• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluating Water Vapor Permeance Measurement Techniques for Highly Permeable Membranes

    2015-12-13 06:46:39BuiDucThuanWongYonghuiChuaKianJonandNgKimChoon
    Computers Materials&Continua 2015年8期
    關(guān)鍵詞:糞尿排泄物豬糞

    Bui Duc Thuan,Wong Yonghui,Chua Kian Jonand Ng Kim Choon

    Evaluating Water Vapor Permeance Measurement Techniques for Highly Permeable Membranes

    Bui Duc Thuan1,2,Wong Yonghui2,Chua Kian Jon2and Ng Kim Choon2

    The cup method and dynamic moisture permeation cell(DMPC)method are two common techniques used to determine the water vapor permeation properties of a membrane.Often,ignoring the resistance of boundary air layers to the transport of water vapor results in the water vapor permeance of the membrane being underestimated in practical tests.The measurement errors are higher with highly permeable membranes.In this study,the two methods were simulated using COMSOL Multiphysics platform and the extent of the error was evaluated.Initial results showed that the error is equally high in both methods.With the correction for the still air gap,the cup method produces a relatively reduced error.In the DMPC method,reducing the error caused by the boundary air layer by increasing the sweep speed can produce higher instrument error.Highly accurate and precise instrument is needed for DMPC method;however,its error is still higher than that in the cup method.Simulations also show that lowering the test pressure is favorable to both methods.

    cup method simulation,dynamic moisture permeation cell method simulation,water vapor permeability

    1 Introduction

    The use of membranes for applications involving the removal or transfer of high amount of water vapor has driven the need for the evaluation of water vapor permeance of membranes with high water vapor permeance(upto6.8×10?6mol/m2.s.Pa[Xing,Rao,TeGrotenhuis,Canf i eld,Zheng,Winiarski and Liu(2013)])and high selectivity.Such applications include air dehumidif i cation[Yang,Yuan,Gao and Guo(2015);Metz,Van de Ven,Potreck,Mulder and Wessling(2005)],membrane heat and vapor recovery[Zhang and Jiang(1999)]and vapor/gas separation[Lin,Thompson,Serbanescu-Martin,Wijmans,Amo,Lokhandwala and Merkel(2012);Krull,Fritzmann and Melin(2008);Metz,Van De Ven,Mulder and Wessling(2005);Roy,Hussain and Mitra(2013);Scovazzo(2010);Sijbesma,Nymeijer,van Marwijk,Heijboer,Potreck and Wessling(2008)].

    There are currently two widespread methods,the cup method[ASTM(2014)]and the dynamic moisture permeation cell(DMPC)method[ASTM(2009)],used for measuring water vapor transmission rates(WVTR)and thus water vapor permeance.Each method has its own variations[Metz,Van de Ven,Potreck,Mulder and Wessling(2005);Gennadios,Weller and Gooding(1994);Huang(2008);Huang and Qian(2008);Zhang(2006)],advantages and disadvantages[Huang and Qian(2008);McCullough,Kwon and Shim(2003)].

    In the cup method,a membrane of a specif i c area covers an upright cup(Figs.1 a)or inverted cup(Fig.1 b),with the cup being filled with desiccant,water or salt solution to keep the relative humidity(RH)inside the cup fixed at a certain value.The cup is placed inside a temperature and humidity chamber with air or nitrogen atmosphere at controlled RH.In order to refresh the air/gas outside the cup,the air/gas in the chamber is circulated at a speed higher than 152 m/min as recommended in ASTM E96-14[ASTM(2014);McHugh,Avena-Bustillos and Krochta(1993)].In this cup method,the change in the mass of the cup’s content is monitored and used to quantify the water vapor permeation of the membrane.The advantage of this method is that it employs simple apparatus to conduct the test.

    In the dynamic moisture permeation cell(DMPC)method,one side of the membrane is kept at fixed RH by blowing a fast-f l owing feed stream of air or gas over the membrane(Figs.1 c).On the other side of the membrane,a sweep air,helium or nitrogen is passed over.The fluid flows at the opposing sides of the membrane can be countercurrent or concurrent.They can be blown from one end to the opposite end of a rectangular membrane(Fig.1 c),or radially from the center of a circular membrane surface to the circumference or in the opposite direction[Metz,Van de Ven,Potreck,Mulder and Wessling(2005)].Water vapor diffuses through the membrane from a space with higher RH to one with lower RH,causing a change in RH of the sweep stream.The RH change is measured and used to calculate the permeability characteristic of the membrane.This method can be coupled with a gas chromatograph system to determine the permeability and selectivity of several gases or vapors at the same time,though the apparatus setup and operations are more complicated[Xing,Rao,TeGrotenhuis,Can field,Zheng,Winiarski and Liu(2013)].There are also setups,which are hybrids of the cup and DMPC methods,reported in literature[Huang(2008);Zhang(2006)].

    Figure 1:Some examples of experimental setups to determine water vapor permeance:(a)upright cup method;(b)inverted cup method and;(c)counter-current f l ow DMPC method

    For the cup method,the WVTR(mol/m2.s)is given as[ASTM(2014)]:

    where Δmis the change in mass of the cup(g),tis the time taken for that change in mass(s),Ais the area of the membrane(m2),andMwis the molecular weight of water(g/mol).

    For the DMPC method,it is determined from[ASTM(2009)]:

    where δRHis the change in relative humidity between the incoming and outgoing stream of the sweep air/gas,Psis the saturation pressure of water vapour(Pa),Vis the volumetric f l ow rate(m3/s),R is the universal gas constant(J/mol.K),andTis the temperature of the measurement(K).

