• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Improving the Celebrated Paris’Power Law for Fatigue,by Using Moving Least Squares

    2015-12-12 08:59:24LeitingDongRobertHaynesandSatyaAtluri
    Computers Materials&Continua 2015年1期

    Leiting Dong,Robert Haynes and Satya N.Atluri

    On Improving the Celebrated Paris’Power Law for Fatigue,by Using Moving Least Squares

    Leiting Dong1,2,Robert Haynes3and Satya N.Atluri2

    In this study,we propose to approximate the a?n relation as well as the d a/d n?ΔK relation,in fatigue crack propagation,by using the Moving Least Squares(MLS)method.This simple approach can avoid the internal inconsistencies caused by the celebrated Paris’power law approximation of the d a/d n?ΔK relation,as well as the error caused by a simple numerical differentiation of the noisy data for a?n measurements in standard fatigue tests.Efficient,accurate and automatic simulations of fatigue crack propagation can,in general,be realized by using the currently developed MLS law as the “fatigue engine”[d a/d n versus ΔK],and using a high-performance “fracture engine”[computing the K-factors]such as the Finite Element Alternating Method.

    In the present paper,the “fatigue engine”based on the present MLS law,and the“fracture engine”based on the SafeFlaw computer program developed earlier by the authors,in conjunction with the COTS software ANSYS,were used for predicting the total life of arbitrarily cracked structures.

    By comparing the numerical simulations with experimental tests,it is demonstrated that the current approach can give excellent predictions of the total fatigue life of a cracked structure,while the celebrated Paris’Power Law may miscalculate the total fatigue life by a very large amount.

    crack growth rate,Paris’Power Law,Moving Least Squares.

    1 Introduction

    Modeling the fatigue behavior of cracked built-up structures is among the most important tasks for the structural integrity assessment of aircraft[Atluri(1998)].In the past several decades,the development of high-performance computer modeling techniques has enabled the highly accurate computations of fracture mechanicsparameters of cracks,and efficient automatic simulations of non-collinear and non-planar mixed-mode crack growth in complex 2D&3D structures.Among the best“fracture engines”which compute K-factors are the alternating methods developed by Atluriand co-workers,see[Nishioka and Atluri(1983);Wang and Atluri(1996);Park and Atluri(1998);Nikishkov,Park and Atluri(2001);Han and Atluri(2002);Dong and Aluri(2013a,2013b)].Such alternating methods have been embedded by the authors in software named SafeFlaw 2D&SafeFlaw 3D,which also simulate quite efficiently the non-planar mixed-mode crack propagation.

    On the other hand,the development of fatigue crack growth laws,which relate the crack growth rate to fracture mechanics parameters(such as Stress Intensity Factors),is more likely to be an empirical art than a strict science.Having observed the linear dependence of log(d a/d n)with respect to ΔK in a certain range of crack propagation,Paris et al.(1961)were the first to propose a power law relation between the crack growth rate and the range of SIF:

    Figure 1:Typical fatigue crack growth behavior for metals.

    As shown in Fig.1,although the celebrated Paris’Law can give an acceptable approximation of the crack-growth-rates in the intermediate-SIF-range(region 2),it mostly overestimates d a/d n in region 1 and underestimates d a/d n in region 3.Forman et al.(1967)proposed to modify Paris’Law by further considering the rapid crack growth near the fracture toughness KIc:

    where R is the stress ratio.

    And Donahue et al.(1972)proposed to replace ΔK with ΔK ?ΔKthin Paris Law,in order to give a better prediction of d a/d n near the threshold SIF(ΔKth):

    While both the Forman and Donahue’s formulations in Eqs.(2)-(3)apply thresholds to characterize the asymptotic behavior of d a/d n?ΔK,other studies also take into account the underlying mechanisms of plasticity,crack-closure,and even mi-crostructure,see the review by[Newman(1998)].For example,Elber(1970)proposed to use ΔKeffinstead of ΔK to account for the effect of the crack closure.And crack growth rates can also be related to elastic-plastic fracture parameters such as J and T?integrals instead of linear elastic SIFs,see[Rice(1968);Atluri(1982);Nishioka and Atluri(1982);Dowling and Begley(1976);El Haddad,Dowling,Topper and Smith(1980)].

    However,considering the computational capabilities of even a present-day laptop computer,and the vast number of numerical methods available today,it is probably unnecessary to confine the development of fatigue laws to within the limited scope of power laws or very simple formulas,no matter what fracture mechanics parameters are used(ΔK,ΔKeff,ΔJ,ΔT?,etc.).Moreover,with given discrete measurements and the attendant noisy data for the crack length(a)versus the number of cycles(n),computing d a/d n using a secant method or a piecewise polynomial method may also cause discretization errors,see ASTM E647-13a.

