• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact Response of Stiffened Cylindrical Shells With/without Holes Based on Equivalent Model of Isogrid Structures

    2015-12-12 08:59:29QingshengYangShaochongYangandXiaohuLin
    Computers Materials&Continua 2015年1期

    Qingsheng Yang,Shaochong Yang and Xiaohu Lin

    Impact Response of Stiffened Cylindrical Shells With/without Holes Based on Equivalent Model of Isogrid Structures

    Qingsheng Yang1,2,Shaochong Yang1,3and Xiaohu Lin4

    An equivalent continuum model of an isogrid structure is utilized to analyze the impact response of isogrid structures and stiffened structures.The parameters of the equivalent model are determined,and the comparison between the equivalent continuous structure and the real grid structure are examined to validate the reliability of the equivalent model.Then,the impact responses of stiffened cylindrical shells with and without an elliptical hole are investigated by using the equivalent model of grid structures.For a different location and geometry of the elliptical hole,the deformation and load-bearing capacity of the grid-stiffened cylindrical shells are studied.The numerical results indicate that the present equivalent model can be applied effectively in simulation for the impact behavior of the grid and stiffened structures.This work provides a comprehensive understanding for the impact performance of the complicated stiffened cylindrical shells.

    impact response,isogrid structures,equivalent model,stiffened cylinder,load-bearing capability.

    1 Introduction

    Lightweight grid-stiffened structures have a good energy absorption capacity,high load-bearing capacity,high specific strength and specific stiffness.These structures can be applied in many engineering fields,such as rocket interstages,payload adapters for spacecraft launchers,fuselage components for aerial vehicles,and components of the deployable space antennas[Vasiliev and Razin(2006);Bakhvalov,Petrokovsky,Polynovsky and Rasin(2009)].A review on the design and fabrication techniques of the grid structures has been given by Vasiliev,Baryninand Razin(2012,2001)Commercial and military aircraft usually undergo impact load in a specific situation,and may produce important safety issues.To understand the buckling phenomena and energy absorption capability of these structures under an impact load,many researchers have been devoting themselves to the study of impact performance.Han,Liu and Li(2004)presented an efficient hybrid numerical method for investigating transient response of crossply laminated axisymmet-ric cylinders subjected to an impact load.Adachi,Tomiyama,Araki and Yamaji(2008)found that the rib stiffness appropriately spaced in a cylinder can absorb a large amount of energy with a short crushing deformation.Morozov,Lopatin and Nesterov(2011)developed analytical and numerical methods to investigate the buckling behavior of anisogrid cylindrical shells under axial compression,transverse bending,pure bending and torsion.Totaro(2012)presented a refined analytical model for the local buckling modes of anisogrid cylindrical shells with regular triangular cells.Rahimi,Zandi and Rasouli(2013)showed that the rib stiffening of the shells could generally enhance the buckling load.

    Moreover,the application of various stringers and rings in composite cylindrical shells and their impact behavior has been studied by Poorveis(2006).The effects of helical ribs and grid types on the buckling of thin-walled GFRP stiffened cylindrical shells under axial load were studied by Yazdani and Rahimi(2010).Using new development of multi-material formulation and fluid structure interaction developed in LSDYNA,Souli and Gabrys(2012)presented an experimental and numerical investigation of bird impact on radome.The dynamic response,energy absorption capability,deformation and failure of clamped aluminum face-sheet cylindrical sandwich shells with closed-cell aluminum foam cores were investigated by Jing,Xi,Wang and Zhao(2013)In particular,several examples of the local buckling model for periodic lattice structures without skin were presented by Fan,Jin and Fang(2009);Totaro(2013).

    Furthermore,Rajendran and Grove(2002)presented detailed computational analyses investigating the ability of constitutive relationships to describe the response of a 99.5%pure alumina(AD995)subjected to a wide range of stress/strain loading states.Ghavami and Khedmati(2006)investigated the compression behavior and the dynamic response of stiffened plates.Oshiro and Alves(2007)simulated the responses of a cylindrical shell under axial impact to explore the correction procedure for scaled models.Zhang,Xue,Chen and Fang(2009)studied the deformation and failure mechanisms of lattice cylindrical shells under axial load by using the finite element software ABAQUS.Djeukou and von Estorff(2009)used a third-order shear deformation theory to deal the response of rectangular composite plates with low-velocity impact.Yazdani,Rahimi,Khatibi and Hamzeh(2009)conducted a series of experiments to study the buckling behavior of composite stiffened cylin-drical shells under axial load.Teter(2011)developed the finite element method and experimental method to examine the dynamic buckling behavior of a stiffened plate structure.

    In addition,based on the experimental method and numerical simulation,the mechanical properties of the cylindrical shells with defects have been studied.Rahimi and Rasouli(2011)used a finite element method to study the effect of hole defects on the buckling of composite isogrid stiffened shells under axial load.Cheng,Altenhof and Li(2006)experimentally investigated the crush characteristics and energy absorption capacity of AA6061-T6 aluminum alloy extrusions with centrally located through-hole discontinuities.Chen and Ozaki(2009)proposed an approximate method for the tensile and bending stress concentrations of the hexagonal honeycomb with a single defect and examined the interaction between the two defects.

