• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    2015-12-13 01:54:25CaoZhengzhengZhouYuejinZhangQiandWangErqian
    Computers Materials&Continua 2015年9期

    Cao Zhengzheng,Zhou Yuejin,2,Zhang Qiand Wang Erqian

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    Cao Zhengzheng1,Zhou Yuejin1,2,Zhang Qi1and Wang Erqian1

    Gas fracturing technology is the key to the exploration for unconventional petroleum resources and other engineering industries,so the research on the coupled gas-solid-thermal model during rock damage has the important significance to the development of gas fracturing technology.By introducing rock damage variable,the coupled gas-solid-thermal model during rock damage is established in this paper,besides,the rock damage constitutive is written with MATLAB software,which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation.Based on this,the damage rule of rock mass around drilling under high pressure gas is analyzed.The results show when the ratio between x direction local stress σxand y direction local stress σyis 1,the rock failure is dominated by shear damage due to the effect of gas;when the ratio between x direction local stress σxand y direction local stress σyis 1/10,pull damage appears on both sides of drilling in the direction of Y because of the effect of gas;with the passage of time,the pore pressure in the rock mass increases gradually,while the pressure gradient decreases gradually;the primary temperature of rock mass has little influence on the pore pressure.

    gas-solid-thermal model,rock damage,gas fracturing technology,damage variable.

    1 Introduction

    As the successful exploitation of shale gas is launched extensively in America in recent year,the shale gas resource is increasingly becoming an important supplement for conventional energy sources,which has revolutionized a new energy industry in the world[Li,Yang,Tang,Huang and Li(2006);Tong,Jing and Zimmerman(2010);Ge,Mei,Jia,Lu and Xia(2014)].It is commonly known that the perme-ability of shale rock is very low(less than 1mD)and most of the shale gas reservoirs need stimulation to enhance the gas productivity[Fowler and Scott(1996);Zhu and Tang(2004);Pankow,Waas and Yen(2012);Ning,Wang,Liu,Qian and Sun(2014)].After the completion of shale gas drilling,only the drilling with natural fractures which are well developed can be put into production directly,more than 90%of the wells need to process through acidizing,fracturing and other stimulation to get the ideal output[Li,Kong and Lu(2003);Xia(2010);Wang,Zhang,Shao,Li and Zuo(2015)].According to the experience of United States,the conventional hydraulic fracturing technology,which requires large quantities of water,can make the clay in the reservoir swelled seriously and decrease the permeability of shale rock,thereby reducing the gas productivity[Shen,Zhao and Duan(1997);Zhu,Wei,Tian,Yang and Tang(2009);Zhou,Guo,Cao and Zhang(2013)].Besides,many shale gas formations are water-wet and under-saturated where the initial water saturation in the reservoir is less than the capillary equilibrium irreducible water saturation.The use of water-based fracturing fluids causes water to be trapped in the near-wellbore region,thereby significantly impairing the ability of gas to flow[Tang,Ma,Li and Liu(2007);Al-Ajmi and Benjeddou(2011);Cao,Zhou,Xu and Li(2014)].

    In view of the weakness in hydraulic fracturing technology,the gas fracturing technology is introduced to improve the reservoir penetration to increase to shale gas production[Mahadevan,Sharma and Yortsos(2007);Xie,Gao,Ju,Fu and Zhou(2012);Xie,Xu,Wang,Guo and Liu(2014)].The related experiment results indicate that the high pressure gas,with the characteristics of low viscosity and surface tension,will penetrate into the rock easily during the gas fracturing processes,and its threshold pressure is far smaller than that of water,especially with a high penetration rate.By introducing rock damage variable,the paper builds the coupled gassolid-thermal mechanical model during rock damage,and the damage constitutive is written with Matlab,which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation,then rock mass damage rule around drilling under high pressure gas is analyzed.

    2 The coupled gas-solid-thermal model during rock damage

    Since the gas seepage flow,rock deformation and heat flow process are involved in the coupled gas-solid-thermal process during rock damage,the paper establishes a gas-solid-thermal coupling mechanical model during rock damage,based on the seepage mechanics equation,the thermodynamic principle and elastic damage theory.

    2.1 The control equation of rock deformation

    The rock mass is simplified to be a linear elastic isotropic porous medium,then the constitutive equation of rock mass involving stress,strain,pore pressure and temperature is obtained,

    In equation(1),G represents the shear modulus;μ represents Poisson’s ratio;δijrepresents Kronecker symbol;α =1-K/Ksrepresents Biot’s coefficient;K represents the bulk modulus;αTrepresents the thermal expansion coefficient.