    In this study,we propose to approximate the a?n relation as well as the d a/d n?ΔK relation using Moving Least Squares(MLS)[Atluri(2004)]instead of power laws.This simple approach can avoid the internal inconsistencies caused by the power law approximation of d a/d n?ΔK relation as well as the errors caused by simple numerical differentiation of the noisy discrete a?n data.By applying this method for fatigue life prediction of cracked structures,it is found that the current MLS law can give highly accurate estimates of the total fatigue life,while the Paris’Law may miscalculate the total fatigue life by several multiples or even an order of magnitude.Although the current study only considers ΔK as the driving parameter with the assumption of perfect linear elasticity,other effects such as plasticity and crack closure can also be included by using ΔKeffas the driving parameter with numerical techniques developed by[Newman et al.(1992,1999)].With further development,it is expected that the currently developed MLS fatigue law can serve as a high-performance “fatigue engine”,which can be combined the high-performance “fracture engine”of the alternating methods,to greatly improve the state-of-the-art of structural integrity assessment and damage tolerance of fixed as well as rotary-wing aircraft.

    2 A Simple Moving Least Squares Fatigue Law

    2.1 Fundamentals of Moving Least Squares

    The Moving Least Squares(MLS)is generally considered to be one of the best methods to interpolate random data with a high accuracy,because of its completeness,smoothness,and locality.Its formulation is briefly reviewed here,while more detailed discussions on the MLS can be found in[Atluri(2004,2005)].

    Considering a one-dimensional space with n being the independent variable and a being the dependent variable,the MLS method starts by expressing a(n)as polynomials:

    where pT(n)represents the monomial basis.In this study,we use a second-order interpolation,so that pT(n)=[1,n,n2].b(n)is a vector containing the coefficient functions of each monomial basis,which can be determined by minimizing the following weighted least squares objective function:

    where nI,I=1,2,···,m is a group of discrete nodes with?aIbeing the fictitious nodal value at node I.Differing from the traditional Least Squares Method,the MLS weight function wI(n)is a local function which vanishes outside the support size(rI)of node I.In this study,a fourth order spline weight function is used:

    Substituting b(n)into Eq.(4),we can obtain the approximate expression of a(n)as:

    where matrices A(n)and B(n)are defined by:

    ΦI(n)is named as the MLS basis function for node I.

    The derivatives of the basis functions can be computed using the following equations:

    To give an example,we consider 21 uniformly distributed nodes(n=0,500,1000,...,10000),with 2000 being the support size of each node.Fig.2 plots the MLS basis function for the node at n=5000 as well as its first order derivative.As can be seen,both the basis function and its first-order derivative are smooth functions which vanish outside the support range of each node.

    Figure 2:MLS basis function and its first order derivative.

    2.2 Numerical Differentiation of Discrete a?n Data Using MLS

    Fatigue tests generally give discrete pairs of a?n data which can often be noisy.Suppose one has measured crack sizes a1,a2,...,amat cycles n1,n2,...,nm,then by using n1,n2,...,nmas MLS nodes,the a?n relation can be approximated as a continuous function:

    The crack growth rates can thus be computed by directly differentiating Eq.(10)with the aid of Eq.(9):

    In this study,we consider 7075-T6 aluminum alloy,and use the fatigue test data given in NASA/TM-2005-213907 report.Three test specimens were prepared following the ASTM E647-00 standard,i.e.AL-7-21,AL-7-22 and AL-7-23.A schematic plot of a middle tension M(T)specimen is given in Fig.3,where W=102 mm,B=3.18 mm.Each specimen had different initial crack sizes,and was loaded with different magnitudes of forces,while having the same stress ratio(R=0.1).Any data that satisfies W?2a≥1.25Pmax/(BσYS)were rejected to rule out the effects of inelastic material response.Fig.4 gives the fitted a?n curve as well as the thereafter derived crack growth rates d a/d n.

    2.3 An Empirical d a/d n?ΔK Relation by MLS Approximation

    Figure 3:Schematic of a middle tension M(T)specimen by[Forth,Wright,and Johnson(2005)].

    And the fictitious nodal values can be determined by minimizing the following simple quadratic objective function:

    In this study,10 uniformly distributed(in the log scale)MLS nodes are used for demonstration,and the approximated d a/d n?ΔK relation is plotted in Fig.5.As can be seen,a very accurate prediction of crack-growth rates is obtained by using only a few MLS nodes,in contrast to the simple deviation of the Paris’Law.

    Figure 4:Using Moving Least Squares to numerically differentiate discrete a?n data given by[Forth,Wright,and Johnson(2005)]:(a)AL-7-21,(b)AL-7-22,(c)AL-7-23.