    The discrete model and equivalent model are usually adopted for the design and mechanical analysis of grid structures.Although the discrete method has been widely used for modeling the mechanical behavior of the large grid structure,the ribs are commonly modeled by using beam elements,thus the complexity of the structure requires large computation consumption.As an alternative approach,the equivalent continuum model is a relatively simple and efficient analytical method.Many studies have been performed to develop the equivalent model of the grid structures.In this case,the grid structure is equivalent to a continuous solid structure with a homogenized stiffness.Many studies have been performed to assess the buckling strength of lattice shells by using equivalent models[Buragohain and Velmurugan(2009);Velmurugan and Buragohain(2007)].Based on the assessment of static equilibrium and deformation relations of the representative unit cell,the elastic constitutive relations and failure criterion of planar lattice composites were established[Zhang,Fan and Fang(2008)].Totaro and Gurdal(2009)conducted the optimal design of lattice shells subjected to axial compressive loads by using the continuum model.Cui,Zhang,Zhao,Lu and Fang(2010)developed an equivalent model to analytically calculate the specific stress fields of the triangular and Kagome lattices with a single-bar defect by using the principle of superposition and a stripe method.Taking into account the geometric and mechanical properties of the coated corrugated panel,an analytical homogenization model was proposed by Dayyani,Friswell,Ziaei-Rad and Flores(2013).An equivalent monocoque shell theory was developed by Sun,Fan,Zhou and Fang(2013)to predict the mechanical behavior of the quasi-isotropic sandwich cylinder,including the deformation and the multi-mode failure criterion.

    In this paper,an equivalent method is presented to study the impact response of isogrid cylinders and isogrid-stiffened cylinders.The isogrid cylinder is modeled as an equivalent continuous cylinder with the effective density,modulus and thickness.To investigate the effective properties,different aspects of the isogrid structure that include impact speed,relative density and relative thickness are examined in this paper.Through the analysis of the equivalent performance of the grid structure,a stiffened cylindrical structure can be treated as a continuum shell.The effects of shell thickness and the cross section shape of the ribs on the equivalent performance are discussed.Then,the equivalent model is used to analyze the load-bearing capacity of the isogrid-stiffened cylindrical shells with and without an elliptical hole.Based on the equivalent model,the load-bearing capacity of cylindrical shell structures is numerically studied by using the finite element method.The numerical results show that a reasonable equivalence of the grid structure can reduce the computational cost and provide a convenient approach to study the mechanical properties and impact behavior of more complicated grid-stiffened structures.

    2 Equivalent model of isogrid structure

    The equilateral triangle grid(isogrid)structure can be treated as a transversely isotropic elastic body.Based on the equivalence model,the effective material parameters such as effective density,elastic modulus and Poisson’s ratio can be determined.These material parameters were used to build the equivalent continuum cylinder model.For an equilateral triangle grid(isogrid)structure,the transversely isotropic constitutive relation can be written as:

    As shown in Fig.1,because two unit cells share one rib,the mass of the triangle frame can be expressed as 3ρsT bL/2.After equivalence,the mass of the triangle plate can be expressed as ρ?bLLsin60o/2.After equivalence the mass remains unchanged.The relative density of the isogrid structure can be given by

    Figure 1:Schematic of a triangle unit cell,(a)rib diagram,(b)force diagram,(c)deformation diagram.

    The effective strain of the unit cell is defined by

    where ΔL1and ΔL3are the deformation of bar 1 and bar 3 and ΔH is the dimensional change in the x2direction.The extension of each bar is readily given as

    The triangle unit cell is assumed to be transversely isotropic material,and the inplane elastic parameters have the relations E?1=E?2and ν?12=ν?21.The in-plane shear modulus can be obtained as

    To determine the elastic stiffness matrix,E?3,ν?13,and G?13need to be solved.It is as-sumed that along the x3(out-of-plane)direction,the stress is uniformly distributed within the cell wall.Thus,

    In the x3direction,because the internal stress of the cell wall is uniform and equal,the effective Poisson’s ratio ν1?3is identical to that of the solid material of the unit cell,i.e.,

    According to the reciprocal relations,we have

    Based on the principle of minimum potential energy,the upper and lower bounds of the shear modulus in the out-of-plane region are identical,and the shear modulus can be obtained as:

    3 Model validation:impact response of isogrid structure

    To verify the validity of the equivalent continuum model,the impact response of an isogrid cylinder subjected to lateral impact load is considered in this section.The finite element model of an isogrid cylinder and its equivalent continuous model are shown in Fig.2.The cylinder has a height L1=272 mm,radius R=100 mm and radial thickness T1.The equilateral triangles unit cell has a side length L2=15.7 mm,height H=13.6 mm and cell wall thickness T2.The number of triangles that are circumferential and axial is 40 and 20,respectively.The cylinder was fully fixed at the upper and lower ends and was subjected to a local side impact by a rigid sphere.The radius of the sphere is 30 mm.The sphere’s initial position in the radium direction away from the cylinder center is X1=200 mm and Y1=L1/2.

    In the finite element simulation,the bar of the triangle unit cell of the grid cylinder was modeled by a beam element.Each bar of the triangle unit cell was divided into 10 beam elements.The whole isogrid cylinder has 24,400 elements.The equivalent continuous solid cylinder was modeled by a shell element.The rigid sphere was modeled by a solid element.The material density of the grid is 2700 kg/m3.The elastic modulus and Poisson’s ratio of the grid are 69 GPa and 0.3,respectively.