    According to the deformation continuity conditions,the geometric equation is shown as follows,

    Putting equation(1)and equation(2)to the equilibrium equation,the modified form of the Navier equation involving displacement,pore pressure and temperature is deduced as follows,

    2.2 The gas seepage equation

    The conservation of mass is satisfied in the process of gas seepage,

    In equation(4),m represents the gas mass per volume of rock;ρgrepresents the gas density;qgrepresents the Darcy seepage velocity of the gas;Qmrepresents the source origin;t represents the time variable.

    The gas seepage flow in fractured medium under the drive of pressure gradient is commonly used as follows,

    In equation(5),μfrepresents the dynamic viscosity coefficient;k represents the permeability of gas.

    Since the gas is compressible,it could be regarded as the ideal gas,therefore the relationship between the density and pressure is obtained,

    In equation(6),Mgrepresents relative molecular mass of the gas;R represents the constant value of ideal gas;T represents the absolute temperature.

    Putting equation(5)and equation(6)into equation(4),the gas seepage continuity equation is deduced as follows,

    The deformation of rock mass occurs under the action of gas pressure,thus changing the porosity of rock mass,and affecting the gas seepage in rock mass.The dynamic evolution model of rock porosity is obtained as follows,

    In equation(8),φ0represents the initial porosity;εvrepresents the volume strain;Δp represents the variation of gas pressure;Ksrepresents the bulk modulus of basic frame of rock mass.

    According to the Kozeny-Carman equation in seepage mechanics,the permeability expression k could be obtained as follows,

    2.3 The law of energy conservation

    According to the Fourier’s law,the constitutive equation of heat transfer is shown as follows,

    In equation(10),qTrepresents heat flow amount;λM=(1-φ)λs+φλg,λsand λgare the heat transfer coefficient of the solid(rock mass)and the fluid(gas),respectively.

    As the thermal equilibrium between rock mass and the gas is constantly kept,the heat balance equation can be expressed as follows,In equation(11),(ρC)Mrepresents the heat capacity;the first item is the variable rate of internal energy,and the second item is the heat dissipation caused by thermal expansion,and the third item is the additional item caused by deformation energy.If the internal heat source,the initial conditions and boundary conditions are given,the temperature in the rock mass in different time can be obtained.

    2.4 The damage evolution equation

    The tensile damage and shear damage in rock mass occur if the maximum tensile stress criterion and Mohr-Coulomb criterion is satisfied,respectively,which is shown in figure 1.

    In equation(12),σ1and σ3is the maximum principal stress and minimum principal stress,respectively;ftand fcis the uniaxial tensile strength and uniaxial compressive strength,respectively.

    Figure 1:The constitutive law of rock under uniaxial stress condition

    According to the elastic damage theory,the modulus of elasticity is shown below,

    In equation(13),E0represents the modulus of elasticity before the damage occurs.

    The damage variable of rock mass is shown in the following equations,

    In equation(14),ε1and ε3is the maximum principal strain and minimum principal strain,respectively; εtand εcis the maximum tensile principal strain and the maximum compressible principal strain.

    Due to the highly nonlinear characteristics in coupled equations,the finite element numerical method is introduced.COMSOL Multiphysics is the finite element numerical analysis software designed for multiphysical field coupling problem,and it also owns the powerful programming function based on MATLAB language or COMSOL script.In this paper,the rock damage constitutive is written with MATLAB,which is embedded in the multiphysics coupling software COMSOL in the process of numerical computation.

    3 The rock damage simulation under high pressure in different in-situ stress

    In order to research the rock mass damage rule under high pressure,high pressure gas is injected in drilling under the condition of initial ground stress,and then rock mass damage rule around drilling under high pressure gas is analyzed.

    The numerical model is the cube 10m×10m×1m,whose center is the borehole(the radius 0.1 m).The elastic modulus and strength of the model unit present the rule of Weibull distribution.Assume that the initial temperature of rock mass is 55°C,and the mechanical parameters of rock mass and the coupling parameters are shown in table 1.The left and lateral boundary condition of the numerical model is the displacement constraint,while the right and upper boundary condition of the numerical model is applied external boundary stress;the pressure in the borehole increases gradually.

    In order to study the influence of the gas pressure on rock mass in different in-situ stress level,two numerical models are established as follows,the stress ratio in case I is σx/σy=1/1,and the stress ratio in case II is σx/σy=1/10.For each case,two kinds of working condition are discussed.The first working condition is to simulate the damage zone distribution of surrounding rock in the stress ratio without the gas pressure,and external boundary stress(Δσy=1MPa)increases according to the stress ratio(σx/σy).The second working condition is to simulate the influence of gas pressure on rock mass,and initial boundary stress(σy=10MPa)increasesaccording to the stress ratio(σx/σy),and the gas pressure in the drill hole increases gradually(Δp=0.1MPa).

