• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Damaged Teeth in Gears using Wavelet Transform Applied to the Angular Vibration Signal

    2015-12-13 06:46:41MeromezandMar
    Computers Materials&Continua 2015年8期

    P.A.Mero?o,F.C.Gómezand F.Marín

    Identification of Damaged Teeth in Gears using Wavelet Transform Applied to the Angular Vibration Signal

    P.A.Mero?o1,F.C.Gómez2and F.Marín1

    This work represents a comparative study of Wavelet Transform of angular vibration signal and the traditional Fourier analysis applied to the signals of angular vibration,in one transmission which involve gears.How it is known,the elastic deformation of the material,together with the superficial irregularities of the teeth due to wear,provoke characteristic angular oscillations,which make it possible to distinguish between the regular functioning of a mechanism in good condition and the angular vibrations provoked by wear and the superficial irregularities of teeth in poor condition.However,the character of the vibrations produced in such circumstances means that Fourier’s analysis is not the most suitable processing technique for such cases.As the results of this work will show,wavelet transform applied to the angular vibration signal seems to be more suited to detecting and to identifying wear and other surface damage to the teeth of gears.

    torsional vibrations,wavelet transform,Fourier Transform,laser vibrometry,damaged teeth.

    1 Introduction

    It is an indisputable fact that the technology that has dominated the analysis of vibrations in the diagnosis of machine faults is Fourier’s Transform.Nevertheless,since the 1990s,alternative analysis methods in the domain of the frequency-or of the time and frequency-of a signal have been gaining acceptance in this f i eld.Among such processing techniques are the Transformed Wigner-Ville Distribution(WVD),Wavelet Transform(WT),Choi-Williams Distribution(CWD)and Cone-Shaped Distribution(CSD)[Peng and Chu(2004)].

    In the field of the diagnosis of gear damage,particularly,these transforms present certain advantages over the classic Fast Fourier Transform(FFT),due to their ability to deal successfully with signals that have a high non-stationary component.

    In this field,early detection of damage is particularly important since in the initial condition it is difficult to locate and its evolution tends to be slow,although it speeds up when failure is near[Wang(1995)].

    When the Fourier Transform is used for the analysis,the frequency characteristics of the complete temporal signal are clear,but the disturbances that take place during a short interval are not detected.This means that it is not a method particularly well adapted to such cases especially in light of the non-stationary characteristics of the signals produced by the gears(in every revolution transitory phenomena take place provoked by the randomness of the impacts due to the damages).That is,when the spectral content of the signal changes frequently with time,neither temporal signal nor its transformation by FFT is sufficient for the complete analysis of the same[Kara and Mohanty(2008)].Little more there can be done using this technique than detect the evolution of the harmonic frequency of meshes,which is insufficient for early detection of the problem.

    So,FFT technique makes disappear the instantaneous events along the temporal wave to extract the frequency components of the signal.That is to say,when FFT is applied over a piece of signal,all the events into that temporal segment are,in some way,averaged together.So,little events,that could be significant,can be eliminated.In machines with gear transmissions,in addition to the meshing frequency,the meshing process of the teeth produces periodic events and random vibrations.Some studies pointing towards modal vibrations[Tiwari,Bordoloi,Bansal and Sahoo(2013)],Rayleigh distribution of probability[Gómez(1998);Valverde et al.(1997)],chaotic[Litak and Friswell(2003)],different kinds of noise[Bel?ak and Prezelj(2007)],among others;that is to say,mainly non-gaussian vibration.Therefore,by using WT,instead of FFT,those little events can be detected inside that random vibration.

    In addition,one of the well known problems when gears defects are going to be monitored is that the FFT spectrum features of the defects in bearings and gears are very similar,usually random vibration and high frequencies produced by the impact metal-metal.By using WT,time and frequency are analyzed simultaneously;therefore,it is possible to observe when those impacts occur and the frequency range-scale,strictly-in which they are produced.This way,the gear meshing period can be detected and,so,the teeth damage can be distinguished from a bearing problem,whose sequence of impacts,i.e.,its period,is totally different.

    When the frequency spectrogram is used to avoid this lacuna in the diagnosis,it is observed that,although it is suitable when all the analyzed phenomena take place in the same range on a large scale,it is not so well adapted to the problem when this is not the case–as in the case that concerns us here.This is because it is impossible to simultaneously achieve high resolution in both the time and frequency domains.

    On the other hand,the initial damage to the gear teeth produces vibration signals of short duration that are shorter than a period of meshes between teeth.In later stages the damage provokes modulations with a duration that may be even greater than time taken by one whole revolution.To have to decide between good temporal or good frequency resolution implies losing information in either case,and it is for this reason that this technology does not seem to offer a good diagnostic solution.With the increased requirements for prolonged operative life and increased safety,the models used for the prediction and identification of failures have seen great advances.The methods used,which are based on the frequency analysis of the signals based on WVD[Baydar-1(2001);Gu and Ball(1992);Fan(2006);Fan(2004)]and on WT[Fan(2006);Jiawei and Ming(2011)construct a multi-scale wavelet finite element model using Hermite cubic spline Wavelet on the interval(HCSWI)to obtain damages in cantilever beam,that can be assimilated to the a gear tooth;Choi,Mugler and Zou(2003);Bing(2006);Boulahbal(1999);Li,Zhiyuan and Zheng(2002);Jun(2007);Li(2006);McFadden and Wang(1996);Sung(2000);Niola(2007);Wang(2004);Wang(1995);Wang(1996);Baydar-2(2001);Yourong(2005);Zheng(2002);Bing and Zhengjia(2013)show different methods of vibration-based crack identification problem,that can be applied to some gear teeth faults;Zhennan(2003)],provide instantaneous frequency spectra at several points of the rotating shaft and have achieved notable success in the detection of gear-located failures.