    In order to quantify the ease with which water vapor can go through a membrane,vapor permeance(k,mol/m2.s.Pa)is employed and def i ned as the amount of water vapor that goes across a unit area of the membrane under a unit water vapor transmembrane pressure.With the assumption that the air resistance to the water vapor transport is negligible,the apparent water vapor transmembrane pressure,and thus apparent permeance,can be determined by

    where ΔPw,appis the apparent water vapor transmembrane pressure(Pa),the driving force for water transmission through the membrane[ASTM(2014)].

    For the cup method,the apparent water vapor transmembrane pressure is the water vapor pressure difference between the desiccant/water/salt solution surface inside the cup and the air/gas outside the cup.For the DMPC method,generally,the water vapor transmembrane pressure is the average water vapor pressure difference between feed stream and sweep stream[Metz,Van de Ven,Potreck,Mulder and Wessling(2005);ASTM(2009)].

    For both methods,treating the resistance of air as negligible leads to an underestimation of water vapor permeance and causes a certain error for the measurement[Metz,Van de Ven,Potreck,Mulder and Wessling(2005);Gennadios,Weller and Gooding(1994);McHugh,Avena-Bustillos and Krochta(1993);Hu,Topolkaraev,Hiltner and Baer(2001)].The error is small for a low permeance membrane,whose resistance is much larger than the resistance of air on both sides of the membrane.The error is higher for a high permeance membrane if no correction is appropriately applied.So far,only the resistance of still air has been determined and considered for permeance calculations in the cup method[ASTM(2014)].The resistance of a moving gas and how it affects the measurement error are still not determined and evaluated in both methods.

    Water vapor permeances obtained experimentally are not actual but apparent values.Therefore,although experimental analysis and comparison of the two methods have been done[Gennadios,Weller and Gooding(1994)],the extent of the measurement errors due to air resistance in both methods is not well-known.In particular,the error in the DMPC method,in which no applicable correction has been reported,is completely unknown.Therefore,what is the most appropriate method for a certain membrane and how to minimize the error in each method are questions yet to be addressed.

    In this study,computational analysis was utilized to simulate the extent of the errors due to air resistance in a cup setup and a counter current f l ow DMPC setup.The error after the applicable corrections for the cup method was evaluated.The effects of relative humidity,temperature and pressure on the error of measured apparent and corrected permeances were also simulated.Favorable testing conditions to minimize the error are subsequently discussed.

    2 Simulation

    2.1 Assumptions

    2D simulations for the experimental setup were developed employing the COMSOL Multiphysics 5.0 platform,an engineering modeling software based on the well-developed f i nite element method[Atluri(2005)].The consistency between experimental and simulation results for heat and mass transfer involving air f l ows using COMSOL has been reported in literatures[Bui,Chen,Nida,Chua and Ng(2015);Toujani,Djebali,Hassini,Azzouz and Belghith(2014);Lamloumi,Hassini,Lecomte-Nana,Elcafsi,Smith,Li,Huang,Ai and Tian(2014)].The following assumptions were made when developing these models:

    1.Humid air approximates an ideal gas and the fluid f l ow of air is plug f l ow.

    2.Water vapor transport is governed by the Fick’s law of diffusion and convection.The mass balance equation under isothermal steady state equilibrium is

    wherecis the concentration of the water vapor(mol/m3),D is the water vapor diffusion coefficient(m2/s),uis the velocity vector(m/s).cis related to water vapor partial pressure and relative humidity as below:

    Pwis the water vapor partial pressure(Pa),RH is the relative humidity andPsis the saturation pressure of water vapor(Pa).

    The water vapor diffusion coefficient(D)is calculated from the empirical equation[Massman(1998)]:

    wherePis the ambient pressure(Pa),Pois the standard atmospheric pressure(101325 Pa)andTis the temperature(K).

    3.The water vapour permeance of the membrane is fixed and does not depend on the air RH.The water vapor transmission rate is proportional to the partial pressure difference between the two sides of the membrane,as in the below equation:wherekis the water vapor permeance of the membrane(mol/m2.s.Pa),ΔPwis transmembrane pressure andP1wandP2ware the water vapor partial pressure at two sides the membrane(Pa).

    4.For the cup method,the changes in temperature and air gap due to the water evaporation/absorption are ignored.

    Figure 2:Schematic diagrams for simulations of(a)cup setup and(b)DMPC setup

    2.2 Cup method setup

    The upright cup setup shown in Fig.1 a is modeled and simulated.The working membrane is modeled as a 10 mm long thin permeable barrier having constant water vapor permeance(k),placed between an outside layer of conditioned air and a still air layer in the cup as shown in Fig.2 a.In order to reduce the resistance to mass transfer,the outside air layer is moving atum/s.Water vapor transport in the outside air is governed by the Fick’s law of diffusion and convection.Its mass transfer process is depicted via equation(4).Water vapor transport in the still air gap inside the cup is governed only by the Fick’s law of diffusion.Its mass transfer process is simulated using equation(4)without the first term on the left hand side,which accounts for convective transport due to the velocity u.

    The apparent water vapor permeance can be determined:

    wherekappis the apparent water vapor permeance(mol/m2.s.Pa),PoutwandPinware the water vapor partial pressure of outside conditioned air and at the water/desiccant/salt solution surface respectively(Pa).

    The error ofkappcompared withkis determined as:

    The influence of the thickness of the still air gap(d),the conditioned air’sRH,temperature and pressure on theerroris studied judiciously.