    Table 1:Physical-mechanical parameters of rock and gas

    Figure 2:The distribution of damage zone without gas pressure for case I(σy=24MPa)

    In order to distinguish the tensile crack and shear crack,the damage value in tensile crack is negative,while the damage value in shear crack is positive.The distribution of damage zone without gas pressure for case I(σy=24MPa)is present in figure 2.A great deal of shear crack appears around the borehole rock mass under the effect of in-situ stress,without the tensile crack.The crack and damage area increase gradually with the increase of boundary stress.The shear damage is the dominant fracture form of surrounding rock in the increase process of boundary stress,and the stress concentration appears in surrounding rock mass around the drill hole,destroying the surrounding rock mass and the overall damaged area appears.

    Figure 3:The distribution of damage zone with gas pressure for case I(σy=10MPa,p=7MPa)

    The distribution of damage zone with gas pressure for case I(σy=10MPa,p=7MPa)is shown in figure 3.σyis the boundary stress in Y direction,and p is the gas pressure injected in the borehole.When the gas pressure is applied,the effective stress reaches the tensile strength of rock mass gradually with the increase of pore pressure.Tensile crack occurs in the rock mass around borehole,and it expands along with the increase of pore pressure.Compared with the figure 2,tensile damage is the dominant form in this working condition,and some tensile cracks appear.It is believed that the existence of pore pressure has the inhibitory effect on the shear damage.Since the uniaxial tensile strength of rock mass is far less than the uniaxial compressive strength,the gas pressure for rock damage is smaller.

    The distribution of damage zone without gas pressure for case II(σy=22MPa)is shown in figure 4.Since the in-situ stress in X direction stress is less than that in Y direction,the tensile crack appears in the upper and down sides of drill hole due to the tensile stress,while the compression-shear crack occurs in the left and right sides under compressive stress in Y direction,and the dominant damage area appears around the drill hole.

    Figure 4:The distribution of damage zone without gas pressure for case II(σy=22MPa)

    Figure 5:The distribution of damage zone with gas pressure for case II(σy=10MPa,p=6.2MPa)

    The distribution of damage zone with gas pressure for case II(σy=10MPa,p=6.2MPa)is shown in figure 5.When the gas pressure is applied,the tensile crack occurs in upper and down sides,and expands inY direction.Since the in-situ stress in Y direction is larger than that in X direction,the maximum principal stress in upper and down sides is greater than the maximum principal stress in left and right sides of the rock drilling.When the high pressure gas is injected in the drill hole,the rock mass in upper and down sides tends to be destroyed.

    Figure 6:The distribution of fluid pressure around the borehole at different times(T=328K)

    Figure 7:The distribution of temperature around the borehole under different temperature(t=1e6s)

    The gas(2MPa)is injected in the drill hole in different initial temperature,the pore pressure of rock mass from different distances of borehole is observed.The distribution of fluid pressure around the borehole at different times(T=328K)is shown in figure 6,and the distribution of temperature around the borehole under different temperatures(t=1e6s)is shown in figure 7.In figure 6,as time goes on,the pore pressure in rock mass increas esgradually.The farther the distance from the borehole is,the smaller the pressure gradient is,and the pressure curve is leveling off.In figure 7,it is believed that the change of pore pressure from the different distances of borehole with temperature is not significant in initial temperature25°C,55°C and 85°C.Therefore,the initial temperature of rock mass has little influence on the pore pressure.

    4 Conclusions

    Based on the rock mechanics,elastic mechanics and thermodynamics theory,the coupled gas-solid-thermal model during rock damage is established,and the rock damage constitutive is written with MATLAB,which is embedded in the multiphysics coupling software COMSOL in the process of numerical computation,then damage rule of rock mass around drilling under high pressure gas is analyzed.The conclusions are shown as follows,

    (1)When the ratio between x direction local stress and y direction local stress is 1,the rock failure is dominated by shear damage due to the effect of gas;when the ratio between x direction local stress and y direction local stress is 1/10,pull damage appears on both sides of drilling in the direction of Y because of the effect of gas.

    (2)The tensile damage is the dominant form of rock mass under high gas pressure,as the pore pressure has the inhibitory effect on the shear damage.Since the uniaxial tensile strength of rock mass is far less than the uniaxial compressive strength,the gas pressure for rock damage is smaller.

    (3)As time goes on,the pore pressure in the rock increases gradually,while the pressure gradient decreases gradually.Besides,the initial temperature of rock mass has little effect on the pore pressure.