    Nevertheless,all the above methods focus on analysis of the vibration signals in the radial and axial directions of the machine,and there has been no parallel development in the measurement of the angular vibration.In the preset study discuss the advantages of applying wavelet transform(WT)to the signal of angular vibration when carried out adopting a suitable Mother Function[Rafiee,Tse,Harifi and Sadeghi(2009)].

    2 Fundamentals

    The wavelet transform provides a time-frequency analysis of the input signal.It has the advantage over FFT in that it shows the frequencies that are present in the signal and the exact instant at which they appear,which is not the case with FFT,in which the frequencies obtained are the mean for the whole period studied.This means,for example,that a resonant vibration of short duration compared with the temporal interval of the signal under study,may be overlooked even though its amplitude is considerable.This is precisely what happens with the impacts of the teeth of a gear.Fig.1 shows a schematic vision of this process.WT possesses the ability to detect temporal impulses of short duration in such a way that any possible failure can be detected in gear transmissions.

    Figure 1:Comparison between Fourier Analysis and Wavelet Transform.

    Just as the sinusoidal decomposition that Fourier analysis performs,Wavelet analysis separates the signal into scaled elements(the equivalent of frequencies in the Fourier’s Transform)that are shifted with regard to the original.It is easy to understand that this is a better way to analyze signals that change randomly and erratically.

    The expression of the Wavelet transform in constant form is:

    Wherea∈R+is the scale andb∈Ris the parameter change.

    The integral evaluates the similarity between the signal x(t)and the wavelet function ψa,b(t),where:

    For low values of a(a<1),ψa,b(t)is short and of high frequency,whereas for high values(a>1)it is long and of low frequency.

    Considering different values for the scale parameter,the wavelet transform locates the transitory phenomena of the signal.

    The initial damages in teeth produces vibration signals of short duration–shorter than that of the period of meshing teeth.In later states this damage leads these signals becoming longer-even longer than the meshing periods[Wang(1995)].Other types of failures,such as eccentricity or misalignment,on top of the wear suffered by the teeth,produce modulated vibrations whose period greatly exceeds that corresponding to the mesh frequency and even the fundamental turning frequency.To detect this wide range of possibilities,the use of the WT is so advisable.Adopting a series of different scales and moving along the temporal axis,a great variety of failures can be detected,regardless of how long they last.

    The use of wavelets with a high number of null moments can also be useful for detecting purely frequency components in a signal.Depending on the smoothness conditions of the signal,Wavelets Mother Functions should be chosen that reflect a sufficient number of null moments.The number of these moments is related to the capacity of the wavelet to suppress signals that could be described by polynomials of a certain order.In this way,if a wavelet of n+1 null moments is chosen to calculate the transformed of a signal,we can cancel the components of the above mentioned signal that are polynomials of up to the nthdegree,that is all the polynomial signals up to the above mentioned degree will have null coefficients.

    2.1 Wavelet function selection

    Wavelet analysis uses as mother functions oscillating waveforms of finite duration and of average zero that tend to be irregular and asymmetric.These are the windowing functions used on signal to be analyzed.It is necessary to adopt a whole series of different scales and move the window along the time axis.In addition,it is necessary to determine which mother function is to be used and whether it is suitable for detecting a certain type of transitory phenomenon.That is to say,it is fundamental to properly choose the type of function that best suits the analysis of the mechanical failure that is being determined.The basic principle is to choose a wavelet function whose form is similar to that of the vibratory sign caused by the above mentioned failure.That is to say,it is really a question trying to confirm a hypothesis.In most of the studies carried out to date it is thought that when a mechanical failure occurs the vibratory signal possesses Morlet-type periodic impulses,for which reason this is the most commonly used function,although the Gabor and Mexican Hat type functions are also frequently used[Choi,Mugler and Zou(2003)].

    The family of wavelets known as Daubechies or dbN wavelets is one of the most commonly used in f i ltering applications[Raf i ee,Tse,Harif iand Sadeghi(2009)].The reason lies in the excellent capacity of this type of wavelet to represent polynomial and/or not linear behaviors of diverse signals and,as a consequence,to estimate the fundamental signal of noisy measurements[Saravanan and Ramachandran(2009)].The different dbN functions are generated by increasing parameter N,which indicates their order.The resultant function becomes smoother as N in-creases(greater number of null moments).This means that,theoretically,low order dbN(N→1)will be better at treating pulsatory series or those with strong discontinuities,whereas high order dbN(N→∞)will be more adapted to treating smooth signals or those with weakly damped transitory vibrations.

