• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DES Simulation of Flow Field of Propeller Tip Vortex

    2015-12-12 08:52:12SHILipanXIONGYingSUNHaitao
    船舶力學(xué) 2015年6期

    SHI Li-pan,XIONG Ying,SUN Hai-tao

    (1 Dept.of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;2 College of Basic Education for Commanding Officers,National University of Defense Technology,Changsha 410072,China)

    0 Introduction

    The tip vortex is a complicated three-dimensional viscous flow phenomenon which will be formed if the propeller is rotating in the flow field.With the velocity of flow field in the vicinity of the tip vortex core region increasing,the pressure of the core decreases significantly.The tip vortex cavitation will occur in the center of the vortex,if the pressure drops below the saturated vapor pressure.Tip vortex cavitation is of major concern in the design stage of propellers since it is an important source of noise.In order to avoid or control the tip vortex cavitation,flow field of the propeller needs to be simulated by numerical method.So it is very important and significant to study the state of the propeller blade wake flow field.

    The experimental investigation of the propeller wake plays an important role in the performance analysis of ship propulsion.The characters of the tip vortex and wake structure are measured by using advanced flow visualization and non-intrusive measurement techniques traditionally.As the Laser Doppler Velocimetry has great advantages of velocity direction recognition and good frequency response of a non-intrusive probe,it is widely used in the measurements of the propeller wake flow.Min[1]and Hsiao[2]studied the tip vortex evolution by using the LDV.Jessup[3-4]and Dong[5]carried out extensive experiments for the DTRC 4119 using a LDV system in a water tunnel and substantial measured data on the flow field in the wake.Comparison of the experimental data between the LDV and PIV was made by Li[6-7].These data were all used to compare with the numerical results.

    Numerical computations based on the Navier-Stockes equation have been used to predict the detail flow structure of the propeller flow field.Tang and Dong[8]made a simulation of the flow field around the propeller by using RANS method combined with the non-staggered grid system.Their study shows that the method used to predict the viscous flow around the propeller not only qualitatively but also quantitatively.Stanier[9]investigated the blade wake flow feature of the DTRC 4119 by RANS method.The open water performance and the predicted velocities show good agreement with the measurements,but significant scale effect had been detected between the model and full scale propellers.Turnock[10]enhanced an existing 2D vortex identification algorithm to track the helical path of the tip vortex generated by a marine propeller DTRC4119.With a suitably mesh concentrated about the tip vortex core,significant improvements had been demonstrated to predict the vortex tracking.Bulten[11]found that the choice of RANS turbulence model extended a limited effect on the computation results.But local mesh refinement method enables a deep analysis of the flow phenomena in the tip vortex.LES with a rotating mesh has been applied for the simulation of the flow around a propeller.Compared the calculated data with extensive PIV and LDV measurements,Bensow[12]found that the numerical results without the refined mesh had deteriorated significantly at approximately one propeller diameter downstream of the propeller.Roberto Muscari[13]overcame the over predicted eddy of the simulation and made a success to capture the flow detail of propeller E779A accurately.

    To save the computational resource and precisely capture the tip vortex structure,the DES method is employed in the simulation of the flow field around the DTRC 4119.Present result demonstrates the capability of the DES method to handle the propeller flows through the comparison between calculation results and experimental data.

    1 Numerical model

    1.1 Turbulence modeling

    The propeller blade wake flow is one of the most complicated flow field in naval hydrodynamic.The blade inflow varies significantly as the propeller rotates.It contains the intense vortex sheet which travels downstream and exerts great effect on the wake flow.In this paper,the DES based on the SA model is adopted to the simulation to improve the precision and reduce the resource of the computation.DES method is the mixer of the LES and the RANS.For the flow close to the wall,the RANS model is used.The LES model is employed for the flow away from the wall.

    The governing equation here can be written as below:

    The DES based on the SA model is adopted.As a one-equation turbulence model,the SA model can solve a transport equation of turbulent eddy viscosity.The switch between RANS and LES in the original DES-SA model is achieved by replacing the explicit length scale.

    In formula(5),dRANSrepresents the wall distancelength scale of the grid size,in which Δx,Δy,Δz represent the grid size in three direction respectively,the model constant CDES=0.65.

