(σy=10MPa,p=7MPa)

    The distribution of damage zone with gas pressure for case I(σy=10MPa,p=7MPa)is shown in figure 3.σyis the boundary stress in Y direction,and p is the gas pressure injected in the borehole.When the gas pressure is applied,the effective stress reaches the tensile strength of rock mass gradually with the increase of pore pressure.Tensile crack occurs in the rock mass around borehole,and it expands along with the increase of pore pressure.Compared with the figure 2,tensile damage is the dominant form in this working condition,and some tensile cracks appear.It is believed that the existence of pore pressure has the inhibitory effect on the shear damage.Since the uniaxial tensile strength of rock mass is far less than the uniaxial compressive strength,the gas pressure for rock damage is smaller.

    The distribution of damage zone without gas pressure for case II(σy=22MPa)is shown in figure 4.Since the in-situ stress in X direction stress is less than that in Y direction,the tensile crack appears in the upper and down sides of drill hole due to the tensile stress,while the compression-shear crack occurs in the left and right sides under compressive stress in Y direction,and the dominant damage area appears around the drill hole.

    Figure 4:The distribution of damage zone without gas pressure for case II(σy=22MPa)

    Figure 5:The distribution of damage zone with gas pressure for case II(σy=10MPa,p=6.2MPa)

    The distribution of damage zone with gas pressure for case II(σy=10MPa,p=6.2MPa)is shown in figure 5.When the gas pressure is applied,the tensile crack occurs in upper and down sides,and expands inY direction.Since the in-situ stress in Y direction is larger than that in X direction,the maximum principal stress in upper and down sides is greater than the maximum principal stress in left and right sides of the rock drilling.When the high pressure gas is injected in the drill hole,the rock mass in upper and down sides tends to be destroyed.

    Figure 6:The distribution of fluid pressure around the borehole at different times(T=328K)

    Figure 7:The distribution of temperature around the borehole under different temperature(t=1e6s)

    The gas(2MPa)is injected in the drill hole in different initial temperature,the pore pressure of rock mass from different distances of borehole is observed.The distribution of fluid pressure around the borehole at different times(T=328K)is shown in figure 6,and the distribution of temperature around the borehole under different temperatures(t=1e6s)is shown in figure 7.In figure 6,as time goes on,the pore pressure in rock mass increas esgradually.The farther the distance from the borehole is,the smaller the pressure gradient is,and the pressure curve is leveling off.In figure 7,it is believed that the change of pore pressure from the different distances of borehole with temperature is not significant in initial temperature25°C,55°C and 85°C.Therefore,the initial temperature of rock mass has little influence on the pore pressure.

    4 Conclusions

    Based on the rock mechanics,elastic mechanics and thermodynamics theory,the coupled gas-solid-thermal model during rock damage is established,and the rock damage constitutive is written with MATLAB,which is embedded in the multiphysics coupling software COMSOL in the process of numerical computation,then damage rule of rock mass around drilling under high pressure gas is analyzed.The conclusions are shown as follows,

    (1)When the ratio between x direction local stress and y direction local stress is 1,the rock failure is dominated by shear damage due to the effect of gas;when the ratio between x direction local stress and y direction local stress is 1/10,pull damage appears on both sides of drilling in the direction of Y because of the effect of gas.

    (2)The tensile damage is the dominant form of rock mass under high gas pressure,as the pore pressure has the inhibitory effect on the shear damage.Since the uniaxial tensile strength of rock mass is far less than the uniaxial compressive strength,the gas pressure for rock damage is smaller.

    (3)As time goes on,the pore pressure in the rock increases gradually,while the pressure gradient decreases gradually.Besides,the initial temperature of rock mass has little effect on the pore pressure.

    Acknowledgement:This work was supported by the Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation(KYLX15_1407),the National Natural Science Foundation of China(51374201,51322401,51323004),the National Basic Research Program of China(2013CB227900),the Innovative Project of Undergraduate Student in China University of Mining and Technology(201507),the Science and Technology Major Project of Shanxi Province(2012110 1008).