    2.3 DMPC method setup

    The counter fl ow DMPC setup shown in Fig.1 c is simulated.The working membrane is a 10 mm long thin permeable barrier between a feed and a sweep flows,as shown in Fig.2 b.Flow velocities of feed air and sweep gas areufandusrespectively.Water vapor transport in both feed and sweep flows are governed by the Fick’s law of diffusion and convection and the mass balance equation for both flows is equation(4).

    The apparent water vapor permeance can be determined:

    在傳統(tǒng)的生豬規(guī)模化養(yǎng)殖中,對于大量糞尿無法進行有效處理,通過對異位發(fā)酵床技術(shù)這一新型豬糞尿排泄物處理技術(shù)的應(yīng)用,能在源頭上對傳統(tǒng)規(guī)?;i場的糞尿污染問題進行處理,可以為養(yǎng)殖人員帶來良好的經(jīng)濟效益。

    wherePfeedinwandPfeedoutware the water vapor partial pressures at the inlet and outlet of the feed f l ow respectively(Pa),andPsweepinwandPsweepoutware the water vapor partial pressures at the inlet and outlet of the sweep f l ow respectively(Pa).The error ofkappcompared withkis determined using equation(9).The inf l uence of the sweep gas velocity,pressure,conditioned air’sRHand temperature on the error is analyzed and quantified.

    3 Results and discussion

    3.1 Transmembrane water vapor partial pressure,

    Figure 3:(a)water vapor partial pressure along the y axis and(b)transmembrane pressure in dry cup method setup.

    Fig.3 a shows the water vapor partial pressure along theyaxis in a dry cup method setup at different membrane permeances.The relative humidity of the outside conditioned air is set at 70%.A desiccant like silica gel or calcium chloride is modelled in this setup and the relative humidity at the desiccant surface is set at 0%.The temperature is 298K.The outside air layer is moving atu=10 m/s.The water vapor permeance of the membrane(k)is varied from 10?8to 5 10?6mol/m2.s.Pa.The result shows that there is an accumulation of water vapor on the inner side of the membrane,causing an increase in water vapor partial pressure near the membrane.This accumulation is small with low water vapor permeance spanning from 10?8to 10?7mol/m2.s.Pa and increases sharply with higher water vapor permeance.There is still a significant amount of water vapor dissipation on the outer side of the membrane when water vapor permeance is high,causing a drop in pressure near the membrane,even though the conditioned air is moving at 10 m/s,4 times higher recommended velocity in ASTM 96[ASTM(2014)].As a result,the actual water vapor transmembrane pressure(ΔPw)is much lower than the water vapor pressure difference between the desiccant surface and outside conditioned air.

    Fig.3 b shows the dependence of the water vapor transmembrane pressure on the membrane permeance and the thickness of the still air(d)between the desiccant surface and the membrane.The actual water vapor transmembrane pressure decreases with higher water vapor permeance and thicker air gap.

    Fig.4 a shows the water vapor partial pressure along theyaxis in a DMPC setup.The relative humidity of the feed air and the sweep gas is set at 70%and 0%,respectively.The temperature is 298K.The feed air and the sweep gas are moving at 10 and 0.5 m/s,respectively.The water vapor permeance of the membrane(k)varies from 10?8to 5 10?6mol/m2.s.Pa.Similar as the cup method,there are significant water vapor accumulation and dissipation caused by the resistance of air phases on both sides of the membrane in this DMPC setup.This results in a lower water vapor transmembrane pressure compared with the mean water vapor partial pressure difference between the feed air and the sweep gas.As shown in Fig.4 b,the actual water vapor transmembrane pressure decreases with higher water vapor permeance and slower sweep gas velocity.

    Figure 4:(a)water vapor partial pressure along the y axis and(b)transmembrane pressure in a dynamic moisture permeation cell setup.

    3.2 Apparent and actual permeance

    Figure 5:Comparision between apparent and actual permeances in(a)cup setup and(b)DMPC method

    During the practical testing of both methods,water vapor permeance is determined based on the assumption that the mass transport resistance of the air on both sides of the membrane is negligible.This leads the apparent permeance computed using equations(8)and(10)to be lower than the actual water vapor permeance.The underestimation of water vapor permeance is shown in Fig.5.From the two graphs,it is seen that the apparent permeance diverges from the actual permeance as membrane permeance increases.Further,the divergence increases with higher air gap in the cup method and slower sweep velocity in the DMPC method.It is therefore apparent that the resistances to mass transfer in the gas boundary layers on both sides of the membrane cannot be neglected,especially in case of highly water permeable membranes.Simplifying calculations in practical tests by ignoring this resistance will cause error of the measurement.The errors determined by equation(9)for the two methods are shown in Fig.6.

    Figure 6:Error caused by ignorance of mass transport resistance of air boundary layers in(a)the cup method and(b)the DMPC method.

    As shown in Fig.6,both methods potentially evolve large errors if the resistances of the air boundary layers are not taken into account.The error increases with higher water vapor permeance.A thicker air gap in the cup method and a lower sweep velocity in the DMPC method also cause higher error.

    3.3 Correction for resistance of still air

    According to ASTM E96-14[ASTM(2014)],all measurements that result in permeance values of more than 2-perms(6.33×10?9mol/m2s Pa)require corrections.The correction for resistance due to the still air is based on the water vapor permeance of air(kair,mol/m2.s.Pa):

    The water vapor permeance with the correction(kcor,mol/m2.s.Pa)is determined as follows:

    For the inverted cup method in which there is no still air gap,the measured water vapour permeance would be similar to the corrected water vapour permeance values shown in Fig.7 a.For the convenience of not applying the corrections,the inverted cup method can be used.