    1.2 Geometry and computation grid

    The simulation was performed for David Taylor propeller 4119,which is a three-blade propeller with 12 inch diameter.Since the hub and the blade root are complicated,some geometry simplifications are made for the numerical study.The root fillets and a root trailing edge cut-out are ignored.In order to improve the quality of the grids,propeller blades are assumed to be mounted on an infinite constant-radius hub/shaft cylinder.The computational domain is established and is shown in Fig.1,in which the inlet boundary is located 4 propeller radius upstream and the outlet boundary is 10 radius downstream of the propeller disk plane.The radius of the computational domain is chosen as 4 times greater than the propeller radius.

    Fig.1 The computation domain

    To create an appropriate structure grid inside the domain,the combination of H-type grid and O-type grid block structure is applied.Finally,the grid with a total of 5.4 million cells is created for the current domain.The first grid spacing is specified as 2.5×10-5of the diameter of the propeller on the blade surface.In that case,the y+is between 1 and 10 in the first grid on all blade surfaces.As the velocity gradient of the vortex core is great,to minimum discrete er-ror of the mesh,at least 15 points are used in the across direction of the vortex core.

    1.3 Boundary conditions

    All the boundary conditions are specified in an implicit manner.The boundary conditions are as follows:velocity boundary is used both at the inlet and the outer radial surfaces;the noslip condition is applied on the blade and shaft/hub surface;static pressure outlet is adopted.The turbulence intensity is chosen as 5%and eddy viscosity ratio is 10 at the inlet.

    In the present study,the numerical computations are carried out at five different advance coefficients J=U0/nD=0.5,0.7,0.833,0.9,1.1,here U0is the axial velocity,n is the propeller rotating speed and D is the propeller diameter.J=0.833 is the design condition.The advance ratios above correspond to different Reynold numbers,which are from 1.37×106to 1.43×106,the Reynold numbers are based on the propeller blade chord length at 0.7R section and the vector sum velocity of the inflow velocity and the rotational component.

    2 Numerical simulation

    Before the analysis the detailed flow around the propeller,the numerical method should be validated firstly.The numerical results here are systematic compared with the experimental data measured by Jessup(1989)[3]to validate current numerical method.

    2.1 Validation of the open water performance

    Validation of the open water performance is one of the most important things in the simulation of the flow around the propeller.The first step is comparison of the non-dimension parameters with the experimental data.

    The non-dimension parameters of propeller are described as:

    Fig.2 The open water performance of the propeller

    where T is the thrust of the propeller,QPis the torque of the propeller,ρ is the fluid density,n is the propeller rotational speed,D is the diameter of propeller,J is the advance ratios,Ktis the thrust coefficient and Kqis the torque coefficient of the propeller,respectively.

    From the comparison in Fig.2,it is seen that the DES method predicts the measured results fairly well for all advance ratios,especially at the designing point of the propeller.The error is less than 4%compared with the experimental results,which means that this method is reliable to predict the open water performance of propeller.

    2.2 Analysis of the blade surface pressure distribution

    The measurement of the pressure distribution is accomplished by Jessup using LDV method.Figs.3-5 illustrate the pressure distributions of Propeller DTRC4119 at the 0.3,0.7 and 0.9 radius respectively.

    Fig.3 The pressure distribution at r/R=0.3

    Fig.4 The pressure distribution at r/R=0.7

    The pressure coefficient is defined by the 22nd International Towing Tank Conference Propulsion Committee.

    In which Vx=U0,p is the pressure on the blade section,p0is the reference pressure,n is the rotating speed of the propeller.

    The DES methods predict the measured results fairly well in general.All the numerical datashows a very good agreement with the experimental data over most of the chord.However the numerical result has a sight difference in the measurement results near the leading edge.The greatest discrepancy between predictions and measurement occurs at the 0.3 radius,which may be due to model geometry simplification of the hub.

    2.3 Analysis of the flow field of the propeller

    The accurate prediction of the flow field around the propeller is the basis for the simulation of the tip vortex cavitation and is useful to get the coherent of the tip vortex and its development.