    Al-Ajmi,M.;Benjeddou,A.(2011):A new discrete-layer finite element for electromechanically coupled analyses of piezoelectric adaptive composite structures.CMC:Computers Materials&Continua,vol.23,no.3,pp.265–285.

    Cao,Z.Z.;Zhou,Y.J.;Xu,P.;Li,J.W.(2014):Mechanical response analysis and safety assessment of shallow-buried pipeline under the influence of mining.CMES:Computer Modeling in Engineering&Sciences,vol.101,no.5,pp.351–364.

    Fowler,A.C.;Scott,D.R.(1996):Hydraulic crack propagation in a porous medium.Geophysical Journal International,vol.127,no.3,pp.595–604.

    Ge,Z.L.;Mei,X.L.;Jia,Y.J.;Lu,Y.Y.;Xia,B.W.(2014):Influence radius of slotted borehole drainage by high pressure water jet.Journal of Mining&Safety Engineering,vol.31,no.4,pp.657–664.

    Li,L.C.;Yang,T.H.;Tang,C.A.;Huang,X.L.;Li,X.B.(2006):Study on coupled thermal-mechanical-damage model in rock failure process.Rock and Soil Mechanics,vol.27,no.10,pp.1727–1732.

    Li,P.C.;Kong,X.Y.;Lu,D.T.(2003):Mathematical modeling of flow insaturated porous media on account of coupling effect.Journal of Hydrodynamics,vol.18,no.4,pp.419–426.

    Mahadevan,J.;Sharma,M.M.;Yortsos,Y.C.(2007):Capillary wicking in gas wells.SPE Journal,vol.12,no.4,pp.429–437.

    Ning,J.G.;Wang,J.;Liu,X.S.;Qian,K.;Sun,B.(2014):Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst.International Journal of Mining Science and Technology,vol.24,no.6,pp.805–810.

    Pankow,M.;Waas,A.M.;Yen,C.F.(2012):Modeling the response of 3D textile composites under compressive loads to predict compressive strength.CMC:Computers Materials&Continua,vol.32,no.2,pp.81-106.

    Shen,J.;Zhao,Y.S.;Duan,K.L.(1997):Numerical simulation of hydraulic fracture in low permeable coal and rock mass.Journal of China Coal Society,vol.22,no.6,pp.580–585.

    Tang,C.A.;Ma,T.H.;Li,L.C.;Liu,H.Y.(2007):Rock failure issues in geological disposal of high-level radioactive wastes under multi-field coupling function.Chinese Journal of Rock Mechanics and Engineering,vol.26(Supp.2),pp.3932–3938.

    Tong,F.G.;Jing,L.;Zimmerman,R.W.(2010):A fully coupled thermo-hydromechanical model for simulating multiphase flow,deformation and heat transfer in buffer material and rock masses.International Journal of Rock Mechanics and Mining Sciences,vol.47,no.2,pp.205–217.

    Wang,G.G.;Zhang,J.L.;Shao,J.G.;Li,K.J.;Zuo,H.B.(2015):Investigation of non-isothermal and isothermal gasification process of coal char using different kinetic model International Journal of Mining Science and Technology,vol.25,no.1,pp.15–21.

    Xia,Y.Q.(2010):The challenges of water resources and the environmental impact of marcellus shale gas drilling.Science&Technology Review,no.18,pp.103–110.

    Xie,J.L.;Xu,J.L.;Wang,F.;Guo,J.L.;Liu,D.L.(2014):Deformation effect of lateral roof roadway in close coal seams after repeated mining.International Journal of Mining Science and Technology,vol.24,no.5,pp.597–601.

    Xie,H.P.;Gao,F.;Ju,Y.;Fu,Q.;Zhou,F.B.(2012):Unconventional theories and strategies for fracturing treatments of shale gas strata.Journal of Sichuan University(Engineering Science Edition),vol.44,no.6,pp.1-6.

    Zhou,Y.J.;Guo,H.Z.;Cao,Z.Z.;Zhang,J.G.(2013):Mechanismandcontrol of water seepage of vertical feeding borehole for solid materials in backfilling coal mining.International Journal of Mining Science and Technology,vol.23,no.5,pp.675-679.