    Figure 8:RH change between sweep gas inlet and outlet

    In the DMPC method,there has been no reported literature on such a kind of correction for the DMPC method.Therefore,only by increasing the sweeping velocity,the error can be reduced as shown in Fig.6 b.However,the change in RH also becomes smaller as shown in Fig.8.The smaller change in water content can magnify the instrument error.This means that there is always a tradeoff between the error caused by the resistance of the air boundary layers and the instrument error with the increase of sweeping velocity.Highly accurate and precise instrument is needed for the DMPC method.However,this does not ensure that the measurement error of the DMPC method is lower than that of the cup method.This is because with the sweep velocity of 10 m/s,at which the sweep stream’s RH is almost unchanged(as shown in Fig.8),the error of the DMPC method(shown in Fig.6 b)is still higher than the error after correction of the cup method with fresh velocity higher 10 m/s(shown in Fig.7 c.).

    3.4 Effects of RH,temperature and pressure on measurement error

    Adopting the assumption that the water vapor permeance of a membrane does not change with RH of the air,the simulation results show that the measurement error also does not depend on the difference in RH values between both sides of the membranes.As shown in Fig.9 a,the curves for the error ofkappandkcoroverlap at differing RH values outside the cup while the RH inside the cup controlled using desiccant is kept at 0%.The result is also applicable for the wet-cup method.

    The independence of measurement error from RH is also observed in the case of the DMPC method as shown in Fig.9 b.The error curves overlap at different feed RH values while the sweep inlet RH is kept at 0%.However,the lowering of the feed RH leads to small RH changes in the sweep stream as shown in Fig.9 c,causing higher instrument errors.Therefore,when the DMPC method is to be considered,a higher RH difference between the two f l ows is desirable.

    Figure 9:Effects of RH(a,b and c),temperature(d,e)and pressure(f,g)on measurement errors in the cup(a,d,f)and DMPC(b,e and g)methods and sweep gas’s RH change in DMPC method(c).

    Adopting the assumption that the water vapor permeance of a membrane is independent of temperature,it follows that a change in temperature just affects the diffusion of water vapor in the air.In both methods,increasing process temperature leads to higher water vapor diffusion and a lower resistance of the boundary air layer.Consequently,lower errors are achieved,as shown in Fig.9 d and e.However,when the temperature increases from 293 K to 323 K,the error ofkappfor both the cup and DMPC methods decrease only slightly while the error ofkcoris almost unchanged for the cup method.

    Pressure affects the water vapor diffusion in air as apparent through equation(6).A decrease in pressure will result in higher diffusion effect while lowering the resistance of air to water vapor transport.In both methods,higher errors are obtained under high pressure conditions as shown in Fig.9 f and g.This result is consistent with the report that concentration polarization effects cannot be neglected in high pressure applications[Lüdtke,Behling and Ohlrogge(1998)].

    4 Conclusions

    In this work,two commonly used techniques,the cup and DMPC methods,were studied by numerical analysis to evaluate water vapor permeance of highly permeable membranes.Under room condition and without proper corrective intervention,both methods give high errors due to the effect of water vapor transport resistance of the boundary air layers on both sides of the membrane not being considered.Because the resistance of still air can be determined,the cup method provides a corrected water vapor permeance value closer to the actual one without compro-mising instrument error.Highly accurate and precise instrument does not ensure a lower error in the DMPC method than the cup method.Both methods can be markedly improved by lowering process pressure.

    Acknowledgement: The authors gratefully acknowledge the financial support provided by both Agency for Science,Technology and Research(A*Star)and Ministry of National Development(MND)through their Green Building Joint Grant(no:112 176 0023)and National Research Foundation(NRF)Competitive Research Programme(CRP)NRF2011NRF_CRP003_003.

    ASTM(2009): ASTM F2298-03(2009)e1:Standard Test Methods for Water Vapor Diffusion Resistance and Air Flow Resistance of Clothing Materials Using the Dynamic Moisture Permeation Cell(Withdrawn 2015).West Conshohocken,Penn.ASTM International.

    ASTM(2014): ASTM E96/E96M-14:Standard Test Methods for Water Vapor Transmission of Materials.West Conshohocken,Penn.ASTM International.

    Atluri,S.N.(2005):Methods of Computer Modeling in Engineering&the Sciences,Volume 1.Tech Science Press.

    Bui,T.D.;Chen,F.;Nida,A.;Chua,K.J.;Ng,K.C.(2015):Experimental and modeling analysis of membrane-based air dehumidification.Sep.Purif.Technol.,vol.144,pp.114-122.

    Gennadios,A.;Weller,C.L.;Gooding,C.H.(1994):Measurement errors in water vapor permeability of highly permeable,hydrophilic edible f i lms.J.Food Eng.,vol.21,pp.395-409.

    Hu,Y.;Topolkaraev,V.;Hiltner,A.;Baer,E.(2001):Measurement of water vapor transmission rate in highly permeable films.J.Appl.Polym.Sci.,vol.81,pp.1624-1633.

    Huang,J.(2008):A Device for Characterizing Water Vapor Permeability of Polymer Membranes.Int.J.Polym.Anal.Charact.,vol.13,pp.37-48.

    Huang,J.;Qian,X.(2008):Comparison of Test Methods for Measuring Water Vapor Permeability of Fabrics.Text.Res.J.,vol.78,pp.342-352.

    Krull,F.;Fritzmann,C.;Melin,T.(2008):Liquid membranes for gas/vapor separations.J.Membr.Sci.,vol.325,pp.509-519.

    Lamloumi,R.;Hassini,L.;Lecomte-Nana,G.;Elcafsi,M.;Smith,D.;Li,W.;Huang,H.;Ai,B.;Tian,Y.(2014): Modeling of Hydro-Viscoelastic State of Deformable and Saturated Product During Convective Drying.CMC:Computers,Materials&Continua,vol 23,pp.137-151.