    Based on the detail flow field near the tip of propeller,the velocity and pressure distribution can be simulated exactly.And the flow field plays an important role in the prediction of the propeller exciting force.Results of the axial velocity distribution downstream of propeller are shown in Fig.6.The measurement planes are located at a distance between r/R=0.25 and r/R=1.0 with an increase of 0.125r/R.In the x direction,the axial velocity decreases as the flow travel downstream.The phase of the axial velocity varies with the propeller if the wake travel downstream,and the amplitude decrease if travel downstream.

    Fig.6 Variation of axial velocity downstream of the propeller

    Fig.5 The pressure distribution at r/R=0.9

    Fig.7 is the results of the velocity distribution downstream of the propeller.The measurement plane is located at a distance of 0.328R downstream of the propeller disc plane.The data shown in Fig.7 is measured at the radius of r/R=0.7.The velocity in the axial direction is over predicted by the CFD calculations,but the error is reasonable.Meanwhile,agreement between the measurement and the calculation is satisfactory.

    In order to do further research detail for the flow field,the counters of axial velocity at the plane of x/R=0.328 are illustrated in Fig.8.Agreement between the measurements and calculations is quite good for all radius except those near the hub,which is due to the geometrized simplification of the hub and cap by a cylinder.The accuracy of the prediction of the flow field in the vortex core so far is in good agreement with the measurements.

    Fig.7 Comparison of measured and calculated velocity field components downstream of the propeller for radius r/R=0.7,x/R=0.328

    Fig.8 The counters of the axial velocity at the plane of x/R=0.328

    2.4 Analysis of the propeller tip vortex

    In the simulation process,it is very important to identify the shape and the location of the tip vortex of propeller.Here,the positive second invariant‘Q’is introduced to define the propeller tip vortex.The definition of Q can be written as below.

    in which,S and Ω are the symmetric and anti-symmetric components of the ▽u respectively.

    In present paper,the Iso-surface of the‘Q’represents the tip vortex of the propeller shown as Fig.9,in which the counter of the pressure was identified on the tip vortex surface.Compared with the RANS method,the DES result indicates that the present tip vortex can keep its strength and travel downstream for a long distance.That is to mean that the DES method can avoid the over-predicting of eddy viscosity along the vortex core,which is suitable for predicting the downstream-field structure of the propeller.

    Fig.9 Iso-surface plot of constant vorticity

    In the simulation of tip vortex,the location of vortex core is one of the most important factors.Fig.10 illustrates the location of the tip vortex core with the experimental and simulated results in the radial direction.It is easy to conclude that present numerical result fits well with the experimental data in the condition x/R≤0.1.For the downstream of the tip vortex,the radius of the numerical result is a little greater than the experimental data.Such difference may be induced by the ignoring hub effects.In general,the discrepancy of the vortex core location in the radial direction is less than 3%compared with the experimental and simulated results,which shows the great application prospect of DES in the prediction problem of tip vortex location.

    Fig.10 Radial location of tip vortex

    3 Conclusions

    Based on the Detached Eddy Simulation method(DES),the flow field around the propeller numbered as DTRC 4119 was simulated numerically and the hydrodynamic performance of this propeller is summarized.Compared with the experimental results,some numerical conclusions can be drawn as follows.

    (1)In order to reduce the discrete error induced by the grid,the mesh refinement was adopted in the process of performance simulation for the tip vortex core by DES,which contributes to avoid the over-predicting of the eddy viscosity along the vortex core and to keep the tip vortex travel downstream longer with the stable strength.Additionally,this numerical method can locate the vortex core location with fewer grids exactly.In the radial direction,the error of the vortex core’s location is less than 3%compared to the experimental results.Present method is applicable to predict the formation and location of the tip vortex.

    (2)The calculation results indicate that DES numerical method can exactly predict the velocity distribution in tip vortex flow field.However,the pressure distribution in the inner radius is greater than the experimental results.Such discrepancy may be related to the simplification of the hub model.

    [1]Min K S.Numerical and experimental method for prediction of fluid point velocities around propeller blades[R].MIT Department of Ocean Engineering Report No.78-12,1978.