    Zhu,W.C.;Tang,C.A.(2004):Micromechanical model for simulating the fracture process of rock.Rock Mechanics and Rock Engineering,vol.37,no.1,pp.25-56.

    Zhu,W.C.;Wei,C.H.;Tian,J.;Yang,T.H.;Tang,C.A.(2009):Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application.Rock and Soil Mechanics,vol.30,no.12,pp.3851–3857.

    1State Key Laboratory for Geomechanics&Deep Underground Engineering,School of Mechanics&Civil Engineering,China University of Mining&Technology,Xuzhou 221008,China.

    2Corresponding author:Zhou Yuejin.Tel:+86-13914884696.Email:yuejinzh@163.com

    精品一区二区三区av网在线观看 | 在线观看www视频免费| 夜夜夜夜夜久久久久| 视频区欧美日本亚洲| 成人国产一区最新在线观看| 在线观看舔阴道视频| av片东京热男人的天堂| 精品久久久久久久毛片微露脸 | 久久国产精品影院| 亚洲精品乱久久久久久| 18在线观看网站| 一个人免费在线观看的高清视频 | 午夜日韩欧美国产| 视频在线观看一区二区三区| 亚洲视频免费观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 精品免费久久久久久久清纯 | 丝袜喷水一区| 丝袜人妻中文字幕| 日韩三级视频一区二区三区| 男女午夜视频在线观看| 9191精品国产免费久久| 老司机福利观看| 日本wwww免费看| 亚洲国产欧美在线一区| 一区在线观看完整版| 国产精品一区二区精品视频观看| 国产免费视频播放在线视频| 美国免费a级毛片| 国产老妇伦熟女老妇高清| 一边摸一边抽搐一进一出视频| 18在线观看网站| 电影成人av| 国产亚洲精品久久久久5区| 国产有黄有色有爽视频| 大香蕉久久网| 亚洲视频免费观看视频| 国产亚洲欧美精品永久| 一二三四在线观看免费中文在| 国产一区二区 视频在线| 日韩有码中文字幕| 国产亚洲精品久久久久5区| 久久精品国产亚洲av香蕉五月 | 黑人巨大精品欧美一区二区mp4| 久久久国产一区二区| 亚洲精品自拍成人| 国产一区二区三区综合在线观看| 亚洲伊人色综图| 亚洲va日本ⅴa欧美va伊人久久 | 午夜免费鲁丝| 中国国产av一级| 午夜老司机福利片| 91成年电影在线观看| 91成人精品电影| 欧美 亚洲 国产 日韩一| 老司机福利观看| 国产黄频视频在线观看| 国产亚洲欧美在线一区二区| 丁香六月天网| 一边摸一边做爽爽视频免费| 久久 成人 亚洲| 国产男人的电影天堂91| 国产黄色免费在线视频| 亚洲精品美女久久久久99蜜臀| 在线永久观看黄色视频| 侵犯人妻中文字幕一二三四区| av在线播放精品| 婷婷丁香在线五月| www.999成人在线观看| 午夜影院在线不卡| 国产一级毛片在线| 中文字幕精品免费在线观看视频| 十分钟在线观看高清视频www| 视频在线观看一区二区三区| 黄色视频不卡| 成人av一区二区三区在线看 | 在线看a的网站| 国产男女超爽视频在线观看| av欧美777| 日韩中文字幕欧美一区二区| av在线播放精品| 各种免费的搞黄视频| 人成视频在线观看免费观看| 日韩,欧美,国产一区二区三区| 少妇精品久久久久久久| 中文字幕av电影在线播放| 亚洲国产av影院在线观看| 巨乳人妻的诱惑在线观看| 9色porny在线观看| 啦啦啦 在线观看视频| 人妻人人澡人人爽人人| 成人黄色视频免费在线看| 精品视频人人做人人爽| 