    The kind of irregularities produced by one damaged gear tooth in the signal of vibration is mainly a very narrow pulse,that is to say,very limited temporarily in respect to the period of the turning speed,usually once per revolution of the shaft.Since the amplitude of this pulse depends on the severity of the damage,when the defect is incipient that amplitude hardly exceeds the background level.Therefore,a high order of the Daubechies wavelet function,bigger than 6th order,makes those pulses disappear,acting like a filter to them.In the other side,if a low order is applied,below 3rd order,that background signal is not filtered enough,hiding often the pulses among the noise.So,4th or 5th order of Daubechies seems to be the best choice to detect damaged teeth in gears.

    In our work,the most suitable type was seen to be 5th order Daubechies.The type of Wavelet Mother Function plays an important role in the final results,since the use of one type or another or the level of decomposition chosen may affect positively or negatively the task of identifying the pattern of failure in question.

    3 Laboratory test programs,technology and equipment used

    3.1 Test bench

    The test bench used test consists of the following elements:

    -Asynchronous electrical three-phase engine.Power of 3 kW and 1,475 rpm.The speed can be controlled by means of a frequency variator.

    -One step gears train composed of a pinion with 20 teeth and a driven wheel with 40 teeth.

    -3 kW Shunt Dynamo with rheostat-controlled load.

    The damage was initiated by machining the contact flank of one,two and up to three teeth,with a material gradually taken off until the deterioration was noticeable in the measurements.Fig.3 shows a detail of the damaged teeth.

    The radial vibration measurements were made under acceleration(mm/s2)and those of angular vibration by measuring variations in angular speed(Δω in rpm),this latter by parallel beam laser interferometry,using a rotational vibrometer with a Helium-Neon laser beam source.The set-up the obtaining these measurements is depicted in Fig.4 and Fig.5.

    For data storage and treatment a laptop was used.The software used for processing the signal was Matlab? and Labview? as redundant measuring system.

    Figure 2:Test bench.

    Figure 3:Gears with damaged teeth and detail of the damage.

    Figure 4:View of accelerometer and laser interferometer.

    Figure 5:Schematic set-up.

    4 Experimental results

    4.1 FFT analysis

    Fig.6a to Fig.6h show Fourier’s spectra of angular and radial vibration with a different number of damaged teeth.Although a clear trend can be observed in the increase in the levels and the components at different frequencies related with the number of damaged teeth,making a diagnosis with this type of transform is complicated,whether analyzing the signals of radial vibration or those of angular vibration,since they may be confused with other types of anomaly that show similar spectral behavior(mechanical looseness,misalignment,...).This is because the waveform of the vibratory signal is not similar to the sinusoidal form,so that their Fourier spectral decomposition gives rise to a whole series of multiples of the principal frequency,which are highly random and which do not correspond to specif i c events.Although the mesh frequency can still be appreciated in the early stages of deterioration of the teeth,as the damage progresses a broad band of frequencies appears,masking the frequency of interest.

    Figure 6a:Angular spectrum without damaged teeth.

    Figure 6b:Radial spectrum without damaged teeth.

    4.2 Wavelet analysis

    Fig.7 shows the Wavelet Transform of the angular vibration signal corresponding to one damaged tooth in the pinion,using as"mother"the 5th order Daubechies.The graph represents 16 complete turns of the shaft,with a sampling frequency of 5 kHz and 8,192 sampled points.

    Figure 6c:Angular spectrum with one damaged tooth.

    Figure 6d:Radial spectrum with one damaged tooth.

    Figure 6e:Angular spectrum with two damaged teeth.

    Figure 6f:Radial spectrum with two damaged teeth.

    Figure 6g:Angular spectrum with three damaged teeth.

    Figure 6h:Radial spectrum with three damaged teeth.

    Figure 7:Wavelet Transform(Db5)of the angular vibration signal with one damaged tooth.

    The peaks corresponding to the passage of the damaged tooth as it turns can be observed.The peaks are provoked by a variation in the angular oscillation in the gear as the defective tooth meshes.The graphical evidence shown in Fig.7 can be compared with that depicted in Fig.6c,which represents the same situation but seen by FFT.Fig.8 shows the same situation but with the graph in two dimensions(scale-time).

    Figure 8:Wavelet Transform(Db5)of the angular vibration signal with one damaged tooth-2D view.

    Figure 9:Wavelet Transform(Db5)of the angular vibration signal with two damaged teeth.

    In the case of two and three damaged teeth the effect is similar,as can be observed in the following graphs where the peaks correspond to the sequence and number of damaged teeth.Fig.9 and Fig.10 correspond to the case of two non-consecutive damaged teeth,with an undamaged tooth between them:in this case,the graph represents four consecutive turns of the shaft Fig.11 and Fig.12 correspond to the case of three consecutive damaged teeth.

    Figure 10:Wavelet Transform(Db5)of the angular vibration signal with two damaged teeth–2-D view.

    Figure 11:Wavelet Transform(Db5)of the angular vibration signal with three damaged teeth.

    Figure 12:Wavelet Transform(Db5)of the angular vibration signal with three damaged teeth-2-D view.

    Figure 13:Wavelet Transform(Db5)of the radial vibrations signal with one damaged tooth.

    Figure 14:Wavelet Transform(Db5)of the radial vibration signal with two damaged teeth.

    Figure 15:Wavelet transform(Db5)radial vibration signal with three damaged teeth.