    Lin,H.;Thompson,S.M.;Serbanescu-Martin,A.;Wijmans,J.G.;Amo,K.D.;Lokhandwala,K.A.;Merkel,T.C.(2012):Dehydration of natural gas using membranes.Part I:Composite membranes.J.Membr.Sci.,vol 413–414,pp.70-81.

    Lüdtke,O.;Behling,R.-D.;Ohlrogge,K.(1998):Concentration polarization in gas permeation.J.Membr.Sci.,vol.146,pp.145-157.

    Massman,W.(1998):A review of the molecular diffusivities of H2O,CO2,CH4,CO,O3,SO2,NH3,N2O,NO,andNO2inair,O2andN2nearSTP.Atmos.Environ.,vol.32,pp.1111-1127.

    McCullough,E.A.;Kwon,M.;Shim,H.(2003):A comparison of standard methods for measuring water vapour permeability of fabrics.Meas.Sci.Technol.,vol.14,pp.1402-1408.

    McHugh,T.H.;Avena-Bustillos,R.;Krochta,J.(1993): Hydrophilic Edible Films:Modif i ed Procedure for Water Vapor Permeability and Explanation of Thickness Effects.J.Food Sci.,vol.58,pp.899-903.

    Metz,S.;Van De Ven,W.;Mulder,M.;Wessling,M.(2005):Mixed gas water vapor/N2 transport in poly(ethylene oxide)poly(butylene terephthalate)block copolymers.J.Membr.Sci.,vol.266,pp.51-61.

    Metz,S.;Van de Ven,W.;Potreck,J.;Mulder,M.;Wessling,M.(2005):Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes.J.Membr.Sci.,vol.251,pp.29-41.

    Roy,S.;Hussain,C.M.;Mitra,S.(2013):Poly(acrylamide-co-acrylic acid)hydrophilization of porous polypropylene membrane for dehumidif i cation.Sep.Purif.Technol.,vol.107,pp.54-60.

    Scovazzo,P.(2010): Testing and evaluation of room temperature ionic liquid(RTIL)membranes for gas dehumidif i cation.J.Membr.Sci.,vol.355,pp.7-17.

    Sijbesma,H.;Nymeijer,K.;van Marwijk,R.;Heijboer,R.;Potreck,J.;Wessling,M.(2008):Flue gas dehydration using polymer membranes.J.Membr.Sci.,vol.313,pp.263-276.

    Toujani,M.;Djebali,R.;Hassini,L.;Azzouz,S.;Belghith,A.(2014):Hydrothermo-viscoelastic Based Finite Element Modeling of Apple Convective Drying Process.CMES:Computer Modeling in Engineering&Sciences,vol.98,pp.469-485.

    Xing,R.;Rao,Y.;TeGrotenhuis,W.;Canfield,N.;Zheng,F.;Winiarski,D.W.;Liu,W.(2013): Advanced thin zeolite/metal f l at sheet membrane for energy efficient air dehumidif i cation and conditioning.Chem.Eng.Sci.,vol.104,pp.596-609.

    Yang,B.;Yuan,W.;Gao,F.;Guo,B.(2015):A review of membrane-based air dehumidification.Indoor Built Environ.,vol.24,no.1,pp.11-26.

    Zhang,L.-Z.(2006):Evaluation of moisture diffusivity in hydrophilic polymer membranes:A new approach.J.Membr.Sci.,vol.269,pp.75-83.

    Zhang,L.;Jiang,Y.(1999):Heat and mass transfer in a membrane-based energy recovery ventilator.J.Membr.Sci.,vol.163,pp.29-38.

    1Corresponding author E-mail:mpebuid@nus.edu.sg/buiducthuan@gmail.com

    2National University of Singapore,Department of Mechanical Engineering,9 Engineering Drive 1,Singapore 117575,Singapore