    Acknowledgement:This work was supported by the Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation(KYLX15_1407),the National Natural Science Foundation of China(51374201,51322401,51323004),the National Basic Research Program of China(2013CB227900),the Innovative Project of Undergraduate Student in China University of Mining and Technology(201507),the Science and Technology Major Project of Shanxi Province(2012110 1008).

    Al-Ajmi,M.;Benjeddou,A.(2011):A new discrete-layer finite element for electromechanically coupled analyses of piezoelectric adaptive composite structures.CMC:Computers Materials&Continua,vol.23,no.3,pp.265–285.

    Cao,Z.Z.;Zhou,Y.J.;Xu,P.;Li,J.W.(2014):Mechanical response analysis and safety assessment of shallow-buried pipeline under the influence of mining.CMES:Computer Modeling in Engineering&Sciences,vol.101,no.5,pp.351–364.

    Fowler,A.C.;Scott,D.R.(1996):Hydraulic crack propagation in a porous medium.Geophysical Journal International,vol.127,no.3,pp.595–604.

    Ge,Z.L.;Mei,X.L.;Jia,Y.J.;Lu,Y.Y.;Xia,B.W.(2014):Influence radius of slotted borehole drainage by high pressure water jet.Journal of Mining&Safety Engineering,vol.31,no.4,pp.657–664.

    Li,L.C.;Yang,T.H.;Tang,C.A.;Huang,X.L.;Li,X.B.(2006):Study on coupled thermal-mechanical-damage model in rock failure process.Rock and Soil Mechanics,vol.27,no.10,pp.1727–1732.

    Li,P.C.;Kong,X.Y.;Lu,D.T.(2003):Mathematical modeling of flow insaturated porous media on account of coupling effect.Journal of Hydrodynamics,vol.18,no.4,pp.419–426.

    Mahadevan,J.;Sharma,M.M.;Yortsos,Y.C.(2007):Capillary wicking in gas wells.SPE Journal,vol.12,no.4,pp.429–437.

    Ning,J.G.;Wang,J.;Liu,X.S.;Qian,K.;Sun,B.(2014):Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst.International Journal of Mining Science and Technology,vol.24,no.6,pp.805–810.

    Pankow,M.;Waas,A.M.;Yen,C.F.(2012):Modeling the response of 3D textile composites under compressive loads to predict compressive strength.CMC:Computers Materials&Continua,vol.32,no.2,pp.81-106.

    Shen,J.;Zhao,Y.S.;Duan,K.L.(1997):Numerical simulation of hydraulic fracture in low permeable coal and rock mass.Journal of China Coal Society,vol.22,no.6,pp.580–585.

    Tang,C.A.;Ma,T.H.;Li,L.C.;Liu,H.Y.(2007):Rock failure issues in geological disposal of high-level radioactive wastes under multi-field coupling function.Chinese Journal of Rock Mechanics and Engineering,vol.26(Supp.2),pp.3932–3938.

    Tong,F.G.;Jing,L.;Zimmerman,R.W.(2010):A fully coupled thermo-hydromechanical model for simulating multiphase flow,deformation and heat transfer in buffer material and rock masses.International Journal of Rock Mechanics and Mining Sciences,vol.47,no.2,pp.205–217.

    Wang,G.G.;Zhang,J.L.;Shao,J.G.;Li,K.J.;Zuo,H.B.(2015):Investigation of non-isothermal and isothermal gasification process of coal char using different kinetic model International Journal of Mining Science and Technology,vol.25,no.1,pp.15–21.

    Xia,Y.Q.(2010):The challenges of water resources and the environmental impact of marcellus shale gas drilling.Science&Technology Review,no.18,pp.103–110.

    Xie,J.L.;Xu,J.L.;Wang,F.;Guo,J.L.;Liu,D.L.(2014):Deformation effect of lateral roof roadway in close coal seams after repeated mining.International Journal of Mining Science and Technology,vol.24,no.5,pp.597–601.

    Xie,H.P.;Gao,F.;Ju,Y.;Fu,Q.;Zhou,F.B.(2012):Unconventional theories and strategies for fracturing treatments of shale gas strata.Journal of Sichuan University(Engineering Science Edition),vol.44,no.6,pp.1-6.

    Zhou,Y.J.;Guo,H.Z.;Cao,Z.Z.;Zhang,J.G.(2013):Mechanismandcontrol of water seepage of vertical feeding borehole for solid materials in backfilling coal mining.International Journal of Mining Science and Technology,vol.23,no.5,pp.675-679.

    Zhu,W.C.;Tang,C.A.(2004):Micromechanical model for simulating the fracture process of rock.Rock Mechanics and Rock Engineering,vol.37,no.1,pp.25-56.