国产免费一区二区三区四区乱码| 日韩大码丰满熟妇| 精品亚洲成国产av| 久久久久久久精品精品| 亚洲av日韩在线播放| 男人舔女人的私密视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情极品国产一区二区三区| 在线十欧美十亚洲十日本专区| 黄色片一级片一级黄色片| 亚洲精品美女久久av网站| 午夜福利视频在线观看免费| 午夜免费成人在线视频| 在线亚洲精品国产二区图片欧美| 久久久精品区二区三区| 亚洲中文字幕日韩| 亚洲成人免费电影在线观看| www日本在线高清视频| 欧美日韩国产mv在线观看视频| 国产成人av激情在线播放| 青春草亚洲视频在线观看| 免费久久久久久久精品成人欧美视频| 老司机福利观看| 操美女的视频在线观看| 两人在一起打扑克的视频| 女人精品久久久久毛片| 精品久久久久久电影网| 美女主播在线视频| 99香蕉大伊视频| 久久久久久久久久久久大奶| 亚洲七黄色美女视频| 国产精品自产拍在线观看55亚洲 | 麻豆国产av国片精品| 伊人亚洲综合成人网| 男女下面插进去视频免费观看| 人人妻人人澡人人爽人人夜夜| 欧美黄色片欧美黄色片| 两个人免费观看高清视频| 国产真人三级小视频在线观看| 99久久人妻综合| 亚洲精品国产av蜜桃| 老司机在亚洲福利影院| 国产免费视频播放在线视频| 国产成人av激情在线播放| 婷婷丁香在线五月| 少妇的丰满在线观看| 日韩有码中文字幕| 国产国语露脸激情在线看| 青草久久国产| 色精品久久人妻99蜜桃| 亚洲七黄色美女视频| 中文字幕人妻丝袜制服| 大陆偷拍与自拍| 一个人免费在线观看的高清视频 | 91av网站免费观看| 在线永久观看黄色视频| 波多野结衣av一区二区av| 日韩制服丝袜自拍偷拍| 久久久精品区二区三区| 亚洲精品第二区| 欧美人与性动交α欧美软件| 国产一区二区三区av在线| 亚洲成国产人片在线观看| 欧美精品av麻豆av| 午夜91福利影院| 亚洲精品乱久久久久久| 最新在线观看一区二区三区| 国产男女内射视频| 国产精品亚洲av一区麻豆| 久久性视频一级片| 久久99一区二区三区| 日韩欧美免费精品| 黄色视频不卡| 99re6热这里在线精品视频| 在线永久观看黄色视频| 精品视频人人做人人爽| 伊人久久大香线蕉亚洲五| 女人被躁到高潮嗷嗷叫费观| 在线观看一区二区三区激情| 精品人妻熟女毛片av久久网站| 女性生殖器流出的白浆| 一边摸一边做爽爽视频免费| 成人国产一区最新在线观看| 男人舔女人的私密视频| 精品国产一区二区三区四区第35| 欧美变态另类bdsm刘玥| 国产精品av久久久久免费| 亚洲国产av影院在线观看| 啦啦啦在线免费观看视频4| 丝袜在线中文字幕| 欧美97在线视频| 99精国产麻豆久久婷婷| 成人国产av品久久久| 老汉色av国产亚洲站长工具| 成年人免费黄色播放视频| 又大又爽又粗| 久久久久精品国产欧美久久久 | 亚洲成人免费av在线播放| 大香蕉久久网| 国产熟女午夜一区二区三区| e午夜精品久久久久久久| 免费一级毛片在线播放高清视频 | 午夜福利在线免费观看网站| 国产精品九九99| 亚洲精品av麻豆狂野| 中文字幕色久视频| 一本色道久久久久久精品综合| 爱豆传媒免费全集在线观看| 日韩中文字幕视频在线看片| 各种免费的搞黄视频| 国产男人的电影天堂91| 男女国产视频网站| 精品国产乱子伦一区二区三区 | 亚洲精品国产区一区二| 少妇粗大呻吟视频| 99国产极品粉嫩在线观看| 国产一区有黄有色的免费视频| 久久亚洲精品不卡| 丝袜喷水一区| 欧美在线黄色| 中文字幕人妻丝袜一区二区| 午夜福利免费观看在线| 在线看a的网站| 国产成人影院久久av| 成人黄色视频免费在线看| 精品熟女少妇八av免费久了| 操出白浆在线播放| 性少妇av在线| 久久久久久亚洲精品国产蜜桃av| 亚洲精品乱久久久久久| av又黄又爽大尺度在线免费看| 亚洲国产中文字幕在线视频| 亚洲av电影在线观看一区二区三区| 欧美精品av麻豆av| 两个人看的免费小视频| 91精品国产国语对白视频| 国产亚洲精品一区二区www | 亚洲久久久国产精品| 