    Figure 2:Isogrid cylinder and its equivalent continuous model.

    The comparison of internal energy and hourglass energy between the grid cylinder and the equivalent continuous cylinder is shown in Fig.3,where C denotes the continuous cylinder and G denotes the grid cylinder.It is shown that the result of the equivalent continuous model agrees well with that of the original grid cylinder.In entire process of impact,the total energy maintains conservation,and the proportion of hourglass energy is smaller than the required 5%of the total energy.The deformation and energy absorption are the main factors to evaluate the impact resistance capacity of a structure.For different impact velocities,the displacements of the grid structures and the equivalent continuous cylinders are shown in Fig.4.The deformation of the continuous cylinder is slightly larger than that of the isogrid cylinder for different impact velocities.

    A comparison of the energy absorption for the two structures is shown in Fig.5,where I is internal energy,K is kinetic energy,and T is total energy.I/T denotes the ratio of internal energy and total energy,K/T denotes the ratio of kinetic energy and total energy.The energy absorption ratios are consistent with each other for two types of structures.In the two structures,I/T increases and K/T decreases as the impact progresses.At last,all of the impact energy is absorbed.However,the energy absorption of the equivalent continuous cylinder is greater than that of the grid cylinder.For a strain of less than 50%,the internal energy conversion rate of the equivalent structure is smaller than that of the grid structure.For a strain that is larger than 50%,the internal energy conversion rate of the grid structure is significantly lower.In this case,the internal energy conversion rate of the equivalent structure remains unchanged.

    Figure 3:Variations of nternal energy and hourglass energy versus time.

    4 Impact behavior of grid-stiffened cylindrical shells

    Figure 4:Displacement of isogrid and continuous structures under different velocities.

    Figure 5:Energy absorption of isogrid and continuous structures(V=30 m/s).

    Stiffened cylindrical shells consist of the skin and ribs.The equivalent continuous structure of the isogrid structure is used to study the impact performance of the stiffened cylindrical shell.The ribs are transformed to a solid continuous shell.Thus,the stiffened cylindrical shell is transformed to a laminated solid shell,as shown in Fig.6.The cylinder has a height L1=200 mm and diameter R=58 mm.The skin and ribs are an elastoplastic material with a density of 2700 kg/m3,an elastic modulus of 69 GPa,a Poisson’s ratio of 0.3 and a yield stress of 76 MPa.For the comparison,the stiffened shell and equivalent shell are analyzed,respectively.The element Shell163 for the smooth shell and element Beam161 for the ribs are used.

    Figure 6:Equivalency of stiffened cylindrical shell.

    The impact deformation is shown in Fig.7.As seen here,the deformation trends of the equivalent model and real shell structure are basically the same.However,the deformation of the equivalent model is greater than that of the real stiffened shell structure.

    The relations between the deformation and thickness ratio H1/H2is shown in Fig.8,where H1is the thickness of the skin and H2is the thickness of the ribs.It can be seen that for the large thickness of the skin,the deformation of the equivalent model is closer to that of the real structure.For the large thickness ratio,the relatively small differences can be induced by the equivalency.In fact,the large thickness ratio of the shell means the skins dominates the mechanical behavior of the stiffened shell.It is noted that the deformation of the shell with a large thickness ratio will trend to a constant value,i.e.,the deformation of a smooth shell.

    The energy absorption capability of the structure is shown in Fig.9.Because of the equivalency of the rib,a slight difference in the energy absorption capability between the equivalent and real structures can be found.The energy absorption capacity of the rib option in an equivalent model is less than that in a real shell structure.It is shown that the deformation of the equivalent model is greater than the deformation of the real shell structure.This implies that the equivalency leads to a decrease in the energy absorption ability of the ribs and an increase in the energy absorption ability of the skin option.

    Figure 7:Deformation of the real and equivalent structures.

    Figure 8:Relations between deformation and relative thickness.

    Figure 9:Energy absorption capability of stiffened shell.

    5 Impact resistance of grid-stiffened cylindrical shell with a hole

    The grid-stiffened cylindrical shell with holes has been widely used in many practical engineering fields.When the structure is subjected to external loads,the existence of the hole results in serious stress concentration,which leads to a reduction in the load-carrying capacity of the structure.As a result,the impact resistance and stability of the cylindrical shell are also greatly affected.To simplify the study,the equivalent model is used to investigate the mechanical behavior of the cylindrical shell with an elliptical hole.The dimensions of the cylindrical shell are the same as the previous example.As shown in Fig.10,the distance of the elliptical hole from the bottom of the shell is L0,and the length of the major axis and minor axis is a and b,respectively.

    Figure 10:Schematic of stiffened cylindrical shell with an elliptical hole.

    The relations between the load-bearing capacity and shape of the elliptical hole are shown in Fig.12.With an increase in the ratio of major axis to minor axis,the maximum load-bearing capacity and the mean load-bearing capacity of the cylindrical shell are approximately linear.Under the axial impact load,axial buckling of the cylindrical shell is the main factor that influences the load-bearing capacity.For the smaller ratio of major to minor axes,the buckling of the stiffened cylindrical shell is impeded by an elongated hole along the direction of impact.Therefore,the impact resistance and load-bearing capacity of the structure is enhanced.For ana/bof 0.285 and different locations of an elliptical hole,the curves of mean impact force and deformation are shown in Fig.13.In the initial stage,the peak of the curves is slightly different.With an increase inL0,the mean forces are closer to the result of the cylinder without the hole.This means that there is a limited influence of the hole because the hole is located near the impacted end.