    Zhu,W.C.;Wei,C.H.;Tian,J.;Yang,T.H.;Tang,C.A.(2009):Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application.Rock and Soil Mechanics,vol.30,no.12,pp.3851–3857.

    1State Key Laboratory for Geomechanics&Deep Underground Engineering,School of Mechanics&Civil Engineering,China University of Mining&Technology,Xuzhou 221008,China.

    2Corresponding author:Zhou Yuejin.Tel:+86-13914884696.Email:yuejinzh@163.com

    免费看美女性在线毛片视频| or卡值多少钱| av在线蜜桃| 成人精品一区二区免费| 午夜激情福利司机影院| 国产精品日韩av在线免费观看| 日韩精品青青久久久久久| 国产亚洲精品av在线| 色综合欧美亚洲国产小说| 国产黄色小视频在线观看| 色综合亚洲欧美另类图片| 每晚都被弄得嗷嗷叫到高潮| av专区在线播放| 无人区码免费观看不卡| 一夜夜www| 国产午夜精品久久久久久一区二区三区 | 亚洲自偷自拍三级| 亚洲va日本ⅴa欧美va伊人久久| 中国美女看黄片| 国产精品av视频在线免费观看| 亚洲成av人片在线播放无| 国产精品久久久久久久久免 | 国产黄色小视频在线观看| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩东京热| 脱女人内裤的视频| 中出人妻视频一区二区| 禁无遮挡网站| 成人特级av手机在线观看| 亚洲国产精品999在线| 日韩中文字幕欧美一区二区| 亚洲,欧美,日韩| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜精品在线福利| 午夜福利免费观看在线| 91av网一区二区| 每晚都被弄得嗷嗷叫到高潮| 天天一区二区日本电影三级| 国产又黄又爽又无遮挡在线| 国产成人aa在线观看| 岛国在线免费视频观看| 精品国产三级普通话版| 美女大奶头视频| 久久精品国产自在天天线| 午夜福利在线观看免费完整高清在 | 丁香欧美五月| 午夜两性在线视频| netflix在线观看网站| 亚洲在线自拍视频| 99久久精品国产亚洲精品| 丝袜美腿在线中文| 成人特级av手机在线观看| 男女下面进入的视频免费午夜| 亚洲精品在线美女| 激情在线观看视频在线高清| 窝窝影院91人妻| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久com| 国产精品女同一区二区软件 | .国产精品久久| 成人欧美大片| 亚洲成a人片在线一区二区| 两个人视频免费观看高清| 亚洲内射少妇av| 无遮挡黄片免费观看| 99久久九九国产精品国产免费| 99热这里只有精品一区| 禁无遮挡网站| 一进一出抽搐gif免费好疼| 可以在线观看毛片的网站| 午夜福利成人在线免费观看| 国产亚洲精品久久久com| 欧美zozozo另类| 国产一区二区激情短视频| 国产一区二区在线观看日韩| 嫩草影视91久久| 国产精品一区二区性色av| 亚洲va日本ⅴa欧美va伊人久久| 国产高清三级在线| 一级av片app| 在线免费观看不下载黄p国产 | 精品久久久久久,| 国内精品美女久久久久久| 在线十欧美十亚洲十日本专区| 小蜜桃在线观看免费完整版高清| 中文在线观看免费www的网站| 婷婷丁香在线五月| 老司机午夜十八禁免费视频| 欧美乱妇无乱码| 久久天躁狠狠躁夜夜2o2o| 欧美性感艳星| 国产av不卡久久| 日本与韩国留学比较| 亚洲人成网站在线播放欧美日韩| 国产毛片a区久久久久| 91在线观看av| 午夜精品一区二区三区免费看| 欧美另类亚洲清纯唯美| 首页视频小说图片口味搜索| 简卡轻食公司| 亚洲五月婷婷丁香| 高清毛片免费观看视频网站| 午夜亚洲福利在线播放| 波多野结衣高清作品| 色综合亚洲欧美另类图片| 亚洲精品在线观看二区| 国产精品一区二区性色av| 欧美激情久久久久久爽电影| 看片在线看免费视频| 亚洲在线自拍视频| 欧美国产日韩亚洲一区| 亚洲一区高清亚洲精品| 成人av在线播放网站| 18禁裸乳无遮挡免费网站照片| 69人妻影院| 国产精品爽爽va在线观看网站| 欧美黑人欧美精品刺激| av欧美777| 亚洲国产精品sss在线观看| 又粗又爽又猛毛片免费看| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区免费观看 | 精品人妻一区二区三区麻豆 | 91麻豆av在线| 久久99热6这里只有精品| 亚洲av成人精品一区久久| av专区在线播放| 九色国产91popny在线| 国产 一区 欧美 日韩| av黄色大香蕉| 亚洲久久久久久中文字幕| 久久99热6这里只有精品| 午夜精品久久久久久毛片777| a在线观看视频网站| 乱人视频在线观看| 亚洲无线在线观看| 