    [2]Hoshino T,Oshima A.Measurement of flow field around propeller by using a 3-component Laser Doppler Velocimeter[J].Mitsubishi Heavy Industries Technical Review,1987,24(1):46-53.

    [3]Jessup S.An experimental investigation of viscous aspects of propeller blade flow[D].Washington:The Catholic University of America,1989.

    [4]Chesnakas C,Jessup S.Experimental characterization of propeller tip flow[C]//Twenty-Second Symposium on Naval Hydrodynamic.Washington DC,1998:156-170.

    [5]Dong S T,Xu X D.LDV Benchmark measurements of flow around a propeller[C].The 20th Intertioanl Tower Tank Conference,1993.

    [6]Li G N.LDV measurements of propeller trailing vortex[J].Journal of Experiments in Fluid Mechanics,2010,24(10):75-79.

    [7]Li G N,Zhang J,Chen Z S,et al.Propeller trailing vortex analysis based on PIV experimental data[J].Journal of Ship Mechanics,2011,15(10):1110-1114.

    [8]Tang D H,Dong S T.Numerical prediction and physical analysis of the viscous flow around a marine propeller[J].Journal of Hydrodynamic A,1997,12(4):426-436.

    [9]Stanier M.The application of RANS code to investigate propeller scale effects[C]//The Twenty-second Symposium on Naval Hydrodynamics.Washington,USA,1998.

    [10]Turnock S R,Pashias C,Rogers E.Flow feature identification for capture of propeller tip vortex evolution[C]//The Twenty-sixth Symposium on Naval Hydrodynamics.Rome,Italy,2006.

    [11]Bulten N,OpreaA I.Evaluation of McCormick’s rule for propeller tip cavitation inception based on CFD results[C]//Sixth International Symposium on Cavitation.Wageningen,2006.

    [12]Bensow R E,Liefvendahl M,Wikstr?m N.Propeller near wake analysis using LES with a rotating mesh[C]//The Twentysixth Symposium on Naval Hydrodynamics.Rome,Italy,2006.

    [13]Muscari R,MascioA D.Detached Eddy Simulation of the flow behind an isolated propeller[C]//Third International Symposium on Marine Propulsors.Launceston,Australia,2013.

    [14]Jinhee J,Fazle H.On the identification of a vortex[J].Journal of Fluid Mechanics,1995,285:69-94.

    [15]Shi L P,Xiong Y,Sun H T.Numerrical simulation of propeller tipvortex flowfield[C]//2013 Symposium on Naval Hydrodynamics.Xian,China,2013.