    Figure 5:Approximating the d a/d n?ΔK relation using Paris’Law as well as the Moving Least Squares(MLS).

    3 Fatigue Crack Growth Simulation by the Currently Developed MLS Law

    In this section,we verify the capability of a highly-accurate fatigue life assessment using the currently developed MLS fatigue law.This is done by implementing the MLS law into the well-established Finite Element Alternating Method[Park and Atluri(1998)].The FEAM enables a fast and accurate computation of ΔK,as well as an automatic simulation of crack growth.With the newly developed MLS law,the fatigue life of a cracked structure can be computed by numerically evaluating:

    where E X P{·}is the exponential function and a0is the initial crack size.Similarly,FEAM can also be combined with Paris’Law to simulate fatigue crack growth,the results of which are used for comparison in this study.

    The present approach is firstly applied to model the fatigue behavior of M(T)specimens of NASA/TM-2005-213907 report used in section 2.As shown in Fig.6-7,Paris’Law greatly underestimates the fatigue life of AL-7-23,this is because ΔK for this specimen is relatively small(near threshold region).Paris’Law also underestimates the crack growth rates of AL-7-22,where ΔK for this specimen is relatively large(near fracture toughness region).In contrast,the MLS law can almost give an exact estimation of the fatigue behavior of both of these 2 specimens.Because ΔK of AL-72-21 stays in the intermediate power law range,both Paris’Law and MLS give good predictions of fatigue crack growth,and thus the results for AL-72-21 are not plotted here.

    Figure 6:Predicted a?n relation using Paris’Law and MLS Law,as compared to experimental results for specimen AL-7-23 in[Forth,Wright,and Johnson(2005)].

    We further consider the open-hole crack experiment by[Stuart,Hill and Newman(2011)].As shown in Fig.8,each of the 3 dog-bone coupons is made of 2.03 mm thick 7075-T6 sheet.It has 381 mm in total length and is 88.9 mm wide at the gripped ends.The gripped ends taper to a central gage section(44.5 mm wide and 88.9 mm long)with a centrally located open hole which is 7.09 mm in diameter.The initial crack is 0.381 mm in size(including the notch&the pre-crack).The applied maximum gross tress is 47.2 M Pa,with a stress ratio of 0.1.

    This problem is solved by using the FEAM combined with Paris’as well as the present MLS fatigue law.As shown in Fig.9,the Paris’Law underestimates the fatigue life by a factor of 3,while the MLS law can accurately simulate the fatigue growth of the crack near the open hole.Again,this is because the Paris’Law overestimates the crack growth rates in the near threshold region,while the currently developed MLS fatigue law gives very accurate predictions of crack growth rates in the threshold,intermediate,as well as the near fracture toughness regions.

    Figure 7:Predicted a?n relation using Paris’Law and MLS Law,as compared to experimental results for specimen AL-7-22 in[Forth,Wright,and Johnson(2005)].

    Figure 8:Open-hole Al7075-T6 couponsused in[Stuart,Hill and Newman(2011)]with one single mode-1 crack at the right side of the hole.

    Figure 9:Predicted a?n relation using Paris’Law and MLS Law,as compared to experimental results of 3 specimens in[Stuart,Hill and Newman(2011)].

    Figure 10:Predicted da/dn?ΔK relation using Paris’s Law and MLS Law for the open-hole crack problem as given in[Stuart,Hill and Newman(2011)].

    4 Conclusions

    Using power laws such as the celebrated Paris’Law or other simple formulas to approximate the fatigue crack growth behavior was advantageous in the 1960s-1980s,which was the time when most of these fatigue laws were developed.However,with the rapid development of computers and numerical methods in the past half of a century,much better fatigue crack growth relations can be postulated today.This paper presents a preliminary demonstration of how much better predictions of crack growth rates and the total remaining fatigue life can be achieved by using the Moving Least Squares approximations.Other high-performance meshless approximating methods using Partitions of Unity,Shephard Functions,Radial Basis Functions,etc.[Atluri(2004)]will also be explored in the very near future.Moreover,effects of plasticity and crack closure can also be taken into account by simple corrections ofK?factors,which will be considered in our future studies.

    In the present paper,the “fatigue engine”based on the present MLS law,and the“fracture engine”based on the SafeFlaw computer program developed earlier by the authors,in conjunction with the COTS software ANSYS,were used for predicting the total life of arbitrarily cracked structures.

    Acknowledgement:This work was supported by Vehicle Technology Division of the Army Research Labs.The support and encouragement of Dy Le and Jaret Riddick are thankfully acknowledged.The first author also thanks the support of Natural Science Foundation Project of Jiangsu Province(Grant no.BK20140838).