    猜你喜歡
    糞尿排泄物豬糞
    陜西省畜禽糞尿養(yǎng)分資源及耕地負荷分析
    亞洲象浮膜性腸炎排泄物的病理學(xué)診斷
    好氧堆肥降低豬糞中重金屬生物有效性的可行性概述
    豬糞變有機肥一年賣了3個億
    豬糞中添加腐殖酸添加劑可降低糞便中的臭氣
    養(yǎng)殖場糞尿處理與綜合利用探討
    異位發(fā)酵床豬糞尿處理技術(shù)綜述
    延邊地區(qū)畜禽糞便污染現(xiàn)狀及產(chǎn)沼氣潛力分析
    便于清潔的兔籠
    豬糞與奶牛糞混合半連續(xù)厭氧共發(fā)酵產(chǎn)沼氣研究
    91在线观看av| 亚洲成国产人片在线观看| 一进一出抽搐动态| 日韩欧美在线二视频| 在线观看免费高清a一片| 欧美激情久久久久久爽电影 | 多毛熟女@视频| 亚洲中文日韩欧美视频| 精品久久久精品久久久| 精品高清国产在线一区| 免费日韩欧美在线观看| 欧美成人午夜精品| 在线观看www视频免费| 99久久99久久久精品蜜桃| 黄片播放在线免费| 中文字幕色久视频| 女警被强在线播放| 一区二区三区精品91| 性色av乱码一区二区三区2| 亚洲片人在线观看| 久久国产乱子伦精品免费另类| 午夜激情av网站| 好看av亚洲va欧美ⅴa在| 怎么达到女性高潮| 免费久久久久久久精品成人欧美视频| 操出白浆在线播放| 黄片大片在线免费观看| 99国产精品一区二区蜜桃av| 成年人免费黄色播放视频| 成在线人永久免费视频| 日韩视频一区二区在线观看| 视频区欧美日本亚洲| 成熟少妇高潮喷水视频| 黑人猛操日本美女一级片| 国产成人av激情在线播放| 可以在线观看毛片的网站| 变态另类成人亚洲欧美熟女 | 亚洲人成网站在线播放欧美日韩| 亚洲五月色婷婷综合| 亚洲熟女毛片儿| 欧美不卡视频在线免费观看 | 日韩人妻精品一区2区三区| 一级,二级,三级黄色视频| 国产国语露脸激情在线看| 高清av免费在线| 国产激情欧美一区二区| 日日夜夜操网爽| av电影中文网址| 亚洲色图av天堂| 在线观看66精品国产| 999久久久精品免费观看国产| 国产精品亚洲一级av第二区| 三上悠亚av全集在线观看| av中文乱码字幕在线| 男女午夜视频在线观看| 国产精品久久久av美女十八| 18禁国产床啪视频网站| 国产精品日韩av在线免费观看 | 日日干狠狠操夜夜爽| 日韩有码中文字幕| 在线播放国产精品三级| 韩国av一区二区三区四区| 久久婷婷成人综合色麻豆| 999精品在线视频| 老汉色∧v一级毛片| 精品国产超薄肉色丝袜足j| 伊人久久大香线蕉亚洲五| 亚洲自拍偷在线| 欧美老熟妇乱子伦牲交| 久久中文字幕人妻熟女| 一级,二级,三级黄色视频| 一级作爱视频免费观看| 久久草成人影院| 久久午夜综合久久蜜桃| 人人澡人人妻人| 在线观看舔阴道视频| 欧美日韩av久久| 少妇粗大呻吟视频| 在线观看一区二区三区激情| 日韩av在线大香蕉| 正在播放国产对白刺激| 成人av一区二区三区在线看| 叶爱在线成人免费视频播放| 高清在线国产一区| 亚洲成人久久性| 国产一区二区激情短视频| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 韩国精品一区二区三区| 欧美日韩乱码在线| 伦理电影免费视频| 亚洲全国av大片| 免费高清在线观看日韩| 久久久国产成人精品二区 | 高清毛片免费观看视频网站 | 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 91精品三级在线观看| 国产熟女午夜一区二区三区| 国产伦一二天堂av在线观看| 久久国产精品男人的天堂亚洲| 亚洲一码二码三码区别大吗| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| 久久久久久久精品吃奶| 亚洲精品国产色婷婷电影| 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 操出白浆在线播放| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 91在线观看av| av欧美777| 久久久久九九精品影院| 真人做人爱边吃奶动态| 亚洲片人在线观看| 日本一区二区免费在线视频| 亚洲午夜精品一区,二区,三区| 80岁老熟妇乱子伦牲交| 热99re8久久精品国产| 女人爽到高潮嗷嗷叫在线视频| 啦啦啦免费观看视频1| 中亚洲国语对白在线视频| xxx96com| 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 国产无遮挡羞羞视频在线观看| 美女福利国产在线| 97碰自拍视频| 日韩av在线大香蕉| 两个人看的免费小视频| 国产精品影院久久| 午夜福利在线观看吧| av天堂久久9| 久久婷婷成人综合色麻豆| 久久久久久大精品| 正在播放国产对白刺激| 国产三级在线视频| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 18禁观看日本| 亚洲九九香蕉| 最近最新中文字幕大全电影3 | 看黄色毛片网站| 精品久久久久久,| 免费搜索国产男女视频| 麻豆一二三区av精品| 在线观看一区二区三区激情| 大香蕉久久成人网| 中文字幕精品免费在线观看视频| 精品国产美女av久久久久小说| 99香蕉大伊视频| 亚洲欧美一区二区三区久久| 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 国产精品98久久久久久宅男小说| 90打野战视频偷拍视频| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 男女下面插进去视频免费观看| 国产精品一区二区在线不卡| 999久久久国产精品视频| 日本免费a在线| 国产片内射在线| 精品电影一区二区在线| 日韩人妻精品一区2区三区| 精品国内亚洲2022精品成人| 日本 av在线| 制服诱惑二区| 亚洲专区字幕在线| 国产精品一区二区三区四区久久 | 久久中文字幕人妻熟女| 人人妻人人添人人爽欧美一区卜| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 美女国产高潮福利片在线看| 成年人免费黄色播放视频| 欧美丝袜亚洲另类 | 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 国产精品一区二区精品视频观看| 成人亚洲精品一区在线观看| 正在播放国产对白刺激| 丁香欧美五月| 一进一出抽搐动态| 亚洲熟女毛片儿| 天天添夜夜摸| 亚洲在线自拍视频| 在线观看免费视频网站a站| 