    欧美日韩在线观看h| 国产男靠女视频免费网站| 国产av一区在线观看免费| 精品欧美国产一区二区三| 免费观看的影片在线观看| 激情 狠狠 欧美| 九九热线精品视视频播放| 99在线人妻在线中文字幕| 日日撸夜夜添| 国产三级中文精品| 国产午夜福利久久久久久| 黄色配什么色好看| av在线亚洲专区| 国产 一区 欧美 日韩| 亚洲av不卡在线观看| 国产91av在线免费观看| 亚洲欧美日韩东京热| 精品久久久久久成人av| 秋霞在线观看毛片| 一级av片app| 熟女人妻精品中文字幕| 色播亚洲综合网| 日本爱情动作片www.在线观看 | 午夜精品国产一区二区电影 | 国内精品一区二区在线观看| 成人一区二区视频在线观看| 成人综合一区亚洲| 欧美极品一区二区三区四区| 免费观看的影片在线观看| 亚洲欧美日韩卡通动漫| 欧美一区二区国产精品久久精品| 丰满的人妻完整版| 日产精品乱码卡一卡2卡三| 国产视频一区二区在线看| 赤兔流量卡办理| 淫妇啪啪啪对白视频| 免费人成在线观看视频色| 久久久久免费精品人妻一区二区| 欧美不卡视频在线免费观看| 夜夜看夜夜爽夜夜摸| 欧美日韩综合久久久久久| 国产黄片美女视频| 在线天堂最新版资源| 精品一区二区三区人妻视频| av在线蜜桃| 成人毛片a级毛片在线播放| av天堂在线播放| 国内揄拍国产精品人妻在线| 久久久久久伊人网av| 有码 亚洲区| 乱人视频在线观看| 日本免费a在线| 精品免费久久久久久久清纯| 天天躁日日操中文字幕| 国产黄a三级三级三级人| 日韩欧美一区二区三区在线观看| 亚洲av美国av| 日韩欧美一区二区三区在线观看| 亚洲av中文av极速乱| 午夜福利18| av天堂在线播放| 国产精品av视频在线免费观看| 男人舔奶头视频| 黄色日韩在线| 欧美绝顶高潮抽搐喷水| 日本成人三级电影网站| 免费无遮挡裸体视频| 在线天堂最新版资源| 白带黄色成豆腐渣| 国产精品一区二区性色av| 一级黄色大片毛片| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久久久毛片| 成人av一区二区三区在线看| 色哟哟哟哟哟哟| 婷婷精品国产亚洲av在线| 欧美日韩一区二区视频在线观看视频在线 | 午夜视频国产福利| 国产毛片a区久久久久| 欧美区成人在线视频| 欧美一区二区精品小视频在线| 国产精品久久久久久久电影| 久久精品91蜜桃| 亚洲电影在线观看av| 精品不卡国产一区二区三区| 黄色日韩在线| 在线a可以看的网站| 婷婷亚洲欧美| 色哟哟哟哟哟哟| 大型黄色视频在线免费观看| 久久精品人妻少妇| 两个人的视频大全免费| 日日啪夜夜撸| 欧美又色又爽又黄视频| 亚洲成人中文字幕在线播放| 国产一区二区在线观看日韩| 我的女老师完整版在线观看| 日本 av在线| 在线观看美女被高潮喷水网站| 在线国产一区二区在线| 中文在线观看免费www的网站| 夜夜夜夜夜久久久久| 韩国av在线不卡| 美女 人体艺术 gogo| 免费在线观看成人毛片| 在线看三级毛片| 午夜激情欧美在线| 国产日本99.免费观看| 免费看av在线观看网站| 日本撒尿小便嘘嘘汇集6| 麻豆精品久久久久久蜜桃| 国产中年淑女户外野战色| 免费在线观看成人毛片| 可以在线观看的亚洲视频| 国产真实乱freesex| 国产中年淑女户外野战色| 在线免费观看不下载黄p国产| 久久国内精品自在自线图片| 亚洲国产色片| 91精品国产九色| 午夜福利成人在线免费观看| 成人亚洲精品av一区二区| 色av中文字幕| 久久久久久久久久久丰满| 精品一区二区三区视频在线| 中文字幕精品亚洲无线码一区| 久久99热6这里只有精品| 午夜精品一区二区三区免费看| 两性午夜刺激爽爽歪歪视频在线观看| 一进一出抽搐gif免费好疼| 2021天堂中文幕一二区在线观| 久久国产乱子免费精品| 国产精品久久久久久精品电影| 成人国产麻豆网| 国产精品一及| 深爱激情五月婷婷| 久久久久国内视频| 男人的好看免费观看在线视频| 久久九九热精品免费| 亚洲欧美精品综合久久99| 又爽又黄a免费视频| 欧美潮喷喷水| 国产精品电影一区二区三区| 变态另类成人亚洲欧美熟女| 22中文网久久字幕| 18禁黄网站禁片免费观看直播| 97人妻精品一区二区三区麻豆| 亚洲精品一区av在线观看| 久久婷婷人人爽人人干人人爱| av免费在线看不卡| 岛国在线免费视频观看| 插阴视频在线观看视频| 久久韩国三级中文字幕| 麻豆乱淫一区二区| 午夜福利成人在线免费观看| 观看免费一级毛片| 精品久久久噜噜| 成人一区二区视频在线观看| 欧美+日韩+精品| 亚洲专区国产一区二区| 国产极品精品免费视频能看的| 午夜福利在线观看免费完整高清在 | 三级毛片av免费| 久久精品国产99精品国产亚洲性色| 国产精品永久免费网站| 久久久精品大字幕| 