    ASTM-E647-13a(2014):StandardTest MethodforMeasurement of FatigueCrack Growth Rates.

    Atluri,S.N.(1982):Path-independent integrals in finite elasticity and inelasticity,with body forces,inertia,and arbitrary crack-face conditions.EngineeringFracture Mechanics,vol.16,issue 3,pp.341-364.

    Atluri,S.N.(1998):Structural Integrity and Durability,Tech Science Press.

    Atluri,S.N.(2004):The meshless method(MLPG)for domain&BIE discretiza-tions.Tech Science Press.

    Atluri,S.N.(2005):Methods of Computer Modeling in Engineering&the Sciences(Vol.1),Tech Science Press.

    Donahue,R.J.:Clark,H.M.:Atanmo,P.:Kumble,R.:McEvily,A.J.(1972):Crack opening displacement and the rate of fatigue crack growth.International Journal of Fracture Mechanics,vol.8,issue 2,pp.209-219.

    Dong,L.;Atluri,S.N.(2013a):Fracture&Fatigue Analyses:SGBEM-FEM or XFEM?Part 1:2D Structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,no.2,pp.91-146.

    Dong,L.;Atluri,S.N.(2013b):Fracture&Fatigue Analyses:SGBEM-FEM or XFEM?Part 2:3D Solids.CMES:Computer Modeling in Engineering&Sciences,vol.90,no.5,pp.379-413.

    Dowling,N.E.;Begley,J.A.(1976):Fatigue crack growth during gross plasticity and the J-integral.ASTM STP 590,pp.82-103.

    Elber,W.(1970):Fatigue crack closure under cyclic tension.EngineeringFracture Mechanics,vol.2,issue 1,pp.37-45.

    El Haddad,M.H.:Dowling,N.E.:Topper,T.H.;Smith,K.N.(1980):J integral applications for short fatigue cracks at notches.International Journal of Fracture,vol.16,issue 1,pp.15-30.

    Forth,S.C.;Wright,C.W.;Johnston Jr,W.M.(2005):7075-T6 and 2024-T351 aluminum alloy fatigue crack growth rate data.NASA/TM-2005-213907.

    Forman,R.G.;Kearney,V.E.;Engle,R.M.(1967):Numerical analysis of crack propagation in cyclic-loaded structures.Journal of Fluids Engineering,vol.89,issue 3,pp.459-463.

    Han,Z.D.;Atluri,S.N.(2002):SGBEM(for Cracked Local Subdomain)–FEM(for uncracked global Structure)Alternating Method for Analyzing 3D Surface Cracks and Their Fatigue-Growth.CMES:Computer Modeling in Engineering&Sciences,vol.3,no.6,pp.699-716.

    Newman,J.C.(1992):FASTRAN 2—a fatigue crack growth structural analysis program.NASA STI/Recon Technical Report N,92,30964.

    Newman,J.C.(1998):The merging of fatigue and fracture mechanics concepts:a historical perspective.Progress in Aerospace Sciences,vol.34,issue 5,pp.347-390.

    Newman,J.C.;Phillips,E.P.;Swain,M.H.(1999):Fatigue-life prediction methodology using small-crack theory.International Journal of fatigue,vol.21,issue 2,pp.109-119.

    Nishioka,T.;Atluri,S.N.(1982):Analytical solution for embedded elliptical cracks and finite element alternating method for elliptical surface cracks,subjected to arbitrary loadings.Engineering Fracture Mechanics,vol.17,pp.247-268.

    Nishioka,T.;Atluri,S.N.(1983):Path-independent integrals,energy release rates,and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics.Engineering Fracture Mechanics,vol.18,issue 1,pp.1-22.

    Nikishkov,G.P.;Park,J.H.;Atluri,S.N.(2001):SGBEM-FEM alternating method for analyzing 3D non-planar cracks and their growth in structural components.CMES:Computer Modeling in Engineering&Sciences,vol.2,no.3,pp.401-422.

    Paris,P.C.;Gomez,M.P.;Anderson,W.E.(1961):A rational analytic theory of fatigue.The Trend in Engineering,vol.13.Issue 1,pp.9-14.

    Park,J.H.;Atluri,S.N.(1998):Mixed mode fatigue growth of curved cracks emanating from fastener holes in aircraft lap joints.Computational Mechanics,vol.21,issue 6,pp.1333-1336.

    Rice,J.R.(1968):A path independent integral and the approximate analysis of strain concentration by notches and cracks.Journal of Applied Mechanics,vol.35,issue,pp.379-386.