麻豆国产97在线/欧美| 国产成年人精品一区二区| 宅男免费午夜| 国产不卡一卡二| 日韩成人在线观看一区二区三区| 欧美又色又爽又黄视频| 国产精品影院久久| 中文字幕av成人在线电影| 身体一侧抽搐| 在线a可以看的网站| h日本视频在线播放| 国产免费男女视频| 中文资源天堂在线| 一本综合久久免费| 99久久精品一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最新在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 免费观看的影片在线观看| 色播亚洲综合网| 久久精品91蜜桃| 国产精品一区二区三区四区免费观看 | 99久久精品一区二区三区| 国产精品久久电影中文字幕| 国产精品伦人一区二区| 麻豆成人午夜福利视频| 高清毛片免费观看视频网站| 在线观看午夜福利视频| 午夜免费激情av| 久久九九热精品免费| 欧美日韩福利视频一区二区| 国产精品美女特级片免费视频播放器| 国产欧美日韩一区二区精品| 国产美女午夜福利| 国产成人av教育| 熟女电影av网| 一级毛片久久久久久久久女| 亚洲,欧美,日韩| 人人妻,人人澡人人爽秒播| 免费看光身美女| 亚洲av中文字字幕乱码综合| 亚洲成av人片在线播放无| 欧美日韩国产亚洲二区| 伊人久久精品亚洲午夜| 小说图片视频综合网站| 不卡一级毛片| 亚洲 国产 在线| 深夜a级毛片| 在线观看一区二区三区| 日韩欧美三级三区| 亚洲国产欧美人成| 最近中文字幕高清免费大全6 | 欧美日韩中文字幕国产精品一区二区三区| 丰满乱子伦码专区| 色播亚洲综合网| 日韩欧美三级三区| 日韩欧美精品免费久久 | 91午夜精品亚洲一区二区三区 | www.色视频.com| 在线观看美女被高潮喷水网站 | 国产精品久久电影中文字幕| 特大巨黑吊av在线直播| 久久精品国产99精品国产亚洲性色| 免费黄网站久久成人精品 | 国产三级在线视频| 精华霜和精华液先用哪个| 免费av毛片视频| 精品乱码久久久久久99久播| 床上黄色一级片| 99国产综合亚洲精品| 午夜福利在线观看吧| 欧美日韩福利视频一区二区| 国产视频内射| 国产成人欧美在线观看| 国产又黄又爽又无遮挡在线| 麻豆一二三区av精品| 国产毛片a区久久久久| 成人特级黄色片久久久久久久| 精品人妻1区二区| 综合色av麻豆| 老鸭窝网址在线观看| 午夜激情福利司机影院| 亚洲精品456在线播放app | 免费搜索国产男女视频| 国产亚洲av嫩草精品影院| 国内精品久久久久久久电影| 亚洲精品456在线播放app | 麻豆av噜噜一区二区三区| 久久草成人影院| 最近最新中文字幕大全电影3| 在线国产一区二区在线| 激情在线观看视频在线高清| 身体一侧抽搐| 丁香欧美五月| 国产精品一区二区三区四区久久| 我要搜黄色片| 久久天躁狠狠躁夜夜2o2o| 我要看日韩黄色一级片| 禁无遮挡网站| 欧美中文日本在线观看视频| 久久国产精品人妻蜜桃| 99久久精品一区二区三区| 白带黄色成豆腐渣| 午夜福利高清视频| 亚洲国产精品sss在线观看| 国产国拍精品亚洲av在线观看| 日本a在线网址| 男人和女人高潮做爰伦理| 最新在线观看一区二区三区| 欧美极品一区二区三区四区| 国内精品久久久久精免费| 在线十欧美十亚洲十日本专区| 国产精品久久久久久亚洲av鲁大| 3wmmmm亚洲av在线观看| 哪里可以看免费的av片| 一个人观看的视频www高清免费观看| 美女 人体艺术 gogo| 国产又黄又爽又无遮挡在线| 欧美+日韩+精品| 一进一出抽搐gif免费好疼| 欧美午夜高清在线| 91在线精品国自产拍蜜月| 一级作爱视频免费观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜视频国产福利| 全区人妻精品视频| 在线观看一区二区三区| 舔av片在线| 成人性生交大片免费视频hd| 在线播放国产精品三级| 国产探花极品一区二区| 91字幕亚洲| 深夜精品福利| 69av精品久久久久久| xxxwww97欧美| 看片在线看免费视频| 中文亚洲av片在线观看爽| 亚洲精品成人久久久久久| 亚洲无线在线观看| 欧美色视频一区免费| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 12—13女人毛片做爰片一| 亚洲综合色惰| 成人午夜高清在线视频| x7x7x7水蜜桃| 欧美潮喷喷水| 亚洲中文字幕一区二区三区有码在线看| 我的女老师完整版在线观看| 国产黄色小视频在线观看| 99精品久久久久人妻精品| 级片在线观看| 国内精品一区二区在线观看| 男人舔奶头视频| 久久精品影院6| 久久久久国内视频| 特大巨黑吊av在线直播| 免费av观看视频| 日韩欧美 国产精品| 香蕉av资源在线| 亚洲欧美日韩卡通动漫| 两人在一起打扑克的视频| 国产精品电影一区二区三区| 精品不卡国产一区二区三区| 亚洲片人在线观看| 国产精品自产拍在线观看55亚洲| 精品一区二区三区视频在线| 久久久久精品国产欧美久久久| 免费看光身美女| 日韩人妻高清精品专区| 香蕉av资源在线| 偷拍熟女少妇极品色| 好男人在线观看高清免费视频| 久久久久精品国产欧美久久久| 