    Figure 12:Relations between load-bearing capacity and hole shape.

    Figure 13:Relations between mean impact force and deformation for different locations of the hole.

    6 Conclusions

    In this paper,the isogrid structure is modeled as a continuous solid with a homogenized stiffness.The equivalent continuum model provides a relatively simple and efficient analytical method.The accuracy of the equivalent model was verified by using numerical examples.The impact response of the grid structure has been reflected well.Then,the equivalent model was utilized to analyze the impact response of the isogrid-stiffened cylindrical shell.

    The impact resistance of the isogrid structures is influenced by the impact velocity and relative density of the isogrid.It is found that for the same impact load,the deformation of the grid structure is smaller than that of the equivalent continuous structure,while the energy absorption ability of the grid structure is stronger than that of the equivalent continuous structure.The relative density is a key factor that affects the equivalent performance of the grid structures.

    The grid-stiffened cylindrical shell is equivalent to the smooth laminated shell.Because of the equivalence,the energy absorption ability of the ribs is slightly underestimated,and the energy absorption ability of the skin is overestimated.Overall,the equivalent model can provide a satisfied result for the impact resistance and energy absorption of the grid-stiffened shell.The location and shape of the hole on the shell can considerably influence the load-bearing capacity of the cylinder

    Acknowledgement:The financial support from the Natural Science Foundation of China under grants#11172012,#11472020 and the National Key Technology R&D Program under grant#2012BAK29B00 is gratefully acknowledged.

    Adachi,T.;Tomiyama,A.;Araki,W.;Yamaji,A.(2008):Energy absorption of a thin-walled cylinder with ribs subjected to axial impact.Int.J.Impact.Eng.,vol.35,pp.65-79.

    Bakhvalov,Y.O.;Petrokovsky,S.A.;Polynovsky,V.P.;Rasin,A.F.(2009):Composite irregular lattice shells designing for space applications.In:17th International Conference on Composite Materials,Edinburgh,SCO.

    Buragohain,M.;Velmurugan,R.(2009):Buckling analysis of composite hexagonal lattice cylindrical shells using smeared stiffener model.Defence Sci.J.,vol.59,pp.230-238.

    Cheng,Q.W.;Altenhof,W.;Li,L.(2006):Experimental investigations on the crush behaviour of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities.Thin Wall Struct.,vol.44,pp.441-454.

    Chen,D.H.;Ozaki,S.(2009):Stress concentration due to defects in a honeycomb structure.Compos.Struct.,vol.89,pp.52-59.

    Cui,X.D.;Zhang,Y.H.;Zhao,H.;Lu,T.J.;Fang,D.N.(2010):Stress concentration in two dimensional lattices with imperfections.Acta.Mech.,vol.216,pp.105-122.

    Dayyani,I.;Friswell,M.I.;Ziaei-Rad,S.;Flores,E.I.S.(2013):Equivalent models of composite corrugated cores with elastomeric coatings for morphing structures.Compos.Struct.,vol.104,pp.281-292.

    Djeukou,A.;von Estorff,O.(2009):Low-velocity impact of composites plates using the Radial Point Interpolation Method.CMES-Computer Modeling In Engineering&Sciences,vol.47,pp.23-42.

    Fan,H.L.;Jin,F.N.;Fang,D.N.(2009):Uniaxial local buckling strength of periodic lattice composites.Mater.Des.,vol.30,pp.4136-4145.

    Ghavami,K.;Khedmati,M.R.(2006):Numerical and experimental investigations on the compression behaviour of stiffened plates.J.Constr.Steel Res.,vol.62,pp.1087-1100.

    Han,X.;Liu,G.R.;Li,G.Y.(2004):Transient response in cross-ply laminated cylinders and its application to reconstruction of elastic constants.CMCComputers Materials&Continua.vol.1,pp.39-49.

    Jing,L.;Xi,C.Q.;Wang,Z.H.;Zhao,L.M.(2013):Energy absorption and failure mechanism of metallic cylindrical sandwich shells under impact loading.Mater Design,vol.52,pp.470-480.

    Morozov,E.V.;Lopatin,A.V.;Nesterov,V.A.(2011):Finite-element modelling and buckling analysis of anisogrid composite lattice cylindrical shells.Compos.Struct.,vol.93,pp.308-323.

    Oshiro,R.E.;Alves,M.(2007):Scaling of cylindrical shells under axial impact.Int.J.Impact.Eng.,vol.34,pp.89-103.

    Poorveis,D.(2006):Buckling ofdiscretely stringer-stiffened composite cylindrical shells under combined axial compression and external pressure.Sci.Iran,vol.13,pp.113-123.

    Rahimi,G.H.;Zandi,M.;Rasouli,S.F.(2013):Analysis of the effect of stiffener profile on buckling strength in composite isogrid stiffened shell under axial loading.Aerosp Sci Technol,vol.24,pp.198-203.

    Rahimi,G.H.;Rasouli,F.(2011):Study on square and rectangular cutouts and their aspect ratios on buckling of composite isogrid stiffened shell under axial loading.In:10th Conference of Iranian Aerospace Society,Tehran,IR.