    Stuart,D.H.;Hill,M.R.;Newman,J.C.(2011):Correlation of one-dimensional fatigue crack growth at cold-expanded holes using linear fracture mechanics and superposition.Engineering Fracture Mechanics,vol.78,issue 7,pp.1389-1406.

    Wang,L.;Atluri,S.N.(1996):Recent advances in the alternating method for elastic and inelastic fracture analyses.Computer Methods in Applied Mechanics and Engineering,vol.137,issue 1,pp.1-58.

    1Department of Engineering Mechanics,Hohai University,China.

    2Center for Aerospace Research&Education,University of California,Irvine.

    3Vehicle Technology Directorate,US Army Research Laboratory.

    国产精品亚洲美女久久久| 久久国产精品男人的天堂亚洲| 欧美色视频一区免费| 久久久久亚洲av毛片大全| svipshipincom国产片| 国产亚洲欧美在线一区二区| 久久人妻av系列| 制服诱惑二区| 在线免费观看的www视频| 激情视频va一区二区三区| 国产精品一区二区免费欧美| 久久久久国产精品人妻aⅴ院| 国产高清视频在线播放一区| 亚洲片人在线观看| 美女午夜性视频免费| 国产亚洲欧美98| 中文字幕人妻熟女乱码| 在线视频色国产色| 国产精品一区二区精品视频观看| www国产在线视频色| 18禁美女被吸乳视频| 国产又爽黄色视频| 亚洲午夜精品一区,二区,三区| 十分钟在线观看高清视频www| 叶爱在线成人免费视频播放| 不卡一级毛片| 曰老女人黄片| 国产激情久久老熟女| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 中文亚洲av片在线观看爽| 少妇粗大呻吟视频| 久久婷婷成人综合色麻豆| 日本欧美视频一区| 亚洲国产精品sss在线观看| 国产主播在线观看一区二区| АⅤ资源中文在线天堂| 男女下面进入的视频免费午夜 | 九色国产91popny在线| 黄色毛片三级朝国网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成国产人片在线观看| 黄频高清免费视频| 亚洲九九香蕉| 亚洲精品粉嫩美女一区| 男女做爰动态图高潮gif福利片 | 精品国产一区二区三区四区第35| 午夜免费成人在线视频| 免费在线观看影片大全网站| 亚洲三区欧美一区| 久热爱精品视频在线9| 精品少妇一区二区三区视频日本电影| 97人妻天天添夜夜摸| 韩国av一区二区三区四区| 欧美成狂野欧美在线观看| 午夜精品久久久久久毛片777| 99精品久久久久人妻精品| 免费在线观看黄色视频的| 非洲黑人性xxxx精品又粗又长| 18禁裸乳无遮挡免费网站照片 | 精品国内亚洲2022精品成人| 欧美一级毛片孕妇| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区精品| 精品一区二区三区四区五区乱码| 久9热在线精品视频| 电影成人av| 制服丝袜大香蕉在线| 女生性感内裤真人,穿戴方法视频| 精品人妻在线不人妻| 国产不卡一卡二| 久久精品国产亚洲av香蕉五月| 国产黄a三级三级三级人| 久久精品成人免费网站| 久久久久精品国产欧美久久久| 久久精品亚洲精品国产色婷小说| 精品电影一区二区在线| 欧美激情极品国产一区二区三区| 波多野结衣一区麻豆| 黄色丝袜av网址大全| 热99re8久久精品国产| 给我免费播放毛片高清在线观看| 精品国产亚洲在线| 中文字幕av电影在线播放| а√天堂www在线а√下载| 欧美黑人精品巨大| 亚洲三区欧美一区| 欧美一级毛片孕妇| 午夜久久久在线观看| 国产亚洲欧美98| 久久精品国产99精品国产亚洲性色 | 亚洲国产欧美日韩在线播放| 久久人人97超碰香蕉20202| 免费在线观看影片大全网站| 成人国产一区最新在线观看| www.自偷自拍.com| 91字幕亚洲| 亚洲av成人不卡在线观看播放网| 极品教师在线免费播放| 亚洲免费av在线视频| 精品国产一区二区久久| 两性夫妻黄色片| 欧美久久黑人一区二区| 日本撒尿小便嘘嘘汇集6| 久久久国产成人精品二区| 国产单亲对白刺激| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 欧美大码av| 又紧又爽又黄一区二区| 久久中文看片网| 丝袜人妻中文字幕| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 天堂影院成人在线观看| 国产成人欧美| 久久精品91无色码中文字幕| www.