黑丝袜美女国产一区| 99国产综合亚洲精品| 高清黄色对白视频在线免费看| 最近最新免费中文字幕在线| 久久久国产成人免费| e午夜精品久久久久久久| 美女扒开内裤让男人捅视频| 中文字幕最新亚洲高清| 国产av国产精品国产| 色婷婷久久久亚洲欧美| 考比视频在线观看| 国产伦理片在线播放av一区| 久久久水蜜桃国产精品网| 亚洲中文av在线| 人成视频在线观看免费观看| 又大又爽又粗| 最黄视频免费看| av又黄又爽大尺度在线免费看| 久久影院123| 99久久综合免费| 国产精品免费视频内射| 久久久久久久大尺度免费视频| 波多野结衣av一区二区av| 国产av一区二区精品久久| 岛国毛片在线播放| 最黄视频免费看| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 不卡一级毛片| 精品人妻1区二区| 91麻豆精品激情在线观看国产 | 亚洲第一青青草原| 欧美日本中文国产一区发布| 国产一区二区三区在线臀色熟女 | 久久av网站| 肉色欧美久久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区四区五区乱码| 日韩中文字幕视频在线看片| 青青草视频在线视频观看| 欧美 亚洲 国产 日韩一| 999精品在线视频| 久久久欧美国产精品| 桃红色精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图| 777久久人妻少妇嫩草av网站| 精品少妇内射三级| 18禁观看日本| 久久99一区二区三区| 久久热在线av| 精品亚洲乱码少妇综合久久| 久久天躁狠狠躁夜夜2o2o| 色视频在线一区二区三区| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 99九九在线精品视频| 美女中出高潮动态图| a在线观看视频网站| 91精品国产国语对白视频| tube8黄色片| 男女边摸边吃奶| 国产97色在线日韩免费| 天天躁日日躁夜夜躁夜夜| www.自偷自拍.com| 精品免费久久久久久久清纯 | 国产精品 国内视频| 99精国产麻豆久久婷婷| 国产av又大| 熟女少妇亚洲综合色aaa.| 亚洲成人手机| 午夜两性在线视频| videos熟女内射| 高清视频免费观看一区二区| 亚洲国产欧美一区二区综合| 三级毛片av免费| 精品国产乱子伦一区二区三区 | 精品人妻熟女毛片av久久网站| 满18在线观看网站| 免费观看a级毛片全部| 2018国产大陆天天弄谢| 精品卡一卡二卡四卡免费| 女人被躁到高潮嗷嗷叫费观| 蜜桃在线观看..| 亚洲欧美一区二区三区黑人| 视频区图区小说| av天堂久久9| 国产精品一区二区精品视频观看| 一个人免费看片子| 美女高潮到喷水免费观看| 1024视频免费在线观看| 操美女的视频在线观看| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| 波多野结衣av一区二区av| 国产一区二区激情短视频 | 人妻人人澡人人爽人人| 飞空精品影院首页| 在线精品无人区一区二区三| 国产成人精品无人区| 国产成人av教育| 欧美精品av麻豆av| 亚洲精品第二区| 国产xxxxx性猛交| 国产在线免费精品| 国产黄色免费在线视频| 爱豆传媒免费全集在线观看| 中文字幕高清在线视频| 亚洲国产欧美日韩在线播放| av视频免费观看在线观看| 免费观看人在逋| 久久精品久久久久久噜噜老黄| 国产精品一区二区在线不卡| 欧美日韩国产mv在线观看视频| 国产一级毛片在线| 欧美黄色片欧美黄色片| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 搡老熟女国产l中国老女人| 激情视频va一区二区三区| 99热国产这里只有精品6| 欧美在线一区亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久精品94久久精品| 制服人妻中文乱码| 中文字幕av电影在线播放| 国产1区2区3区精品| 亚洲专区国产一区二区| 