    Rajendran,A.M.;Grove,D.J.(2002):Computational modeling of shock and impact response of alumina.CMES-Computer Modeling In Engineering&Sciences,vol.3,pp.367-380.

    Souli,M.;Gabrys,J.(2012):Fluid Structure Interaction for Bird Impact Problem:Experimental and Numerical Investigation.CMES-Computer Modeling In Engineering&Sciences,vol.85,pp.177-192.

    Sun,F.F.;Fan,H.L.;Zhou,C.W.;Fang,D.N.(2013):Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression.Compos.Struct.,vol.101,pp.180-190.

    Teter,A.(2011):Dynamic critical load based on different stability criteria for coupled buckling of columns with stiffened open cross-sections.Thin Wall Struct.,vol.49,pp.589-595.

    Totaro,G.(2012):Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells.Compos.Struct.,vol.94,pp.446-452.

    Totaro,G.(2013):Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells.Compos.Struct.,vol.95,pp.403-410.

    Totaro,G.;Gurdal,Z.(2009):Optimal design of composite lattice shell structures for aerospace applications.Aerosp.Sci.Technol.,vol.13,pp.157-164.

    Vasiliev,V.V.;Barynin,V.A.;Rasin,A.F.(2001):Anisogrid lattice structures–survey of development and application.Compos.Struct.,vol.54,pp.361-370.

    Vasiliev,V.V.;Barynin,V.A.;Razin,A.F.(2012):Anisogrid composite lattice structures–Development and aerospace applications.Compos.Struct.,vol.94,pp.1117-1127.

    Vasiliev,V.V.;Razin,A.F.(2006):Anisogrid composite lattice structures for spacecraft and aircraft applications.Compos.Struct.,vol.76,pp.182-189.

    Velmurugan,R.;Buragohain,M.(2007):Buckling analysis of grid-stiffened composite cylindrical shell.J Aero Sci Technol,vol.59,pp.282-293.

    Yazdani,M.;Rahimi,H.;Khatibi,A.A.;Hamzeh,S.(2009):An experimental investigation into the buckling of GFRP stiffened shells under axial loading.Sci.Res.Essays.,vol.4,pp.914-920.

    Yazdani,M.;Rahimi,H.(2010):The effects of helical ribs’number and grid types on the buckling of thin-walled GFRP-stiffened shells under axial loading.J.Reinf.Plast.Compos.,vol.29,pp.2568-2575.

    Zhang,Y.H.;Xue,Z.Y.;Chen,L.M.;Fang,D.N.(2009):Deformation and failure mechanisms of lattice cylindrical shells under axial loading.Int.J.Mech.Sci.,vol.51,pp.213-221.

    Zhang,Y.H.;Fan,H.L.;Fang,D.N.(2008):Constitutive relations and failure criterion of planar lattice composites.Compos.Sci.Technol.,vol.68,pp.3299-3304.

    1Department of Engineering Mechanics,Beijing University of Technology,Beijing 100124,China.

    2Corresponding author.Tel&Fax:86-10-67396333;E-mail:qsyang@bjut.edu.cn

    3College of Civil Engineering and Architecture,Hebei University,Baoding 071002,China.

    4Equipment Department,Army Aviation Institute of PLA,Beijing 101123,China.

    欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| 国产欧美亚洲国产| 1024视频免费在线观看| 最近最新中文字幕免费大全7| 国产精品女同一区二区软件| 久久精品夜色国产| 久久国产精品男人的天堂亚洲 | 2022亚洲国产成人精品| 婷婷色麻豆天堂久久| 亚洲美女视频黄频| 王馨瑶露胸无遮挡在线观看| 18禁观看日本| a级片在线免费高清观看视频| av有码第一页| 亚洲美女视频黄频| 精品国产国语对白av| 国产成人欧美| 亚洲国产精品999| 91午夜精品亚洲一区二区三区| 精品国产一区二区久久| 久久韩国三级中文字幕| 亚洲精品第二区| 久久久久国产精品人妻一区二区| 亚洲成人一二三区av| 女人被躁到高潮嗷嗷叫费观| 久久久久久人人人人人| 免费黄色在线免费观看| 国产成人免费观看mmmm| 高清欧美精品videossex| 亚洲av.av天堂| 亚洲av日韩在线播放| 18+在线观看网站| 乱码一卡2卡4卡精品| a级毛片黄视频| 制服人妻中文乱码| 久久久亚洲精品成人影院| 亚洲精品456在线播放app| 欧美xxxx性猛交bbbb| 热99国产精品久久久久久7| 午夜激情av网站| av不卡在线播放| 中文字幕精品免费在线观看视频 | 热re99久久精品国产66热6| 国产亚洲av片在线观看秒播厂| 国产一级毛片在线| 亚洲成人一二三区av| 一二三四在线观看免费中文在 | 欧美老熟妇乱子伦牲交| 人体艺术视频欧美日本| 在线观看免费日韩欧美大片| 精品一区二区免费观看| 亚洲精品美女久久久久99蜜臀 | 亚洲国产最新在线播放| 王馨瑶露胸无遮挡在线观看| 熟女人妻精品中文字幕| 自线自在国产av| 国产成人精品一,二区| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 男女下面插进去视频免费观看 | 午夜av观看不卡| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久精品古装| 免费av中文字幕在线| 国产一区二区在线观看日韩| 又粗又硬又长又爽又黄的视频| 97在线视频观看| www.熟女人妻精品国产 | 免费观看在线日韩| 九色成人免费人妻av| 色网站视频免费| 精品人妻熟女毛片av久久网站| 国产日韩欧美在线精品| 少妇被粗大的猛进出69影院 | 黄片播放在线免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩中字成人| 中国三级夫妇交换| 狂野欧美激情性xxxx在线观看| 亚洲婷婷狠狠爱综合网| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| 久久亚洲国产成人精品v| 久久女婷五月综合色啪小说| 免费观看在线日韩| 制服诱惑二区| 中国美白少妇内射xxxbb| 成年美女黄网站色视频大全免费| 精品久久蜜臀av无| a级毛片黄视频| 午夜视频国产福利| 99香蕉大伊视频| 久久 成人 亚洲| 亚洲美女搞黄在线观看| 亚洲av电影在线进入| 十分钟在线观看高清视频www| av不卡在线播放| 日韩精品免费视频一区二区三区 | 好男人视频免费观看在线| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 另类亚洲欧美激情| 欧美日韩精品成人综合77777| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 国产有黄有色有爽视频| 欧美少妇被猛烈插入视频| 人妻系列 视频| 亚洲成av片中文字幕在线观看 | 亚洲av福利一区| 国产 精品1| 国产不卡av网站在线观看| 日本与韩国留学比较| 免费观看性生交大片5| 久久久久久人妻| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 国产乱来视频区| 91精品三级在线观看| 又大又黄又爽视频免费| 曰老女人黄片| 免费看光身美女| 国产国语露脸激情在线看| 一区二区三区乱码不卡18| 免费少妇av软件| 日韩人妻精品一区2区三区| 国产日韩一区二区三区精品不卡| 伊人久久国产一区二区| 亚洲精品自拍成人| 王馨瑶露胸无遮挡在线观看| 国产淫语在线视频| 蜜臀久久99精品久久宅男| 看免费av毛片| 国产免费又黄又爽又色| 超色免费av| 2018国产大陆天天弄谢| 午夜福利影视在线免费观看| 久久久久久久国产电影| 免费人成在线观看视频色| 亚洲,欧美,日韩| 亚洲欧美一区二区三区黑人 | 亚洲一级一片aⅴ在线观看| 久久久久久久精品精品| 欧美精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 看免费成人av毛片| 日韩av在线免费看完整版不卡| 日韩不卡一区二区三区视频在线| 黑人欧美特级aaaaaa片| 丝袜脚勾引网站| 免费少妇av软件| 精品人妻偷拍中文字幕| 国产高清国产精品国产三级| 涩涩av久久男人的天堂| 成人手机av| 精品国产国语对白av| 成年女人在线观看亚洲视频| 中文欧美无线码| 丝袜美足系列| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 美女国产高潮福利片在线看| 国产精品.久久久| 精品一区二区三区四区五区乱码 | 亚洲成人一二三区av| 赤兔流量卡办理| 日本黄大片高清| 中国三级夫妇交换| 性高湖久久久久久久久免费观看| 亚洲在久久综合| 国产成人精品福利久久| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 一区二区三区四区激情视频| 国产日韩欧美视频二区| 久热这里只有精品99| 九九在线视频观看精品| 69精品国产乱码久久久| 国产片内射在线| 亚洲四区av| 国产日韩欧美亚洲二区| 大香蕉久久网| 一区在线观看完整版| 男女国产视频网站| 少妇精品久久久久久久| 国产熟女午夜一区二区三区| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 免费观看无遮挡的男女| kizo精华| 高清av免费在线| 亚洲精品456在线播放app| 免费观看在线日韩| 成人漫画全彩无遮挡| av黄色大香蕉| 欧美亚洲 丝袜 人妻 在线| 咕卡用的链子| 九草在线视频观看| 成人影院久久| 老女人水多毛片| 免费高清在线观看视频在线观看| 亚洲av免费高清在线观看| 久久久久久久久久成人| 