熟女人妻精品国产| 黄色 视频免费看| 欧美黄色片欧美黄色片| 99国产精品一区二区蜜桃av| 一级,二级,三级黄色视频| 69精品国产乱码久久久| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 日韩欧美三级三区| 国产成人av教育| 亚洲 欧美一区二区三区| 妹子高潮喷水视频| 午夜a级毛片| 国产一区二区激情短视频| 精品一品国产午夜福利视频| 国产单亲对白刺激| 老司机午夜福利在线观看视频| 亚洲在线自拍视频| 天天一区二区日本电影三级 | 中文字幕色久视频| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 伦理电影免费视频| 久久国产精品人妻蜜桃| 丁香六月欧美| 91大片在线观看| 欧美久久黑人一区二区| 免费在线观看日本一区| 高潮久久久久久久久久久不卡| 9色porny在线观看| 亚洲国产欧美网| 日韩国内少妇激情av| 中国美女看黄片| 色综合亚洲欧美另类图片| av视频免费观看在线观看| 亚洲成人国产一区在线观看| 亚洲,欧美精品.| 欧美激情极品国产一区二区三区| 久久中文字幕人妻熟女| 两性夫妻黄色片| 中文字幕久久专区| 涩涩av久久男人的天堂| 人成视频在线观看免费观看| av天堂久久9| 欧美精品亚洲一区二区| 国产高清激情床上av| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 国产高清videossex| 欧美精品啪啪一区二区三区| 久久天堂一区二区三区四区| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 国产精品久久久久久亚洲av鲁大| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区| 757午夜福利合集在线观看| 99re在线观看精品视频| 中国美女看黄片| 久久热在线av| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 精品久久久久久久久久免费视频| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| www.www免费av| 啦啦啦韩国在线观看视频| 成人国产一区最新在线观看| 欧美黑人精品巨大| 亚洲最大成人中文| 中文字幕高清在线视频| 妹子高潮喷水视频| 婷婷六月久久综合丁香| 国产精品九九99| 亚洲人成电影观看| av片东京热男人的天堂| 欧美一级a爱片免费观看看 | 精品国产一区二区久久| 精品一区二区三区四区五区乱码| 国产人伦9x9x在线观看| 久久久久久久久中文| 精品福利观看| 大型黄色视频在线免费观看| av有码第一页| 别揉我奶头~嗯~啊~动态视频| 一区二区三区国产精品乱码| 欧美在线黄色| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看| 国产xxxxx性猛交| cao死你这个sao货| 我的亚洲天堂| 亚洲国产精品999在线| 一级,二级,三级黄色视频| 色综合欧美亚洲国产小说| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 亚洲全国av大片| 自线自在国产av| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产看品久久| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 真人一进一出gif抽搐免费| 欧美另类亚洲清纯唯美| 日本在线视频免费播放| 一级a爱视频在线免费观看| 精品一品国产午夜福利视频| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看 | 美女午夜性视频免费| 国产精品自产拍在线观看55亚洲| 免费久久久久久久精品成人欧美视频| 亚洲中文字幕一区二区三区有码在线看 | 免费少妇av软件| 91成年电影在线观看| 一区在线观看完整版| 成人欧美大片| 日韩成人在线观看一区二区三区| av网站免费在线观看视频| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 视频在线观看一区二区三区| 9191精品国产免费久久| 99精品欧美一区二区三区四区| 极品人妻少妇av视频| 国产免费男女视频| 色在线成人网| 久久九九热精品免费| 99久久99久久久精品蜜桃| 午夜影院日韩av| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 国产欧美日韩一区二区三| 欧美成狂野欧美在线观看| 看黄色毛片网站| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 一个人观看的视频www高清免费观看 | 国产亚洲av嫩草精品影院| 亚洲成国产人片在线观看| 丝袜在线中文字幕| 色老头精品视频在线观看| 美女午夜性视频免费| 久久人妻福利社区极品人妻图片| 又大又爽又粗| 久久草成人影院| 精品久久久久久久人妻蜜臀av | 精品国产乱子伦一区二区三区| 亚洲国产欧美网| 久久香蕉精品热| 午夜福利,免费看| 香蕉国产在线看| 一本综合久久免费| 久久中文看片网| 99久久精品国产亚洲精品| 国产精品98久久久久久宅男小说| 成人亚洲精品一区在线观看| 