一本综合久久免费| 欧美三级亚洲精品| 国产免费一级a男人的天堂| 国产三级在线视频| 亚洲熟妇熟女久久| 极品教师在线免费播放| 中文字幕熟女人妻在线| 亚洲五月婷婷丁香| 一本一本综合久久| 久久精品国产亚洲av天美| 在线播放无遮挡| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 欧美成人一区二区免费高清观看| 老司机午夜福利在线观看视频| 国产熟女xx| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 久久性视频一级片| 日本三级黄在线观看| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区三| 成年人黄色毛片网站| 色尼玛亚洲综合影院| 成年版毛片免费区| 少妇丰满av| 亚洲av第一区精品v没综合| 成年免费大片在线观看| 免费av观看视频| 成人国产一区最新在线观看| 变态另类丝袜制服| 一本一本综合久久| 成人美女网站在线观看视频| 在线观看66精品国产| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 国产69精品久久久久777片| 色综合婷婷激情| 成人av一区二区三区在线看| 亚洲国产欧洲综合997久久,| 久久性视频一级片| 久久国产精品人妻蜜桃| 麻豆成人av在线观看| 无遮挡黄片免费观看| 欧美性感艳星| 国产亚洲欧美98| 欧美高清成人免费视频www| 亚洲 国产 在线| 久久久久久国产a免费观看| 国产成人aa在线观看| 亚洲在线自拍视频| 日韩人妻高清精品专区| 国产一区二区在线av高清观看| 简卡轻食公司| 看黄色毛片网站| 午夜福利在线在线| 露出奶头的视频| 国产中年淑女户外野战色| 好看av亚洲va欧美ⅴa在| 日韩欧美精品v在线| 91在线精品国自产拍蜜月| 成熟少妇高潮喷水视频| 少妇高潮的动态图| 搡女人真爽免费视频火全软件 | av在线天堂中文字幕| 少妇裸体淫交视频免费看高清| 亚洲人成伊人成综合网2020| 18+在线观看网站| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 国产中年淑女户外野战色| 91在线观看av| 人人妻人人澡欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 欧美潮喷喷水| 国产乱人视频| 综合色av麻豆| 一级黄片播放器| 91在线观看av| 无遮挡黄片免费观看| 搡老妇女老女人老熟妇| 国产aⅴ精品一区二区三区波| 国产一区二区三区视频了| 床上黄色一级片| 三级毛片av免费| 欧美乱色亚洲激情| 国产主播在线观看一区二区| 一边摸一边抽搐一进一小说| 亚洲av成人精品一区久久| 精品人妻偷拍中文字幕| 欧美性感艳星| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 亚洲国产欧洲综合997久久,| 亚洲人成电影免费在线| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| a级毛片免费高清观看在线播放| 夜夜夜夜夜久久久久| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 男插女下体视频免费在线播放| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 岛国在线免费视频观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线天堂最新版资源| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 国产欧美日韩精品亚洲av| 三级毛片av免费| 国产精品一区二区三区四区免费观看 | 久久久久国产精品人妻aⅴ院| 在线免费观看的www视频| 99热这里只有是精品在线观看 | 女生性感内裤真人,穿戴方法视频| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 99热只有精品国产| 亚洲人成伊人成综合网2020| 老司机深夜福利视频在线观看| 日本 av在线| 99在线视频只有这里精品首页| netflix在线观看网站| 久久精品久久久久久噜噜老黄 | 91久久精品电影网| 自拍偷自拍亚洲精品老妇| 免费搜索国产男女视频| 国产精品久久久久久久久免 | 午夜福利18| 午夜福利视频1000在线观看| 一个人免费在线观看电影| 亚洲精品久久国产高清桃花| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看 | 又黄又爽又免费观看的视频| 精品一区二区三区视频在线观看免费| 波多野结衣高清无吗| 国产爱豆传媒在线观看| 亚洲成人中文字幕在线播放| 男女床上黄色一级片免费看| 在线观看午夜福利视频| 久久伊人香网站| 人妻夜夜爽99麻豆av| 国产精品女同一区二区软件 | 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 