国产精品乱码一区二三区的特点| av天堂中文字幕网| ponron亚洲| 欧美日本亚洲视频在线播放| 日韩精品有码人妻一区| 久久久久久伊人网av| 99九九线精品视频在线观看视频| 一个人观看的视频www高清免费观看| 亚洲人与动物交配视频| 老司机福利观看| 99热精品在线国产| 精品少妇黑人巨大在线播放 | 性插视频无遮挡在线免费观看| 国模一区二区三区四区视频| 午夜激情福利司机影院| 国产高清三级在线| 18+在线观看网站| 日本黄色视频三级网站网址| 日本色播在线视频| 99久久中文字幕三级久久日本| 91在线精品国自产拍蜜月| 欧美精品国产亚洲| 亚洲美女视频黄频| 日韩av在线大香蕉| 午夜激情福利司机影院| 欧美高清性xxxxhd video| 天堂网av新在线| 国产探花极品一区二区| 久久欧美精品欧美久久欧美| 免费av毛片视频| 淫秽高清视频在线观看| av在线播放精品| 一级黄片播放器| 精品久久久久久成人av| 亚洲人成网站高清观看| 18+在线观看网站| 婷婷亚洲欧美| 人人妻人人澡欧美一区二区| 少妇丰满av| 亚洲熟妇中文字幕五十中出| 久久久精品欧美日韩精品| 亚洲va在线va天堂va国产| 能在线免费观看的黄片| 国产日本99.免费观看| 亚洲图色成人| av专区在线播放| 日韩国内少妇激情av| 精品熟女少妇av免费看| 欧美日本亚洲视频在线播放| 国产私拍福利视频在线观看| 麻豆国产97在线/欧美| 最后的刺客免费高清国语| 人妻少妇偷人精品九色| 99久国产av精品| 久久久欧美国产精品| 女同久久另类99精品国产91| 欧美+亚洲+日韩+国产| 婷婷六月久久综合丁香| 观看美女的网站| 久久午夜亚洲精品久久| 性欧美人与动物交配| 级片在线观看| 日韩一区二区视频免费看| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区 | 亚洲精品在线观看二区| 在线观看一区二区三区| 亚洲精品粉嫩美女一区| 国产高清有码在线观看视频| 国产欧美日韩一区二区精品| 亚洲美女搞黄在线观看 | 免费av毛片视频| 91在线精品国自产拍蜜月| 国产黄色视频一区二区在线观看 | 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 国产男人的电影天堂91| 亚洲欧美日韩卡通动漫| 老司机影院成人| 中出人妻视频一区二区| 乱码一卡2卡4卡精品| 欧美+日韩+精品| 大型黄色视频在线免费观看| 亚洲美女视频黄频| 91久久精品国产一区二区三区| 女人十人毛片免费观看3o分钟| 秋霞在线观看毛片| 欧洲精品卡2卡3卡4卡5卡区| 免费观看精品视频网站| 国产成人一区二区在线| 男女啪啪激烈高潮av片| 国产私拍福利视频在线观看| 国产精品久久久久久av不卡| 麻豆av噜噜一区二区三区| 亚洲av成人精品一区久久| 国产高清不卡午夜福利| 国产精品一及| 亚洲七黄色美女视频| 干丝袜人妻中文字幕| 免费av观看视频| ponron亚洲| 精品午夜福利在线看| 午夜老司机福利剧场| 久久久国产成人免费| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 色综合站精品国产| 亚洲欧美中文字幕日韩二区| 91精品国产九色| 午夜免费男女啪啪视频观看 | 久久久久久国产a免费观看| 在线免费十八禁| 观看免费一级毛片| 波多野结衣高清无吗| 亚洲国产欧美人成| 特大巨黑吊av在线直播| 国产毛片a区久久久久| 免费av毛片视频| av视频在线观看入口| 秋霞在线观看毛片| 天堂av国产一区二区熟女人妻| 免费观看在线日韩| 久久久久久伊人网av| 亚洲五月天丁香| 精品日产1卡2卡| 内射极品少妇av片p| 日韩一本色道免费dvd| 亚洲熟妇熟女久久| 99久国产av精品国产电影| 又爽又黄无遮挡网站| 一级毛片aaaaaa免费看小| 欧美日韩综合久久久久久| 日韩欧美精品v在线| 国产成人福利小说| 男人的好看免费观看在线视频| 人妻久久中文字幕网| 亚洲中文日韩欧美视频| 亚洲国产精品国产精品| 赤兔流量卡办理| 色在线成人网| 九九热线精品视视频播放| 给我免费播放毛片高清在线观看| 中出人妻视频一区二区| 麻豆一二三区av精品| 国产视频一区二区在线看| 婷婷色综合大香蕉| a级毛片免费高清观看在线播放| 午夜老司机福利剧场| 欧美极品一区二区三区四区| 国产伦一二天堂av在线观看| 欧美一区二区精品小视频在线| 美女黄网站色视频| 丝袜美腿在线中文| 一级av片app| 搡老熟女国产l中国老女人| 亚洲电影在线观看av| 黄色视频,在线免费观看| 十八禁国产超污无遮挡网站| 不卡视频在线观看欧美| 午夜影院日韩av| 欧美xxxx黑人xx丫x性爽| 欧美高清性xxxxhd video| 