    An important observation is that as the damage to the teeth a rise,so does the severity of the angular vibration,as is to be expected and the detail of the fault can be clearly observed by WT.This is,although the vibration signal of becomes more random,the WT continues being very effective at extracting the scale-time components that reveal the failure.

    In all cases equidistant peaks coinciding with the passage of the damaged tooth/teeth can be observed.This effect is also clear in the 2-D graphs corresponding to the scale-time axes.

    However,this effect was not observed to the same extent in the radial vibration signal,despite the fact that its level of severity also increased.The peaks that appear in the graphs do not bare any relation with the temporal sequence of meshing or with the number of damaged teeth.As Fig.13,Fig.14 and Fig.15 show,although a sequence of peaks can be observed in 3-D,they were changeable did not in any way correspond to the expected frequencies.

    This is due to the fact that the damage modifies the involute tooth profile,and thus the change in the instantaneous angular velocity is inevitable during the process of meshing,while the radial effect is not so pronounced,so no highlights with respect to other random vibration background,and goes unnoticed especially in the early stages of default.

    5 Conclusions

    The joint analysis of the angular vibration signal and its Wavelet transform was seen to be a very effective diagnostic procedure,particularly when the 5th order Daubechies Wavelet was used to detect defective teeth in transmissions gears.The vibration caused by one or more damaged teeth is of the stationary impulsive type,that is,far from a sinusoidal waveform,meaning that the Fourier Transform is not the most suitable procedure for such an analysis.

    When the level of severity of the angular vibration identifies the existence of damage in the gear,WT permits specif i c diagnosis of the same,and it is possible to ascertain whether the fault appears in one or more teeth.

    Any deterioration in the teeth,accompanied by an increase in the levels of angular vibration,can be clearly observed in the temporal sequence of the angular vibration signal in WT,whereas making a diagnosis with FFT is complicated since they may be confused with other types of anomaly that show similar spectral behavior(mechanical looseness,misalignment,...).FFT provides unspecific results in this respect.

    Baydar,N.(2001):A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville Distribution.Mechanical Systems and Signal Processing,vol.15,no.6,pp.1091-1107.

    Baydar,N.(2001):Detection of gear failures using wavelet transform and improving its capability by principal component analysis.Condition Monitoring and Diagnostic Engineering Management,pp.411-418.

    Bel?ak,A.;Prezelj,J.(2007):Analysis of noise sources produced by faulty small gear units.Structural Durability&Health Monitoring,vol.3,no.4,pp.239-246.

    Bing,L.;Zhengjia,H.((2013):A Benchmark Problem for Comparison of Vibration-Based Crack Identification Methods.Computer Modeling in Engineering&Sciences,vol.93,no.4,pp.293-316

    Bing,S.(2006):Gear faults diagnosis based on wavelet packet and fuzzy pattern recognition.Chinese Control Conference,vol.1-5,pp.304-307.

    Boulahbal,D.(1999):Amplitude and phase wavelet maps for the detection of cracks in geared systems.Mechanical Systems and Signal Processing,vol.13,no.3,pp.423-436.

    Choi,F.K.;Mugler,D.H.;Zou J.(2003):Damage Identification of a Gear Transmission Using Vibration Signatures.Journal of Mechanical Design,vol.125,pp.395-403.

    Fan,Z.(2004):Application of wavelet transform and FFT methods in the analysis of gear signals.Proceedings of the International Computer Congress on Wavelet Analysis and its Applications,and Active Media Technology.

    Fan,Z.M.(2006):Application of the wavelet packet analysis in the gear vibration characteristic.Wavelet Active Media Technology and Information Processing,vol.1-2,pp.1019-1024.

    Gómez,F.C.(1998):Tecnología del Mantenimiento Industrial.Servicio de Publicaciones de la Universidad de Murcia.University of Murcia.

    Gu,F;Ball,A.(1992):Use of the Wigner Ville distribution in the interpretation of monitored vibration data.Maintenance,vol.10,pp.16-23.

    Jiawei,X.;Ming L.(2011):Multiple Damage Detection Method for Beams Based

    on Multi-Scale Elements Using Hermite Cubic Spline Wavelet.Computer Modeling in Engineering&Sciences,vol.73,no.3,pp.267-298.

    Jun,G.(2007):Application of wavelet packet transform on fault diagnosis of snapped bolt in gear box.Journal of Beijing University of Technology,vol.33,no.3,pp.240-244.

    Kara,C.;Mohanty,A.R.(2008):Vibration and current transient monitoring for gearbox fault detection using multiresolution Fourier transform.Journal of Sound and Vibration,vol.311,pp.109–132.

    Li,H.(2006):Angle domain average and continuous wavelet transform for gear fault detection.Current Development in Abrasive Technology,Proceedings,pp.618-623.

    Li,H.;Zhiyuan,C.;Zheng,X.(2002):Fault diagnosis for gearbox gear based on continuous wavelet transform.Ji Xie Gong Cheng Xue Bao,vol.38,no.3,pp.69-73.

    Litak,G.;Friswell,M.I.(2003):Vibration in gear systems.Chaos,Solitons and Fractals16,pp.795–800.

    McFadden,P.D.;Wang,W.J.(1996):Application of the wavelets to gearbox vibration signals for fault detection.Journal of Sound and Vibration,vol.192,no.5,pp.927-939.