两性夫妻黄色片| 又黄又粗又硬又大视频| www.999成人在线观看| av片东京热男人的天堂| 麻豆久久精品国产亚洲av | 中文亚洲av片在线观看爽| 露出奶头的视频| 法律面前人人平等表现在哪些方面| 老汉色∧v一级毛片| 国产亚洲精品久久久久5区| 天堂影院成人在线观看| 国产在线观看jvid| 国产色视频综合| 国产熟女xx| 欧美午夜高清在线| 自拍欧美九色日韩亚洲蝌蚪91| 妹子高潮喷水视频| 久久亚洲真实| 欧美人与性动交α欧美软件| 免费高清视频大片| 国产精品一区二区在线不卡| av在线播放免费不卡| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 精品欧美一区二区三区在线| 丝袜在线中文字幕| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 国产精品日韩av在线免费观看 | 亚洲精品成人av观看孕妇| 露出奶头的视频| 久久影院123| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 1024香蕉在线观看| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 国产片内射在线| 涩涩av久久男人的天堂| 99久久国产精品久久久| 身体一侧抽搐| 日韩大码丰满熟妇| 老司机亚洲免费影院| 日本黄色日本黄色录像| 搡老乐熟女国产| 欧美av亚洲av综合av国产av| 三级毛片av免费| 夜夜看夜夜爽夜夜摸 | 一区二区三区国产精品乱码| 国产精品国产av在线观看| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区mp4| 欧美日韩亚洲综合一区二区三区_| 精品第一国产精品| 国产av一区二区精品久久| av片东京热男人的天堂| www.自偷自拍.com| 国产欧美日韩一区二区精品| 激情视频va一区二区三区| 51午夜福利影视在线观看| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| 女人精品久久久久毛片| 乱人伦中国视频| 大香蕉久久成人网| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 亚洲av成人一区二区三| 色综合站精品国产| 丁香六月欧美| 久久久水蜜桃国产精品网| 免费av中文字幕在线| 久久人人精品亚洲av| 欧美色视频一区免费| 国产精品免费视频内射| 99国产精品一区二区蜜桃av| 国产精品乱码一区二三区的特点 | 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 亚洲人成电影观看| av欧美777| av片东京热男人的天堂| 乱人伦中国视频| 国产av又大| 少妇 在线观看| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 黄片小视频在线播放| 老司机福利观看| 亚洲伊人色综图| 两性夫妻黄色片| 亚洲专区国产一区二区| 欧美在线一区亚洲| 咕卡用的链子| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| www国产在线视频色| 成人国产一区最新在线观看| 99精品久久久久人妻精品| 夜夜看夜夜爽夜夜摸 | 国产免费男女视频| 精品国产乱码久久久久久男人| 美女福利国产在线| 久久久久久久午夜电影 | 日韩欧美免费精品| 咕卡用的链子| 叶爱在线成人免费视频播放| 国产精品野战在线观看 | av电影中文网址| 女性生殖器流出的白浆| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区 | 日本黄色日本黄色录像| 亚洲在线自拍视频| 国产精品二区激情视频| www.熟女人妻精品国产| 精品国产美女av久久久久小说| 欧美另类亚洲清纯唯美| 久久亚洲精品不卡| 免费av中文字幕在线| 精品一区二区三卡| 精品欧美一区二区三区在线| 美女午夜性视频免费| 操美女的视频在线观看| 国产男靠女视频免费网站| 中文字幕人妻熟女乱码| 亚洲一区二区三区色噜噜 | 女性被躁到高潮视频| 亚洲九九香蕉| 免费在线观看视频国产中文字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 嫩草影院精品99| 窝窝影院91人妻| 亚洲熟妇中文字幕五十中出 | 淫秽高清视频在线观看| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 久久精品国产综合久久久| 成人亚洲精品一区在线观看| 亚洲中文日韩欧美视频| 黄色视频不卡| 国产成人免费无遮挡视频| 中文字幕人妻丝袜一区二区| 精品国内亚洲2022精品成人| 国产精品日韩av在线免费观看 | 91字幕亚洲| 久久久国产成人免费| 亚洲精品中文字幕在线视频| 中文字幕人妻熟女乱码| 自线自在国产av| av福利片在线| www.自偷自拍.com| 两人在一起打扑克的视频| 亚洲精品在线观看二区| 精品无人区乱码1区二区| 97碰自拍视频| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| 91大片在线观看| 黄片小视频在线播放| 久久热在线av| 天堂√8在线中文| 精品国产乱子伦一区二区三区| 亚洲成av片中文字幕在线观看| 精品久久久久久久久久免费视频 | 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月| 日韩欧美在线二视频| 两个人免费观看高清视频| 欧美成人免费av一区二区三区| 少妇粗大呻吟视频| 久久久久国内视频| 韩国av一区二区三区四区| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 欧美日韩乱码在线| 热re99久久国产66热| 国产91精品成人一区二区三区| 性欧美人与动物交配| 日本黄色视频三级网站网址| 国产黄a三级三级三级人| 在线播放国产精品三级| 天天影视国产精品| 亚洲国产精品一区二区三区在线| 免费在线观看日本一区| 久久人人精品亚洲av| 成年人黄色毛片网站| 久久人人爽av亚洲精品天堂| 日韩精品青青久久久久久| 电影成人av| 亚洲av成人一区二区三| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 色婷婷久久久亚洲欧美| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| 一边摸一边抽搐一进一出视频| 久久久水蜜桃国产精品网| 人妻久久中文字幕网| 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 在线观看免费高清a一片| 91成年电影在线观看| 亚洲欧美一区二区三区久久| 欧美成人性av电影在线观看| 一级a爱视频在线免费观看| 久久久久九九精品影院| 国产欧美日韩一区二区三区在线| 亚洲成a人片在线一区二区| 国产精品久久久av美女十八| www.