久久久久久九九精品二区国产| 亚洲aⅴ乱码一区二区在线播放| 欧美成人免费av一区二区三区| 一级黄色大片毛片| 免费不卡的大黄色大毛片视频在线观看 | 在线天堂最新版资源| 国产男人的电影天堂91| 免费看日本二区| 国内精品美女久久久久久| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 最新在线观看一区二区三区| 欧美人与善性xxx| 黄片wwwwww| 男女视频在线观看网站免费| 欧美成人精品欧美一级黄| 欧美激情国产日韩精品一区| av在线观看视频网站免费| 久久久精品94久久精品| 亚洲成人久久爱视频| 国产欧美日韩精品一区二区| 亚洲欧美精品自产自拍| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 身体一侧抽搐| 日韩强制内射视频| aaaaa片日本免费| 国产亚洲精品av在线| 亚洲美女黄片视频| 最近中文字幕高清免费大全6| 女人被狂操c到高潮| 久久久久国产网址| 少妇丰满av| 欧美成人一区二区免费高清观看| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 三级毛片av免费| 日韩在线高清观看一区二区三区| 国产av在哪里看| 日本免费a在线| 麻豆乱淫一区二区| 国产成人freesex在线 | 午夜爱爱视频在线播放| 欧美绝顶高潮抽搐喷水| 一区福利在线观看| 亚洲精品影视一区二区三区av| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看 | 哪里可以看免费的av片| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 国产av在哪里看| 男女之事视频高清在线观看| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 国产亚洲91精品色在线| 精品无人区乱码1区二区| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 国产人妻一区二区三区在| 91狼人影院| 搡女人真爽免费视频火全软件 | 欧洲精品卡2卡3卡4卡5卡区| 精品熟女少妇av免费看| 97在线视频观看| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 日本撒尿小便嘘嘘汇集6| 看免费成人av毛片| 搡女人真爽免费视频火全软件 | 国产乱人偷精品视频| 永久网站在线| 嫩草影院精品99| 成人亚洲精品av一区二区| 插逼视频在线观看| 国产高清视频在线观看网站| 欧美丝袜亚洲另类| 日本熟妇午夜| 香蕉av资源在线| 国产人妻一区二区三区在| 国产精品99久久久久久久久| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 人人妻人人看人人澡| 久久国产乱子免费精品| 最后的刺客免费高清国语| 99久久精品一区二区三区| 国产真实伦视频高清在线观看| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| 午夜福利在线在线| 天天躁日日操中文字幕| 精品国内亚洲2022精品成人| 亚洲精品一区av在线观看| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 深夜a级毛片| 午夜免费激情av| 亚洲内射少妇av| 夜夜夜夜夜久久久久| av福利片在线观看| 国产精品三级大全| 老司机福利观看| 国产女主播在线喷水免费视频网站 | 欧美日韩一区二区视频在线观看视频在线 | 深夜精品福利| 麻豆精品久久久久久蜜桃| 国语自产精品视频在线第100页| 亚州av有码| 国产日本99.免费观看| av福利片在线观看| 成年女人永久免费观看视频| 国产精品伦人一区二区| 插逼视频在线观看| 激情 狠狠 欧美| 久久久久久久久久久丰满| 99久久久亚洲精品蜜臀av| 最近中文字幕高清免费大全6| 国产精品一区二区免费欧美| 日韩欧美精品v在线| 久久久欧美国产精品| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 97超视频在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 男人舔奶头视频| 国产亚洲精品久久久com| 黄色一级大片看看| 欧美一区二区国产精品久久精品| 欧美国产日韩亚洲一区| 婷婷色综合大香蕉| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| videossex国产| 国产伦在线观看视频一区| 97超视频在线观看视频| 