    Niola,V.(2007):A wavelet application for improving the kinematical quality of gear transmission.WSEAS Transactions on Systems,vol.6,no.1,pp.47-53.

    Peng,Z.K.;Chu,F.L.(2004):Application of the wavelet transform in machine condition monitoring and fault diagnostic:a review with bibliography.Mechanical Systems and Signal Processing,vol.18,pp.199-221.

    Rafiee,J.;Tse,P.W.;Harifi,A.;Sadeghi,M.H.(2009):A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system.Expert Systems with Applications,vol.36,pp.4862–4875.

    Saravanan,N.;Ramachandran,K.I.(2009):Fault diagnosis of spur bevel gear box using discrete wavelet features and decision tree classification.Expert Systems with Applications,vol.36,pp.9564–9573.

    Sung,C.K.(2000):Locating defects of a gear system by the technique of wavelet transform.Mechanism and Machine Theory,vol.35,no.8,pp.1169-1182.

    Tiwari,R.;Bordoloi,D.J.;Bansal,S.;Sahoo,S.(2013):Application of Wavelet Analysis in Multi-class Fault Diagnosis of Gear using SVM.International Journal of Condition Monitoring&Diagnostic Engineering,vol.16,no.3,pp.17-24.

    Valverde,A.;Sánchez,J.J.;Gómez,F.C.(1997):Formulación de un modelo lógico de discriminación del estado de maquinas rotativas mediante normalización del nivel de vibración.Anales de Ingeniería Mecánica.Bilbao(Spain),vol.1,pp.341-348.

    Wang,K.(2004):Feature extraction of gear fault based on improved wavelet arithmetic.Progress in Safety Science and Technology,vol.4(A-B),pp.2400-2404.

    Wang,W.J.(1995):Application of orthogonal wavelets to early fear damage detection.Mechanical System and Signal Processing,vol.9,no.5,pp.497-507.

    Wang,W.J.(1995):Application of orthogonal wavelets to early fear damage detection.Mechanical System and Signal Processing,vol.9,no.5,pp.497-507.

    Wang,W.J.(1996):Application of wavelets to gearbox vibration signal for fault detection.Journal of Sound and Vibration,vol.192,no.5,pp.927-939.

    Yourong,Z.(2005):Application of wavelet packet analysis to gear fault diagnosis.Zhen Dong Yu Chong Ji,vol.24,no.5,pp.101-103.

    Zheng,H.(2002):Gear fault diagnosis based on continuous wavelet transform.Mechanical Systems and Signal Processing,vol.16,no.2-3,pp.447-457.

    Zhennan,X.(2003):Detection of incipient localized gear faults in gearbox by complex continuous wavelet transform.Chinese Journal of Mechanical Engineering,vol.16,no.4,pp.363-366.

    1Universidad Politécnica de Cartagena(UPCT),Cartagena,Spain.

    2Universidad de Murcia,Murcia,Spain.