精品一区二区三卡| 成年人免费黄色播放视频| 嫁个100分男人电影在线观看| 正在播放国产对白刺激| 欧美日韩黄片免| 人妻一区二区av| 国产成人影院久久av| 国产精品欧美亚洲77777| 欧美人与性动交α欧美软件| 久久av网站| 久9热在线精品视频| 青青草视频在线视频观看| 99热全是精品| 人妻 亚洲 视频| 大型av网站在线播放| 免费在线观看黄色视频的| 黄色怎么调成土黄色| 老司机靠b影院| 两个人免费观看高清视频| 肉色欧美久久久久久久蜜桃| 女警被强在线播放| 午夜激情久久久久久久| 亚洲精品久久午夜乱码| 性色av一级| 1024香蕉在线观看| cao死你这个sao货| 久久久久视频综合| 我要看黄色一级片免费的| 老司机靠b影院| 深夜精品福利| 黄片大片在线免费观看| 高清在线国产一区| 国产亚洲av高清不卡| 欧美午夜高清在线| 最新的欧美精品一区二区| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 亚洲av美国av| a级毛片在线看网站| 法律面前人人平等表现在哪些方面 | 欧美日韩福利视频一区二区| 人人澡人人妻人| 亚洲欧美激情在线| 欧美黑人欧美精品刺激| 十八禁人妻一区二区| 91老司机精品| 老司机靠b影院| 美女高潮到喷水免费观看| 午夜老司机福利片| 久久精品国产综合久久久| 国产又爽黄色视频| av超薄肉色丝袜交足视频| 亚洲欧洲精品一区二区精品久久久| 成年人午夜在线观看视频| 人妻 亚洲 视频| 亚洲美女黄色视频免费看| 搡老乐熟女国产| 国产免费视频播放在线视频| 老熟妇乱子伦视频在线观看 | 美女视频免费永久观看网站| 免费在线观看影片大全网站| 欧美精品高潮呻吟av久久| 男女无遮挡免费网站观看| 日韩,欧美,国产一区二区三区| 国产亚洲精品久久久久5区| 久久性视频一级片| 亚洲免费av在线视频| 国产精品一区二区在线不卡| 国产成人a∨麻豆精品| 不卡av一区二区三区| 国产日韩欧美视频二区| 12—13女人毛片做爰片一| 亚洲成人免费av在线播放| 美女中出高潮动态图| 国产三级黄色录像| 99精国产麻豆久久婷婷| 亚洲精华国产精华精| 视频区图区小说| 色综合欧美亚洲国产小说| 精品国内亚洲2022精品成人 | 18禁黄网站禁片午夜丰满| 啦啦啦中文免费视频观看日本| 久久人人97超碰香蕉20202| 国产一区二区激情短视频 | 咕卡用的链子| 韩国精品一区二区三区| 亚洲人成77777在线视频| 在线av久久热| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 1024视频免费在线观看| 伦理电影免费视频| 亚洲三区欧美一区| 欧美老熟妇乱子伦牲交| 久9热在线精品视频| 美女福利国产在线| 丁香六月天网| 亚洲av欧美aⅴ国产| 伦理电影免费视频| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 一区二区三区四区激情视频| 男人舔女人的私密视频| 成人亚洲精品一区在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品一二三| 黄片小视频在线播放| 人妻 亚洲 视频| 国产一卡二卡三卡精品| 日韩欧美一区二区三区在线观看 | tocl精华| 久久 成人 亚洲| 日韩欧美国产一区二区入口| 满18在线观看网站| 少妇的丰满在线观看| 一级黄色大片毛片| 久久久水蜜桃国产精品网| 操美女的视频在线观看| 久久久久网色| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频 | 精品乱码久久久久久99久播| 免费在线观看黄色视频的| 日韩免费高清中文字幕av| 男女无遮挡免费网站观看| 黑丝袜美女国产一区| 免费高清在线观看视频在线观看| 亚洲免费av在线视频| 热re99久久国产66热| 精品国产超薄肉色丝袜足j| 久久精品熟女亚洲av麻豆精品| 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 