精品久久国产蜜桃| 午夜福利视频在线观看免费| 日韩精品有码人妻一区| 欧美成人午夜精品| 亚洲第一区二区三区不卡| 人人澡人人妻人| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 王馨瑶露胸无遮挡在线观看| 熟女av电影| 亚洲成国产人片在线观看| 超碰97精品在线观看| 寂寞人妻少妇视频99o| av在线播放精品| 亚洲精品久久成人aⅴ小说| 免费播放大片免费观看视频在线观看| 黄网站色视频无遮挡免费观看| 99视频精品全部免费 在线| 久久久久人妻精品一区果冻| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| 最近2019中文字幕mv第一页| 免费观看在线日韩| 最近中文字幕高清免费大全6| 男人添女人高潮全过程视频| 亚洲av男天堂| 婷婷色av中文字幕| 日韩av不卡免费在线播放| 美女内射精品一级片tv| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 欧美亚洲日本最大视频资源| 欧美精品一区二区大全| 亚洲综合精品二区| 成人亚洲精品一区在线观看| 人人澡人人妻人| 男女无遮挡免费网站观看| 最新中文字幕久久久久| 国产精品久久久久久精品古装| 成人毛片60女人毛片免费| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 精品久久久久久电影网| 18禁动态无遮挡网站| 欧美精品人与动牲交sv欧美| 99久久综合免费| 欧美老熟妇乱子伦牲交| 欧美另类一区| 男女无遮挡免费网站观看| 日韩制服骚丝袜av| 国产欧美日韩一区二区三区在线| 成人手机av| 丝袜脚勾引网站| 精品国产一区二区三区久久久樱花| 观看美女的网站| 男人添女人高潮全过程视频| 国产精品国产三级国产av玫瑰| 晚上一个人看的免费电影| 视频在线观看一区二区三区| 国产精品一区www在线观看| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 99热网站在线观看| 啦啦啦在线观看免费高清www| 人人澡人人妻人| 狂野欧美激情性xxxx在线观看| 久久久久久久大尺度免费视频| 日本免费在线观看一区| 久久午夜综合久久蜜桃| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 97在线视频观看| 亚洲国产成人一精品久久久| 免费观看在线日韩| 制服人妻中文乱码| 啦啦啦啦在线视频资源| 80岁老熟妇乱子伦牲交| 国产免费福利视频在线观看| 亚洲国产欧美在线一区| 一本大道久久a久久精品| 午夜福利视频在线观看免费| 纵有疾风起免费观看全集完整版| 国产片内射在线| 免费看av在线观看网站| 国产精品一区二区在线观看99| 久久这里只有精品19| 午夜老司机福利剧场| 婷婷色麻豆天堂久久| 国产精品偷伦视频观看了| 日韩精品有码人妻一区| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 亚洲第一区二区三区不卡| 亚洲欧洲精品一区二区精品久久久 | 天天影视国产精品| 国产成人精品在线电影| 少妇人妻久久综合中文| 人妻少妇偷人精品九色| 亚洲久久久国产精品| 日本vs欧美在线观看视频| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠躁躁| 国产精品一区www在线观看| 考比视频在线观看| 性色av一级| 9色porny在线观看| 国国产精品蜜臀av免费| av片东京热男人的天堂| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| 少妇人妻 视频| 欧美人与性动交α欧美精品济南到 | 亚洲欧美成人综合另类久久久| 男女边吃奶边做爰视频| 精品久久久精品久久久| 黄网站色视频无遮挡免费观看| 日韩视频在线欧美| 久久久精品免费免费高清| 精品酒店卫生间| 国产熟女午夜一区二区三区| 亚洲情色 制服丝袜| 国产精品久久久久久精品电影小说| 中文字幕免费在线视频6| 亚洲国产看品久久| 欧美+日韩+精品| 肉色欧美久久久久久久蜜桃| 黄片无遮挡物在线观看| 久久久久人妻精品一区果冻| 国产精品99久久99久久久不卡 | 人人妻人人澡人人爽人人夜夜| 国产熟女午夜一区二区三区| 国国产精品蜜臀av免费| 高清不卡的av网站| 性色av一级| 日韩一区二区视频免费看| 天天操日日干夜夜撸| 久久人人爽人人爽人人片va| 午夜老司机福利剧场| 欧美成人精品欧美一级黄| 国产不卡av网站在线观看| 午夜福利在线观看免费完整高清在| 99热国产这里只有精品6| av天堂久久9| 97人妻天天添夜夜摸| 少妇精品久久久久久久| 巨乳人妻的诱惑在线观看| 在线观看一区二区三区激情| tube8黄色片| 巨乳人妻的诱惑在线观看| 欧美97在线视频| 美女中出高潮动态图| 日韩视频在线欧美| 午夜免费观看性视频| av视频免费观看在线观看| 国产午夜精品一二区理论片| 午夜免费观看性视频| 少妇被粗大的猛进出69影院 | 老女人水多毛片| 国产亚洲av片在线观看秒播厂| 亚洲少妇的诱惑av| videos熟女内射| 丝袜喷水一区| 在线观看一区二区三区激情| 一个人免费看片子| 秋霞伦理黄片| av免费在线看不卡| 五月伊人婷婷丁香| 色吧在线观看| 又黄又粗又硬又大视频| 老熟女久久久| 午夜福利在线观看免费完整高清在| 视频区图区小说| 一区二区三区四区激情视频| 蜜桃国产av成人99| 国产成人一区二区在线| 18在线观看网站| 国产精品欧美亚洲77777| 国产片特级美女逼逼视频| 国产精品麻豆人妻色哟哟久久| 亚洲人成77777在线视频| 少妇人妻久久综合中文| 精品久久久精品久久久| 午夜影院在线不卡| 国产成人精品无人区| 一级a做视频免费观看| 国产成人aa在线观看| kizo精华| 国产精品一国产av| 中文字幕最新亚洲高清| 在线观看www视频免费| 国产免费现黄频在线看| 欧美bdsm另类| 久久97久久精品| 日韩制服丝袜自拍偷拍| 免费高清在线观看日韩| 国产成人免费观看mmmm| 大香蕉97超碰在线| 亚洲第一av免费看| 亚洲av欧美aⅴ国产| 国产男女内射视频| 黄色视频在线播放观看不卡| 成年女人在线观看亚洲视频| 日韩一本色道免费dvd| 久久午夜综合久久蜜桃| 国产一级毛片在线| 亚洲,欧美,日韩| 亚洲色图 男人天堂 中文字幕 | 亚洲成人手机| 