桃色一区二区三区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看完整版高清| 亚洲欧美激情综合另类| av免费在线观看网站| 国产亚洲欧美在线一区二区| 精品午夜福利视频在线观看一区| 伦理电影免费视频| 老司机午夜福利在线观看视频| 欧美中文综合在线视频| 变态另类成人亚洲欧美熟女 | 亚洲精品久久成人aⅴ小说| 中亚洲国语对白在线视频| 日韩高清综合在线| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av电影在线播放| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 男人操女人黄网站| 亚洲在线自拍视频| 日本三级黄在线观看| 岛国在线观看网站| 成人av一区二区三区在线看| 日韩欧美一区视频在线观看| 99国产精品免费福利视频| 欧美黄色片欧美黄色片| 最近最新中文字幕大全免费视频| 很黄的视频免费| 亚洲av成人一区二区三| 少妇粗大呻吟视频| 国产一区二区三区在线臀色熟女| 丰满人妻熟妇乱又伦精品不卡| 神马国产精品三级电影在线观看 | 国产精品野战在线观看| 欧美午夜高清在线| 国产97色在线日韩免费| 丝袜在线中文字幕| 十八禁人妻一区二区| 熟女少妇亚洲综合色aaa.| 午夜激情av网站| АⅤ资源中文在线天堂| 中文字幕最新亚洲高清| 午夜福利18| 一本久久中文字幕| 搡老熟女国产l中国老女人| 亚洲中文字幕一区二区三区有码在线看 | 麻豆国产av国片精品| 成人三级做爰电影| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 欧美色欧美亚洲另类二区 | 久久精品人人爽人人爽视色| 一级毛片高清免费大全| 天堂√8在线中文| 久久久久久久久免费视频了| 免费av毛片视频| 欧美中文综合在线视频| 黄色女人牲交| svipshipincom国产片| 国产xxxxx性猛交| 欧美中文日本在线观看视频| 无遮挡黄片免费观看| 国产麻豆69| 男人舔女人的私密视频| 精品无人区乱码1区二区| 黄片小视频在线播放| 老司机福利观看| 国产亚洲精品第一综合不卡| 国产成人欧美在线观看| 成人三级黄色视频| 亚洲欧美精品综合久久99| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 成人三级做爰电影| 男人舔女人的私密视频| 亚洲人成电影免费在线| 国产99白浆流出| 满18在线观看网站| 色播在线永久视频| 丝袜美腿诱惑在线| 国产精品电影一区二区三区| 欧美激情 高清一区二区三区| 极品人妻少妇av视频| 波多野结衣高清无吗| 桃红色精品国产亚洲av| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 精品高清国产在线一区| 天天添夜夜摸| 精品久久久久久久人妻蜜臀av | 久久天堂一区二区三区四区| av天堂久久9| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 一区二区三区激情视频| 免费看美女性在线毛片视频| 亚洲专区字幕在线| 午夜福利免费观看在线| 亚洲色图综合在线观看| www.999成人在线观看| 91麻豆av在线| 精品人妻1区二区| 免费搜索国产男女视频| 日韩大尺度精品在线看网址 | 久久亚洲真实| 欧美久久黑人一区二区| 国产精品综合久久久久久久免费 | 亚洲性夜色夜夜综合| 国产成人欧美在线观看| 777久久人妻少妇嫩草av网站| 精品人妻在线不人妻| 香蕉国产在线看| 午夜日韩欧美国产| 在线观看一区二区三区| 欧美丝袜亚洲另类 | 麻豆久久精品国产亚洲av| cao死你这个sao货| 99国产精品一区二区三区| 亚洲人成77777在线视频| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱 | 女人高潮潮喷娇喘18禁视频| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 电影成人av| 女性被躁到高潮视频| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 日本撒尿小便嘘嘘汇集6| 女同久久另类99精品国产91| 久久精品影院6| 丝袜人妻中文字幕| 日日摸夜夜添夜夜添小说| 伊人久久大香线蕉亚洲五| 国产高清有码在线观看视频 | 高清毛片免费观看视频网站| www.熟女人妻精品国产| 大型黄色视频在线免费观看| 亚洲欧美一区二区三区黑人| 欧美大码av| 亚洲人成网站在线播放欧美日韩| 在线免费观看的www视频| 99久久国产精品久久久| 韩国av一区二区三区四区| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 久久草成人影院| 久久香蕉精品热| 黄色视频不卡| 精品无人区乱码1区二区| 怎么达到女性高潮| 久久国产精品影院| 天堂动漫精品| 久99久视频精品免费| 最近最新中文字幕大全电影3 | 一级片免费观看大全| 午夜福利成人在线免费观看| 色老头精品视频在线观看| 久久久久九九精品影院| 满18在线观看网站| 制服人妻中文乱码| 国产精品一区二区精品视频观看| 一区二区三区激情视频| 亚洲人成网站在线播放欧美日韩| 老司机靠b影院| 