    母亲3免费完整高清在线观看| 性色av乱码一区二区三区2| 精品高清国产在线一区| 在线观看免费日韩欧美大片| 91九色精品人成在线观看| 久久天躁狠狠躁夜夜2o2o| 80岁老熟妇乱子伦牲交| 美女国产高潮福利片在线看| 神马国产精品三级电影在线观看 | 欧美日韩亚洲国产一区二区在线观看| 免费av中文字幕在线| 制服诱惑二区| 国产av一区二区精品久久| 欧美不卡视频在线免费观看 | 国产真人三级小视频在线观看| 免费av毛片视频| 国产精品综合久久久久久久免费 | 丁香欧美五月| 国产成人免费无遮挡视频| 在线观看日韩欧美| 久久精品人人爽人人爽视色| 满18在线观看网站| 高清av免费在线| 天堂影院成人在线观看| 精品一区二区三区av网在线观看| 亚洲精品国产一区二区精华液| 看免费av毛片| 欧美中文综合在线视频| 两人在一起打扑克的视频| 国产精品久久电影中文字幕| 亚洲欧美精品综合一区二区三区| 国产三级在线视频| 欧美日韩黄片免| 人人澡人人妻人| 中亚洲国语对白在线视频| 一二三四社区在线视频社区8| 国产真人三级小视频在线观看| 亚洲国产欧美日韩在线播放| 中文亚洲av片在线观看爽| 精品人妻1区二区| 自线自在国产av| 精品卡一卡二卡四卡免费| 日韩有码中文字幕| 桃红色精品国产亚洲av| 午夜精品在线福利| 99精国产麻豆久久婷婷| 中文字幕人妻丝袜一区二区| 在线看a的网站| 亚洲国产欧美一区二区综合| 天天躁狠狠躁夜夜躁狠狠躁| 操出白浆在线播放| 两个人免费观看高清视频| av中文乱码字幕在线| 久久久久亚洲av毛片大全| av在线播放免费不卡| 激情视频va一区二区三区| 久久伊人香网站| 国产精品香港三级国产av潘金莲| 99久久久亚洲精品蜜臀av| 很黄的视频免费| 又大又爽又粗| 久9热在线精品视频| 露出奶头的视频| 看片在线看免费视频| 日韩av在线大香蕉| 在线观看免费视频日本深夜| 精品熟女少妇八av免费久了| 国产欧美日韩综合在线一区二区| 亚洲五月天丁香| 麻豆av在线久日| 国产精品日韩av在线免费观看 | 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 女人被狂操c到高潮| 男男h啪啪无遮挡| 自线自在国产av| 亚洲性夜色夜夜综合| 99热国产这里只有精品6| 亚洲第一欧美日韩一区二区三区| 日本wwww免费看| 91av网站免费观看| 超碰97精品在线观看| 亚洲人成电影免费在线| 国产熟女午夜一区二区三区| 欧美日韩福利视频一区二区| 亚洲精华国产精华精| 亚洲九九香蕉| 一级片'在线观看视频| 国产精品野战在线观看 | 老鸭窝网址在线观看| 久久亚洲真实| 另类亚洲欧美激情| 欧美 亚洲 国产 日韩一| 久久伊人香网站| 正在播放国产对白刺激| 成人亚洲精品av一区二区 | 女同久久另类99精品国产91| 亚洲熟妇熟女久久| 日本wwww免费看| 国产伦一二天堂av在线观看| 老司机靠b影院| 天天影视国产精品| 日韩免费av在线播放| 亚洲av第一区精品v没综合| 欧美日本亚洲视频在线播放| 自线自在国产av| 亚洲午夜精品一区,二区,三区| 在线观看www视频免费| av视频免费观看在线观看| 母亲3免费完整高清在线观看| 久久伊人香网站| 精品福利观看| 亚洲av美国av| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 欧美日韩亚洲高清精品| 男女午夜视频在线观看| 欧美性长视频在线观看| 国产精品久久电影中文字幕| 99在线视频只有这里精品首页| 女人精品久久久久毛片| 91麻豆av在线| 免费在线观看亚洲国产| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费 | 亚洲国产看品久久| 亚洲人成电影观看| 中文字幕高清在线视频| 在线观看一区二区三区| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 91在线观看av| 757午夜福利合集在线观看| 免费一级毛片在线播放高清视频 | 久久精品aⅴ一区二区三区四区| 国产不卡一卡二| 成人av一区二区三区在线看| 村上凉子中文字幕在线| 51午夜福利影视在线观看| 校园春色视频在线观看| 亚洲国产欧美日韩在线播放| 男女下面插进去视频免费观看| 国产精品永久免费网站| 大型黄色视频在线免费观看| 亚洲国产精品一区二区三区在线| 一级毛片女人18水好多| 午夜福利欧美成人| 成人手机av| 欧美最黄视频在线播放免费 | 国产精华一区二区三区| 麻豆一二三区av精品| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 视频在线观看一区二区三区| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡| 久久久久久人人人人人| 亚洲伊人色综图| 婷婷六月久久综合丁香| avwww免费| 精品电影一区二区在线| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 成人手机av| 日韩欧美在线二视频| 亚洲成a人片在线一区二区| 成人手机av| 中文字幕高清在线视频| 在线永久观看黄色视频| 在线av久久热| 热99国产精品久久久久久7| 一进一出抽搐gif免费好疼 | 琪琪午夜伦伦电影理论片6080| 中文字幕人妻丝袜制服| 村上凉子中文字幕在线| 午夜福利欧美成人| 日韩精品免费视频一区二区三区| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| 一边摸一边抽搐一进一小说| 成人三级做爰电影| 黄片播放在线免费| av免费在线观看网站| 国产av在哪里看| 亚洲国产欧美一区二区综合| 美女福利国产在线| 午夜a级毛片| 一区在线观看完整版| 黄色怎么调成土黄色| 久久国产乱子伦精品免费另类| 国产精品自产拍在线观看55亚洲| 中文欧美无线码| 国产精品成人在线| 中文欧美无线码| 超色免费av| 久久这里只有精品19| 久久午夜综合久久蜜桃| 欧美乱码精品一区二区三区| 丝袜在线中文字幕| 在线天堂中文资源库| 久久久久久亚洲精品国产蜜桃av| 一本综合久久免费| 久久久久久人人人人人| 国产深夜福利视频在线观看| 国产深夜福利视频在线观看| 曰老女人黄片| 手机成人av网站| 国产亚洲精品第一综合不卡| 久久久久久人人人人人| 男女下面进入的视频免费午夜 | 