一级av片app| 国产乱人视频| 一边摸一边抽搐一进一小说| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 久久精品国产亚洲av天美| 97人妻精品一区二区三区麻豆| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 国产高清有码在线观看视频| 久久久精品大字幕| 色综合亚洲欧美另类图片| 又爽又黄无遮挡网站| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 真实男女啪啪啪动态图| 久久这里只有精品中国| 女人被狂操c到高潮| 亚洲av中文av极速乱| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 赤兔流量卡办理| 国产精品人妻久久久影院| 亚洲不卡免费看| 美女大奶头视频| 少妇人妻精品综合一区二区 | 校园春色视频在线观看| 亚洲真实伦在线观看| 乱系列少妇在线播放| 91午夜精品亚洲一区二区三区| 午夜激情欧美在线| 波多野结衣高清无吗| 在线免费十八禁| 身体一侧抽搐| 午夜老司机福利剧场| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 国产精品电影一区二区三区| 亚洲av免费在线观看| 老师上课跳d突然被开到最大视频| 亚洲美女视频黄频| 老司机福利观看| 午夜福利18| 国产麻豆成人av免费视频| 全区人妻精品视频| 免费搜索国产男女视频| 日韩在线高清观看一区二区三区| 成年女人永久免费观看视频| 日本一本二区三区精品| 久久亚洲精品不卡| 中文字幕免费在线视频6| 成人三级黄色视频| 久久精品国产亚洲网站| 一区二区三区高清视频在线| 久久国内精品自在自线图片| 亚洲专区国产一区二区| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 免费大片18禁| 中文资源天堂在线| 国产精品日韩av在线免费观看| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 如何舔出高潮| 久久国产乱子免费精品| 亚洲精品456在线播放app| 日韩中字成人| 性欧美人与动物交配| 波多野结衣高清无吗| 最近的中文字幕免费完整| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 亚洲精品国产av成人精品 | 国产精品精品国产色婷婷| 久久久欧美国产精品| 成人特级av手机在线观看| 欧美一级a爱片免费观看看| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 一a级毛片在线观看| 如何舔出高潮| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 美女大奶头视频| 免费看日本二区| av国产免费在线观看| 一级av片app| 97人妻精品一区二区三区麻豆| 国产日本99.免费观看| 国产三级在线视频| 免费看av在线观看网站| 国产三级在线视频| 成年免费大片在线观看| 亚洲欧美清纯卡通| 国产成人freesex在线 | 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 亚洲在线观看片| 黑人高潮一二区| 中文字幕久久专区| 国产黄a三级三级三级人| 中文字幕av在线有码专区| 欧美一区二区亚洲| 看免费成人av毛片| 欧美成人a在线观看| 国产精品亚洲一级av第二区| 毛片一级片免费看久久久久| 国语自产精品视频在线第100页| 超碰av人人做人人爽久久| 亚洲性久久影院| 欧美日韩乱码在线| 特级一级黄色大片| а√天堂www在线а√下载| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 99国产精品一区二区蜜桃av| 久久久久国产网址| 嫩草影院入口| 国产熟女欧美一区二区| 男女视频在线观看网站免费| 一级黄色大片毛片| 亚洲av免费高清在线观看| 老熟妇仑乱视频hdxx| 在线看三级毛片| 91av网一区二区| 亚洲国产精品久久男人天堂| 亚洲av.av天堂| 成人美女网站在线观看视频| 精品久久国产蜜桃| 国产精品不卡视频一区二区| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 色视频www国产| avwww免费| 精品久久久久久久久久久久久| 99在线人妻在线中文字幕| 成人精品一区二区免费| 深爱激情五月婷婷| 国产免费男女视频| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看|