人成视频在线观看免费观看| 亚洲在线自拍视频| 丁香欧美五月| 麻豆国产av国片精品| 欧美性长视频在线观看| 久久欧美精品欧美久久欧美| 欧美精品亚洲一区二区| 日本 av在线| 成年人黄色毛片网站| 熟妇人妻久久中文字幕3abv| 欧美老熟妇乱子伦牲交| 很黄的视频免费| 久久精品亚洲熟妇少妇任你| 十八禁网站免费在线| 欧美日韩一级在线毛片| 九色亚洲精品在线播放| 久久精品亚洲精品国产色婷小说| 精品久久久久久,| 两性夫妻黄色片| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 长腿黑丝高跟| 亚洲成国产人片在线观看| 夜夜看夜夜爽夜夜摸| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 欧美成人午夜精品| 黑丝袜美女国产一区| 91大片在线观看| 男女下面进入的视频免费午夜 | www.www免费av| 国产精品永久免费网站| 亚洲国产精品sss在线观看| 人人妻人人澡人人看| 乱人伦中国视频| 国内精品久久久久久久电影| 国产三级在线视频| 亚洲免费av在线视频| 日本五十路高清| av片东京热男人的天堂| 美女免费视频网站| 色av中文字幕| 久久国产精品男人的天堂亚洲| 国产国语露脸激情在线看| 国产99白浆流出| 黄片大片在线免费观看| 亚洲国产欧美日韩在线播放| 日本一区二区免费在线视频| av中文乱码字幕在线| 国产精品亚洲av一区麻豆| 日本欧美视频一区| 亚洲av电影不卡..在线观看| 午夜福利高清视频| 久久香蕉激情| 悠悠久久av| 老司机午夜福利在线观看视频| 精品国产美女av久久久久小说| 国产成人免费无遮挡视频| 麻豆av在线久日| 黄色视频不卡| 这个男人来自地球电影免费观看| 在线免费观看的www视频| 久久精品国产清高在天天线| 久久中文字幕一级| 亚洲成av人片免费观看| 婷婷丁香在线五月| 亚洲国产日韩欧美精品在线观看 | 一二三四在线观看免费中文在| 亚洲欧美日韩无卡精品| 黄色视频,在线免费观看| bbb黄色大片| 在线观看舔阴道视频| 日韩成人在线观看一区二区三区| www.999成人在线观看| 午夜精品在线福利| 最新美女视频免费是黄的| 国产精品99久久99久久久不卡| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美绝顶高潮抽搐喷水| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 国产av又大| 欧美一级a爱片免费观看看 | 欧美日韩精品网址| 精品国产一区二区三区四区第35| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 亚洲人成网站在线播放欧美日韩| 中文字幕人妻丝袜一区二区| 69精品国产乱码久久久| 国内精品久久久久精免费| 亚洲一区二区三区色噜噜| 日韩欧美三级三区| 99精品久久久久人妻精品| 亚洲av片天天在线观看| 日本 av在线| 成人手机av| 日韩大尺度精品在线看网址 | 天天添夜夜摸| 狂野欧美激情性xxxx| 亚洲三区欧美一区| 久久精品国产清高在天天线| 一级作爱视频免费观看| 丁香六月欧美| 乱人伦中国视频| 男女之事视频高清在线观看| 国产成人啪精品午夜网站| 亚洲成人久久性| 免费人成视频x8x8入口观看| 伦理电影免费视频| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 国产亚洲欧美98| 精品第一国产精品| 久久欧美精品欧美久久欧美| 色综合站精品国产| 老司机福利观看| 又黄又爽又免费观看的视频| 亚洲片人在线观看| 十八禁人妻一区二区| 日日摸夜夜添夜夜添小说| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 色综合婷婷激情| av视频免费观看在线观看| 国内精品久久久久久久电影| 精品无人区乱码1区二区| 宅男免费午夜| 后天国语完整版免费观看| 久久久久久久久免费视频了| 国产av在哪里看| 中国美女看黄片| 91老司机精品| av中文乱码字幕在线| 久久亚洲真实| 日本在线视频免费播放| 丝袜在线中文字幕| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 12—13女人毛片做爰片一| 色播亚洲综合网| 日日摸夜夜添夜夜添小说| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av高清一级| 日韩大尺度精品在线看网址 | 精品国产一区二区三区四区第35| 大香蕉久久成人网| 男男h啪啪无遮挡| 婷婷六月久久综合丁香| 免费在线观看黄色视频的| 国产免费男女视频| 亚洲视频免费观看视频| 日韩有码中文字幕| 亚洲午夜理论影院| 国产av一区二区精品久久| 三级毛片av免费| 国语自产精品视频在线第100页| 久久中文看片网| 夜夜夜夜夜久久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲成人国产一区在线观看| 可以在线观看的亚洲视频| 免费在线观看视频国产中文字幕亚洲| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 精品久久久精品久久久| 丰满的人妻完整版|