熟女人妻精品国产| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 日韩大码丰满熟妇| 午夜视频精品福利| 十分钟在线观看高清视频www| 国产xxxxx性猛交| 美女扒开内裤让男人捅视频| 国产蜜桃级精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲激情在线av| 怎么达到女性高潮| 成在线人永久免费视频| 亚洲午夜精品一区,二区,三区| 免费看十八禁软件| 欧美日韩亚洲高清精品| 免费不卡黄色视频| 一区福利在线观看| 午夜免费鲁丝| 亚洲性夜色夜夜综合| 高清欧美精品videossex| 久久99一区二区三区| 麻豆成人av在线观看| 真人一进一出gif抽搐免费| 伊人久久大香线蕉亚洲五| 十分钟在线观看高清视频www| 一a级毛片在线观看| av天堂久久9| 亚洲熟妇熟女久久| 欧美日韩国产mv在线观看视频| 叶爱在线成人免费视频播放| 国产精品一区二区精品视频观看| 后天国语完整版免费观看| 亚洲全国av大片| 在线av久久热| 精品人妻在线不人妻| 久久人妻av系列| 成年人免费黄色播放视频| 韩国av一区二区三区四区| 丰满的人妻完整版| 午夜成年电影在线免费观看| 日韩欧美三级三区| 亚洲国产欧美网| 欧美日韩乱码在线| 亚洲人成网站在线播放欧美日韩| 婷婷精品国产亚洲av在线| 性欧美人与动物交配| av视频免费观看在线观看| 黄片播放在线免费| 国产av精品麻豆| 午夜激情av网站| 欧美日韩视频精品一区| 日韩中文字幕欧美一区二区| 久久这里只有精品19| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 老汉色av国产亚洲站长工具| 无限看片的www在线观看| 久久精品91无色码中文字幕| 免费在线观看影片大全网站| 国产亚洲欧美98| 男女下面进入的视频免费午夜 | 国产成人影院久久av| 少妇粗大呻吟视频| 大码成人一级视频| 国产成年人精品一区二区 | 中国美女看黄片| 少妇粗大呻吟视频| 亚洲欧美精品综合久久99| 欧美激情 高清一区二区三区| 99国产精品99久久久久| 免费搜索国产男女视频| 老熟妇仑乱视频hdxx| 老司机午夜福利在线观看视频| 80岁老熟妇乱子伦牲交| 一级毛片高清免费大全| 免费搜索国产男女视频| 欧美一区二区精品小视频在线| 少妇的丰满在线观看| 亚洲成人国产一区在线观看| 黑人操中国人逼视频| 亚洲五月天丁香| 午夜精品国产一区二区电影| 亚洲欧美精品综合久久99| 88av欧美| 欧美人与性动交α欧美软件| 成人手机av| 久久人人精品亚洲av| 中文字幕最新亚洲高清| 嫩草影院精品99| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 一级a爱片免费观看的视频| 黄片播放在线免费| 午夜亚洲福利在线播放| 热re99久久精品国产66热6| 亚洲成a人片在线一区二区| 另类亚洲欧美激情| 9191精品国产免费久久| 最近最新免费中文字幕在线| 欧美+亚洲+日韩+国产| www.精华液| 女生性感内裤真人,穿戴方法视频| 色婷婷久久久亚洲欧美| 久久香蕉激情| 男人舔女人下体高潮全视频| 啦啦啦在线免费观看视频4| 久久99一区二区三区| 丝袜在线中文字幕| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 欧美日韩瑟瑟在线播放| 国产熟女午夜一区二区三区| 午夜福利欧美成人| 免费观看精品视频网站| 69av精品久久久久久| 久久久久久人人人人人| 午夜久久久在线观看| 国产精品日韩av在线免费观看 | 国产免费av片在线观看野外av| 99国产精品99久久久久| 1024视频免费在线观看| 韩国精品一区二区三区| 级片在线观看| 久久久精品欧美日韩精品| 黑人巨大精品欧美一区二区mp4| 极品人妻少妇av视频| 1024香蕉在线观看| 久久精品亚洲精品国产色婷小说| 成人手机av| 一级a爱片免费观看的视频| xxxhd国产人妻xxx| а√天堂www在线а√下载| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久电影中文字幕| videosex国产| 亚洲人成网站在线播放欧美日韩| 最新在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 色老头精品视频在线观看| 久9热在线精品视频| 日韩精品免费视频一区二区三区| 国产1区2区3区精品| 一个人观看的视频www高清免费观看 | 欧美精品亚洲一区二区| 精品无人区乱码1区二区| 国产91精品成人一区二区三区| 亚洲一区二区三区不卡视频| 亚洲色图 男人天堂 中文字幕| 丁香欧美五月| 国产激情欧美一区二区| 一级,二级,三级黄色视频| 国产男靠女视频免费网站| 人人澡人人妻人| 99国产精品一区二区蜜桃av| 嫩草影视91久久| 国产片内射在线| 日韩欧美免费精品| 悠悠久久av| 免费av中文字幕在线| 国产av精品麻豆| 夜夜看夜夜爽夜夜摸 | 亚洲伊人色综图| 亚洲情色 制服丝袜| 性色av乱码一区二区三区2| 一进一出抽搐gif免费好疼 | 国产黄a三级三级三级人| 亚洲精品一卡2卡三卡4卡5卡| 99久久精品国产亚洲精品| 男女床上黄色一级片免费看| 曰老女人黄片| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 老熟妇乱子伦视频在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品二区激情视频| 国产乱人伦免费视频| e午夜精品久久久久久久| 亚洲av成人av| 一二三四在线观看免费中文在| 日本vs欧美在线观看视频| 欧美黄色片欧美黄色片| 色婷婷久久久亚洲欧美| 国产精品秋霞免费鲁丝片| 亚洲av美国av| 欧美激情久久久久久爽电影 | 午夜福利影视在线免费观看| 久久香蕉激情| 午夜免费观看网址| 免费日韩欧美在线观看| 女警被强在线播放| 在线免费观看的www视频| 一边摸一边抽搐一进一出视频| aaaaa片日本免费| 欧美黑人欧美精品刺激| 国产精品国产高清国产av| 在线观看免费午夜福利视频|