亚洲一区二区三区不卡视频| 日本精品一区二区三区蜜桃| 人妻久久中文字幕网| 少妇粗大呻吟视频| а√天堂www在线а√下载| 夫妻午夜视频| 国产深夜福利视频在线观看| 后天国语完整版免费观看| 午夜福利影视在线免费观看| 五月开心婷婷网| 夫妻午夜视频| 免费少妇av软件| 制服诱惑二区| 亚洲精品成人av观看孕妇| 99国产综合亚洲精品| 国产单亲对白刺激| 一级毛片女人18水好多| 无限看片的www在线观看| 久久香蕉精品热| 久久精品国产综合久久久| 精品久久蜜臀av无| xxx96com| 欧美日韩精品网址| 悠悠久久av| 99热只有精品国产| 在线观看免费日韩欧美大片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品偷伦视频观看了| 亚洲中文日韩欧美视频| 亚洲男人天堂网一区| www国产在线视频色| 丝袜在线中文字幕| 大香蕉久久成人网| 国产精品免费视频内射| 高清黄色对白视频在线免费看| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 欧美日本中文国产一区发布| 亚洲aⅴ乱码一区二区在线播放 | 国产不卡一卡二| 一进一出好大好爽视频| 69av精品久久久久久| 亚洲色图 男人天堂 中文字幕| 高清av免费在线| 成人永久免费在线观看视频| 好男人电影高清在线观看| 男女下面插进去视频免费观看| 麻豆一二三区av精品| 欧美午夜高清在线| 亚洲avbb在线观看| 在线视频色国产色| 精品一区二区三区四区五区乱码| 亚洲国产欧美日韩在线播放| www.www免费av| 50天的宝宝边吃奶边哭怎么回事| 美国免费a级毛片| 一边摸一边做爽爽视频免费| 亚洲精品一卡2卡三卡4卡5卡| 精品国产超薄肉色丝袜足j| 亚洲成人免费av在线播放| 精品国产美女av久久久久小说| 男女下面插进去视频免费观看| 一进一出抽搐动态| 中文字幕av电影在线播放| 99re在线观看精品视频| 黄色片一级片一级黄色片| av免费在线观看网站| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂| 悠悠久久av| 成人免费观看视频高清| 一级,二级,三级黄色视频| 国产精品久久视频播放| 国产精品日韩av在线免费观看 | av在线天堂中文字幕 | 两个人看的免费小视频| 久热这里只有精品99| aaaaa片日本免费| 两性午夜刺激爽爽歪歪视频在线观看 | 超色免费av| bbb黄色大片| √禁漫天堂资源中文www| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 成在线人永久免费视频| 制服诱惑二区| 中文字幕av电影在线播放| 国产免费av片在线观看野外av| 国产区一区二久久| 午夜免费成人在线视频| 欧美人与性动交α欧美精品济南到| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| 亚洲自拍偷在线| 久9热在线精品视频| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av| 亚洲一区中文字幕在线| 国产一区二区激情短视频| 91麻豆av在线| 精品一区二区三区视频在线观看免费 | 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 午夜精品在线福利| 久久伊人香网站| 老司机深夜福利视频在线观看| 亚洲久久久国产精品| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区mp4| 亚洲aⅴ乱码一区二区在线播放 | 成年人免费黄色播放视频| 精品第一国产精品| 在线观看一区二区三区| 大码成人一级视频| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 亚洲中文字幕日韩| 欧美+亚洲+日韩+国产| 黑人欧美特级aaaaaa片| 99久久99久久久精品蜜桃| 丝袜在线中文字幕| 最近最新中文字幕大全免费视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美激情在线| 长腿黑丝高跟| 美女 人体艺术 gogo| 九色亚洲精品在线播放| 18禁国产床啪视频网站| 多毛熟女@视频| av欧美777| 精品日产1卡2卡| 丁香欧美五月| 校园春色视频在线观看| avwww免费| av网站在线播放免费| 新久久久久国产一级毛片| 老司机午夜十八禁免费视频| 亚洲精品在线观看二区| av片东京热男人的天堂| 村上凉子中文字幕在线| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 成人亚洲精品av一区二区 | 麻豆国产av国片精品| 国产成+人综合+亚洲专区| ponron亚洲| 欧美日本中文国产一区发布| 在线观看免费日韩欧美大片| 精品国内亚洲2022精品成人| 国产精品免费视频内射| 亚洲成人免费av在线播放| 日韩高清综合在线| 久久久精品国产亚洲av高清涩受| 人人妻人人添人人爽欧美一区卜| 婷婷精品国产亚洲av在线| 亚洲精华国产精华精| 成人精品一区二区免费| 亚洲av电影在线进入| 色播在线永久视频| 天天添夜夜摸| 久久人人爽av亚洲精品天堂| 波多野结衣av一区二区av| www.999成人在线观看| 在线观看免费午夜福利视频| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 亚洲av熟女| 国产精品电影一区二区三区| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频| 国产片内射在线| 妹子高潮喷水视频| 久久久久九九精品影院| 每晚都被弄得嗷嗷叫到高潮| 精品无人区乱码1区二区| 婷婷精品国产亚洲av在线| 一边摸一边抽搐一进一小说| 欧美乱色亚洲激情| 一进一出好大好爽视频| 人成视频在线观看免费观看| 国产激情久久老熟女| 国产精品98久久久久久宅男小说| 99国产精品免费福利视频| 欧美成人免费av一区二区三区| 女人被躁到高潮嗷嗷叫费观| 欧美日韩乱码在线| 免费久久久久久久精品成人欧美视频| 亚洲精品成人av观看孕妇| 久久精品91无色码中文字幕| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| 久久久久久人人人人人| 