夫妻午夜视频| 亚洲va日本ⅴa欧美va伊人久久 | 黄色视频在线播放观看不卡| 自线自在国产av| 亚洲av美国av| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 国产成人精品久久二区二区免费| 国产成人欧美| 他把我摸到了高潮在线观看 | 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 国产97色在线日韩免费| 亚洲五月色婷婷综合| 成年人免费黄色播放视频| 久久久久视频综合| 久久久久久久大尺度免费视频| 国产福利在线免费观看视频| 黄色怎么调成土黄色| 搡老岳熟女国产| 国产欧美日韩综合在线一区二区| 国产精品熟女久久久久浪| 亚洲成av片中文字幕在线观看| 免费不卡黄色视频| 国产精品免费视频内射| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲,欧美精品.| 一进一出抽搐动态| 色婷婷久久久亚洲欧美| 亚洲久久久国产精品| 性少妇av在线| 国产亚洲一区二区精品| 免费观看人在逋| 亚洲国产精品一区三区| 国产在线一区二区三区精| 国产精品 国内视频| 亚洲精品久久午夜乱码| 精品一区二区三卡| 男人操女人黄网站| 黄色视频在线播放观看不卡| 成人免费观看视频高清| 高清在线国产一区| 亚洲伊人色综图| 免费看十八禁软件| 一区二区三区乱码不卡18| 国产伦理片在线播放av一区| 久久久久视频综合| 999久久久精品免费观看国产| 99国产综合亚洲精品| 人人澡人人妻人| 一区福利在线观看| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 国产有黄有色有爽视频| 国产av国产精品国产| 久久毛片免费看一区二区三区| 免费不卡黄色视频| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 久久青草综合色| 久久久精品免费免费高清| 777米奇影视久久| 老熟妇仑乱视频hdxx| 亚洲精华国产精华精| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 国产区一区二久久| 亚洲国产欧美日韩在线播放| 一级,二级,三级黄色视频| 欧美日韩国产mv在线观看视频| 大香蕉久久网| 久久影院123| 男女无遮挡免费网站观看| 99久久精品国产亚洲精品| 飞空精品影院首页| 麻豆av在线久日| av不卡在线播放| 精品久久久久久久毛片微露脸 | 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 9色porny在线观看| 久久亚洲精品不卡| 色婷婷av一区二区三区视频| 少妇粗大呻吟视频| 国产黄频视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 三级毛片av免费| 好男人电影高清在线观看| 制服诱惑二区| 亚洲专区国产一区二区| 国产福利在线免费观看视频| 天天躁日日躁夜夜躁夜夜| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 美女高潮喷水抽搐中文字幕| 久久中文看片网| 丰满人妻熟妇乱又伦精品不卡| 美女午夜性视频免费| av片东京热男人的天堂| 少妇粗大呻吟视频| 波多野结衣一区麻豆| 老司机靠b影院| 在线观看免费日韩欧美大片| 97人妻天天添夜夜摸| 老鸭窝网址在线观看| 曰老女人黄片| 美女大奶头黄色视频| 手机成人av网站| 亚洲七黄色美女视频| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 午夜福利影视在线免费观看| 国产成人精品在线电影| 亚洲色图综合在线观看| 久久亚洲国产成人精品v| 制服人妻中文乱码| 国产91精品成人一区二区三区 | 日韩一卡2卡3卡4卡2021年| 成人av一区二区三区在线看 | 黄色视频在线播放观看不卡| 99国产精品一区二区蜜桃av | 99国产精品免费福利视频|