• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Macro Element Method to Improve Computational Efficiency in Large-scaled Nonlinear Analysis

    2015-12-12 05:45:06HuanWangWeifengYuanandFeiJia
    Computers Materials&Continua 2015年7期

    Huan Wang,Weifeng Yuanand Fei Jia

    A Macro Element Method to Improve Computational Efficiency in Large-scaled Nonlinear Analysis

    Huan Wang1,Weifeng Yuan2,3and Fei Jia2

    Compared with dealing with a linear system,solving a nonlinear system equation in numerical simulation requires generally more CPU time since iterative approach is usually used in the latter.To cut down the computing cost,a direct way is to reduce the degree of freedoms(DOF)of the problem under investigation.However,this kind of treatment may result in poorer accuracy.In this manuscript,a macro element method is proposed to improve computational efficiency in large-scaled nonlinear analysis.When this concept is incorporated into finite element analysis(FEA),all the members in the linear zones of a structure can be grouped into just one macro element.By using weak member approach,the stiffness matrix of this macro element can be evaluated through unit force method.Numerical examples prove that the proposed macro element method can increase the computational efficiency significantly without obvious negative influence on accuracy.

    Macro element,nonlinear,computational efficiency.

    1 Introduction

    FEA is an important numerical tool to analyze various problems.It is well known that the computing cost in a FEA modelling is dependant on the number of degree of freedoms(DOF)in the FEA model under investigation.In numerical simulations,some algorithms including multi-domain method[Miao,Chen,Wang and Zhu(2014)]and static condensation method[Eom,Ahn,Baek,Kim and Na(2007)]are usually employed to achieve DOF reduction.In a large-scaled problem,a direct way to improve the computational efficiency is to limit the number of elements.However,some important details of the structural response may be sacrificed sincefewer elements may cause poorer accuracy[Lin and Donaldson(1969);Finnveden(1994)].Alternatively,superelement method is also widely used in FEA analyses for various problems[Lukasiewics(1987);Song(2004);Birgersson,Finnvedenand Nilsson(2005);Dong,Atluri(2012),(2013)].The original idea of superelement was introduced by aerospace engineers in the early 1960s to carry out a first-level breakdown of complex systems such as an entire airplane[Przemieniecki(1968)].Briefly,the basic concept of superelement method is to treat structural members as a continuous body and then discretize this body into superelements defined as any cluster of contiguous elements[Cao(1992);Jiang and Olson(1994)].In this way,each superelement may consist of different types of members which may have various shapes,materials properties and boundary conditions.

    As a hallmark of practical application,superelement technique was incorporated into NASTRAN in the 1970s.The capability of superelement method was then tested and further developed[Zemer(1979);Jacobsen(1983)].Because of the most attractive advantage to significantly improve the computational efficiency,superelement method has been employed to analyze various problems in recent years.In summary,the problem characteristics which are suitable for the application of superelement can be summarized into three distinguishing features,viz.iterative computational tasks,localized nonlinearity and a large number of finite elements in the numerical models for applications in dynamics.At present,the methods to construct superelements are usually based on substructure and static condensation techniques[Wilson(1979);Chen and Pan(1988)].However,inconvenience may be caused in the conventional superelement techniques.For instance,to apply static condensation,many nodes in the mesh have to be renumbered,or the rows and the columns in the stiffness matrix have to be swapped to make the DOF associated with the superelement to lie in the upper left sub-matrix in the system stiffness matrix.Therefore,a macro element method based on superelement concept is proposed in this manuscript to overcome the limitations of the conventional superelement formulation.To implement this approach,an entire structure has to be divided into several linear and nonlinear zones according to the requirement of numerical investigation and the behavior of the structure.The main novelties of the proposed approach include(i):the algorithm is very simple to implemented,and(ii):the whole members in all linear zones can be grouped into just one super element,even in the case that the linear zones are not connected.