97超级碰碰碰精品色视频在线观看| 村上凉子中文字幕在线| 亚洲男人的天堂狠狠| 婷婷六月久久综合丁香| 精品一区二区三区av网在线观看| 色综合站精品国产| 国产亚洲精品一区二区www| 日本免费a在线| 免费日韩欧美在线观看| 电影成人av| 黄网站色视频无遮挡免费观看| 满18在线观看网站| 亚洲午夜理论影院| 午夜福利欧美成人| www.www免费av| 中文字幕av电影在线播放| 国产深夜福利视频在线观看| 一本大道久久a久久精品| 国产欧美日韩一区二区三| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| 90打野战视频偷拍视频| 大码成人一级视频| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 伊人久久大香线蕉亚洲五| 国产男靠女视频免费网站| 亚洲午夜理论影院| 一夜夜www| 亚洲午夜精品一区,二区,三区| 中亚洲国语对白在线视频| 午夜两性在线视频| 黄色片一级片一级黄色片| 村上凉子中文字幕在线| 免费av中文字幕在线| 免费av毛片视频| 91老司机精品| 黑丝袜美女国产一区| 岛国在线观看网站| 十八禁人妻一区二区| 免费在线观看影片大全网站| 亚洲成a人片在线一区二区| 精品一区二区三卡| 国产精品一区二区在线不卡| 亚洲熟妇熟女久久| 欧美人与性动交α欧美软件| 又大又爽又粗| 12—13女人毛片做爰片一| 色婷婷av一区二区三区视频| 久久精品aⅴ一区二区三区四区| 黑人欧美特级aaaaaa片| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| 一级片免费观看大全| 久久久久久免费高清国产稀缺| 在线观看日韩欧美| 村上凉子中文字幕在线| 在线播放国产精品三级| 日本黄色日本黄色录像| 又黄又粗又硬又大视频| a在线观看视频网站| 欧美日韩黄片免| 高清毛片免费观看视频网站 | 18禁观看日本| 国产精品 国内视频| 免费日韩欧美在线观看| 午夜福利免费观看在线| 精品久久久久久久久久免费视频 | 老汉色av国产亚洲站长工具| 成人亚洲精品av一区二区 | 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看 | 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 亚洲少妇的诱惑av| 成人18禁在线播放| 国产精品日韩av在线免费观看 | 国产高清激情床上av| 国产精品一区二区免费欧美| www.999成人在线观看| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 黄频高清免费视频| 人人澡人人妻人| 一区福利在线观看| 操美女的视频在线观看| 自线自在国产av| 中文欧美无线码| av免费在线观看网站| а√天堂www在线а√下载| 免费观看精品视频网站| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 国产免费av片在线观看野外av| 日日爽夜夜爽网站| 99国产精品一区二区蜜桃av| 12—13女人毛片做爰片一| www国产在线视频色| 午夜免费观看网址| 欧美中文综合在线视频| 日韩欧美一区视频在线观看| 老司机午夜福利在线观看视频| 神马国产精品三级电影在线观看 | 19禁男女啪啪无遮挡网站| 国产高清国产精品国产三级| 国产高清激情床上av| 可以免费在线观看a视频的电影网站| 国产男靠女视频免费网站| 性少妇av在线| 久久欧美精品欧美久久欧美| 很黄的视频免费| 国产蜜桃级精品一区二区三区| 一级毛片女人18水好多| 欧美成人性av电影在线观看| 精品国产亚洲在线| tocl精华| 久久婷婷成人综合色麻豆| 青草久久国产| 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| 91老司机精品| 丰满的人妻完整版| 高清av免费在线| 久久亚洲精品不卡| 校园春色视频在线观看| 国产不卡一卡二| 亚洲avbb在线观看| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 美女扒开内裤让男人捅视频| 中文字幕人妻丝袜一区二区| 老司机亚洲免费影院| tocl精华| 男人舔女人下体高潮全视频| 真人做人爱边吃奶动态| 老鸭窝网址在线观看| 在线观看www视频免费| 在线观看免费午夜福利视频| 神马国产精品三级电影在线观看 | 大香蕉久久成人网| 欧美精品亚洲一区二区| 亚洲黑人精品在线| 777久久人妻少妇嫩草av网站| 色精品久久人妻99蜜桃| 午夜激情av网站| а√天堂www在线а√下载| 欧美激情久久久久久爽电影 | 久久亚洲真实| 国产高清视频在线播放一区| 久久伊人香网站| 国产精品自产拍在线观看55亚洲| 亚洲三区欧美一区| 久久草成人影院| 1024香蕉在线观看| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 99久久99久久久精品蜜桃| 在线天堂中文资源库| 亚洲中文日韩欧美视频| 色综合站精品国产| 国产成人免费无遮挡视频| 视频区欧美日本亚洲| 一级毛片高清免费大全| 亚洲性夜色夜夜综合| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 亚洲av五月六月丁香网| 国产精品久久视频播放| 变态另类成人亚洲欧美熟女 | 亚洲国产中文字幕在线视频| 国产精品国产av在线观看| 午夜91福利影院| 久久九九热精品免费| av在线播放免费不卡| 国产成人精品久久二区二区免费| 黄片大片在线免费观看| 涩涩av久久男人的天堂| 免费在线观看日本一区| a级毛片在线看网站| 亚洲伊人色综图| 我的亚洲天堂| 一级片免费观看大全| 国产野战对白在线观看| 亚洲 欧美一区二区三区| 黄频高清免费视频| 亚洲五月色婷婷综合| 欧美人与性动交α欧美精品济南到| 亚洲精品在线观看二区| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9| 男女做爰动态图高潮gif福利片 | 亚洲第一青青草原| 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 一区二区三区国产精品乱码| 日本免费a在线| 欧美国产精品va在线观看不卡| 免费搜索国产男女视频| 黑人巨大精品欧美一区二区mp4|