色综合站精品国产| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线二视频| 在线观看av片永久免费下载| 一区二区三区四区激情视频 | 直男gayav资源| 91午夜精品亚洲一区二区三区 | 亚洲av日韩精品久久久久久密| 99热这里只有精品一区| 国产爱豆传媒在线观看| 欧美黑人巨大hd| 18+在线观看网站| 国产成人影院久久av| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 99视频精品全部免费 在线| 国产精品自产拍在线观看55亚洲| 国产久久久一区二区三区| 波多野结衣高清无吗| 97热精品久久久久久| 色5月婷婷丁香| 国产欧美日韩精品亚洲av| 蜜桃久久精品国产亚洲av| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片| 搡老熟女国产l中国老女人| 精品午夜福利在线看| 校园春色视频在线观看| 国产三级中文精品| 亚洲欧美清纯卡通| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 直男gayav资源| 亚洲国产精品999在线| 亚洲人成电影免费在线| 国产老妇女一区| 亚洲七黄色美女视频| 人人妻人人看人人澡| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 欧美三级亚洲精品| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 波多野结衣高清作品| 亚洲不卡免费看| 国产三级在线视频| 成人性生交大片免费视频hd| 在线a可以看的网站| 日本免费a在线| 波多野结衣巨乳人妻| 97超视频在线观看视频| 99热这里只有精品一区| 嫩草影视91久久| 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 成人午夜高清在线视频| 久久久久免费精品人妻一区二区| 国产成人福利小说| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 久久精品国产99精品国产亚洲性色| 悠悠久久av| 一本久久中文字幕| 国产伦一二天堂av在线观看| 国产三级黄色录像| 夜夜躁狠狠躁天天躁| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 亚洲精品一卡2卡三卡4卡5卡| 搡老妇女老女人老熟妇| 午夜日韩欧美国产| 精品久久国产蜜桃| 亚洲欧美日韩高清在线视频| 亚洲av.av天堂| 欧美另类亚洲清纯唯美| 深夜a级毛片| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 亚洲aⅴ乱码一区二区在线播放| 免费看光身美女| 在线观看美女被高潮喷水网站 | 精品一区二区三区视频在线观看免费| 性插视频无遮挡在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区三区在线臀色熟女| 直男gayav资源| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| 成人三级黄色视频| 国产单亲对白刺激| 日韩欧美精品v在线| 成人av在线播放网站| 一区二区三区高清视频在线| 美女cb高潮喷水在线观看| 99视频精品全部免费 在线| 日韩av在线大香蕉| 国内精品一区二区在线观看| 嫩草影院新地址| 国产伦一二天堂av在线观看| 亚洲性夜色夜夜综合| 人人妻人人看人人澡| 国产一区二区亚洲精品在线观看| 欧美潮喷喷水| 精品久久国产蜜桃| 国产激情偷乱视频一区二区| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 国产一区二区激情短视频| 成人欧美大片| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 亚洲内射少妇av| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| a级一级毛片免费在线观看| 精品久久久久久久久av| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 99久久精品一区二区三区| 国产一区二区激情短视频| 午夜视频国产福利| 听说在线观看完整版免费高清| 9191精品国产免费久久| 国产精品女同一区二区软件 | 欧美日本视频| 亚洲性夜色夜夜综合| 国产伦在线观看视频一区| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 日韩高清综合在线| 麻豆久久精品国产亚洲av| 好男人在线观看高清免费视频| 大型黄色视频在线免费观看| 免费在线观看成人毛片| 日韩欧美国产一区二区入口| 国产视频内射| 中文字幕人成人乱码亚洲影| 亚洲国产精品久久男人天堂| 香蕉av资源在线| 久久久精品大字幕| 久久久久久久午夜电影| 色5月婷婷丁香| 久久久久久久精品吃奶| 女同久久另类99精品国产91|