在线观看人妻少妇| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 欧美日韩国产mv在线观看视频| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 欧美精品av麻豆av| 成人二区视频| 成人亚洲欧美一区二区av| 日日撸夜夜添| 国产精品99久久99久久久不卡 | 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 国产色婷婷99| 亚洲精品久久久久久婷婷小说| 校园人妻丝袜中文字幕| 内地一区二区视频在线| 最近中文字幕2019免费版| 久久久久视频综合| 久久久久精品性色| 国产毛片在线视频| 看非洲黑人一级黄片| 丰满少妇做爰视频| 国产色婷婷99| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 中国国产av一级| 免费黄网站久久成人精品| 国产熟女欧美一区二区| 久久久国产一区二区| 国产日韩欧美视频二区| www.av在线官网国产| 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看 | 国产欧美日韩一区二区三区在线| 国产免费现黄频在线看| av又黄又爽大尺度在线免费看| 国产日韩欧美视频二区| 亚洲成色77777| 国产精品免费大片| 国产乱来视频区| 美女脱内裤让男人舔精品视频| 日本猛色少妇xxxxx猛交久久| 天堂中文最新版在线下载| 国产黄色免费在线视频| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 少妇人妻 视频| 国产乱来视频区| 肉色欧美久久久久久久蜜桃| 人人澡人人妻人| 国产亚洲精品第一综合不卡 | 综合色丁香网| 国产精品久久久av美女十八| 欧美日韩成人在线一区二区| 在线观看免费高清a一片| 久久久a久久爽久久v久久| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 在线观看一区二区三区激情| 一区二区三区精品91| 午夜老司机福利剧场| 亚洲精华国产精华液的使用体验| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 国产成人aa在线观看| 国产精品.久久久| 精品久久国产蜜桃| 免费黄网站久久成人精品| av天堂久久9| 韩国精品一区二区三区 | 久久 成人 亚洲| 亚洲国产看品久久| 精品国产乱码久久久久久小说| a级毛片黄视频| 国产精品.久久久| 男女高潮啪啪啪动态图| av在线老鸭窝| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| av有码第一页| 中文精品一卡2卡3卡4更新| 亚洲av综合色区一区| 午夜福利网站1000一区二区三区| 91精品国产国语对白视频| 亚洲精华国产精华液的使用体验| 777米奇影视久久| 欧美成人精品欧美一级黄| 伊人亚洲综合成人网| 久久韩国三级中文字幕| 久久久精品免费免费高清| 精品一区二区免费观看| 亚洲精品第二区| 九九在线视频观看精品| 两个人看的免费小视频| 国产又爽黄色视频| 看非洲黑人一级黄片| 免费黄色在线免费观看| 大陆偷拍与自拍| 久久97久久精品| 欧美激情 高清一区二区三区| 国产一区亚洲一区在线观看| 亚洲图色成人| 国产精品成人在线| 久久99热这里只频精品6学生| 如何舔出高潮| 99精国产麻豆久久婷婷| 777米奇影视久久| 一二三四在线观看免费中文在 | 亚洲欧美色中文字幕在线| 成人毛片60女人毛片免费| 狂野欧美激情性xxxx在线观看| 久久精品夜色国产| 欧美激情 高清一区二区三区| 成人手机av| 看免费av毛片| 国产深夜福利视频在线观看| 最近中文字幕2019免费版| 精品久久蜜臀av无| 久久久久网色| 午夜免费男女啪啪视频观看| 这个男人来自地球电影免费观看 | 亚洲四区av| 久久毛片免费看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频 | 国产一区二区三区av在线| 国产精品99久久99久久久不卡 | 亚洲精品国产av成人精品| 亚洲精品美女久久av网站| 中国国产av一级| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频 | www日本在线高清视频| 亚洲人成77777在线视频| av卡一久久| www.av在线官网国产| 日本av手机在线免费观看| 国产毛片在线视频| 欧美精品av麻豆av| 少妇被粗大的猛进出69影院 | 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 色视频在线一区二区三区| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 国产日韩欧美在线精品| 日韩制服骚丝袜av| 中文字幕制服av| 欧美精品一区二区免费开放| 少妇 在线观看| 永久免费av网站大全| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 黄色毛片三级朝国网站| 亚洲在久久综合| 人人妻人人添人人爽欧美一区卜| 午夜福利,免费看| 国产高清国产精品国产三级| 日韩一区二区视频免费看| 欧美精品国产亚洲| 日韩精品免费视频一区二区三区 | 18禁在线无遮挡免费观看视频| 免费大片黄手机在线观看| 最近中文字幕高清免费大全6| 成年人免费黄色播放视频| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 精品一区在线观看国产| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级| 久久av网站| 免费大片18禁| 亚洲在久久综合| 日日摸夜夜添夜夜爱| 亚洲成色77777| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 熟女人妻精品中文字幕| 国产极品天堂在线| 亚洲精品成人av观看孕妇| 黄片无遮挡物在线观看| 欧美3d第一页| 99热国产这里只有精品6| 丝瓜视频免费看黄片| 免费在线观看黄色视频的| 99久久人妻综合| 美女国产视频在线观看| tube8黄色片| 一边亲一边摸免费视频| 精品视频人人做人人爽| www.色视频.com| 99热这里只有是精品在线观看|