    2 Methodology

    2.1 Concept

    Fig.1 shows a linear elastic system which contains two nodes A and B.Three load cases are discussed below:

    Case 1:in Fig.1(a),a force p1is applied at node A along direction x1.At node B,the displacement vector induced by p1is denoted by[u11u21]T.

    Case 2:in Fig.1(b),a force p2is applied at node A along direction x2.At node B,the displacement vector induced by p2is denoted by[u12u22]T.

    Case 3:In Fig.1(c),two arbitrary forces,P1and P2are applied at node A simultaneously.At node B,the displacement vector induced by P1and P2is denoted by[U1U2]T.

    According to the theory of linear system,[U1U2]T,the displacement vector in Case 3 can be evaluated based on Case 1 and Case 2.

    Taking the forces at node A as input and the displacements at node B as output,Eq.1 can be used to describe the linear system.

    Figure 1:Illustration of force-displacement relationship in a linear elastic system.

    From Case 1 and Case 2,one obtains:

    Therefore,for Case 3,U1and U2can be carried out:

    where KKK performs as a stiffness matrix.

    From Eq.1 to Eq.6,one finds that KKK can be obtained by unit force method.

    2.2 Derivation

    In Fig.2(a),a structure with restraints(i=1,2,3,···,mL)and1,2,3,···,mN)is subjected to external loadsand1,2,3,···,nN).For finite element modelling,the structural domain is normally discretized into a cluster of elements,each element contains several nodes.Without loss of generality,it is assumed that there are five nodes on the boundary between the linear and nonlinear zones.In the linear zone,there is a typical node R that has NDDOF.The following four steps describe how to group the entire linear zone into a macro element.

    1)Focus on the simulant structure of the original one

    Fig.2(b)is the simulant structure of the one in Fig.2(a).Compared with the original structure,the simulant structure is under the same loadings and restraints.However,the nonlinear zone in Fig.2(a)is replaced by the overlapped zone in Fig.2(b).The overlapped zone consists of two parts,viz.the virtual weak part and the original nonlinear zone.The virtual weak part is the same as the original nonlinear zone in geometry,but the members in the virtual weak part are assumed to be elastic,with very low elastic modulus.

    Figure 2:The procedure to group the linear zone into a macro element.

    2)Define a macro element

    The original nonlinear zone andNPPPl(l=1,2,3,···,nN)are all removed from Fig.2(b)to create Fig.2(c).In Fig.2(c),the linear zone and the virtual weak part form a fictitious linear structure.The system equation of a FEA model for the fictitious structure can be expressed by Eq.7:

    In this equation,the subscript“f”denotes “ fictitious”. KKKfis the global stiffness matrix of the fictitious structure. UUUfand PPPfare the displacement and force vectors,respectively.Since the entire fictitious structure is elastic,Eq.7 is a linear equation.It should be noted that the entire fictitious structure restrained byLCiandNCi(i=1,2,3,···,m)performs as a stable linear system.Therefore,one can treat this structure as a continuous elastic body and convert it into a macro element.It should be noted that both the linear zone and the virtual weak part are modelled by a cluster of node-based elements in a numerical model.However,only six nodes are selected to form the macro element.The six nodes include R,the reference node,and the five joints shared by the linear and the virtual weak parts(Fig.2(d)).3)Evaluate the stiffness matrix of the macro element.

    As mentioned,the macro element contains six nodes.Each node has NDDOF in the original FEA model for the fictitious structure.However,in the macro element,the DOF of the reference node R is set to 1 due to its special role.Each of the other five nodes still has NDDOF.Hence,the total DOF of the macro element is 5ND+1.Denoted by KKKm,the stiffness matrix of the macro element should satisfy the following equation:

    In Eq.8,the subscript“m”represents “macro”. UUUmand PPPmare the displacement and force vectors,respectively.They are all(5ND+1)×1 vectors. KKKmis a(5ND+1)×(5ND+1)matrix.Based on Eq.7, KKKmcan be evaluated using unit force method.

    Firstly,?for convenience,define a load case L0which indicates that..are applied to the macro element simultaneously.The scalar coefficient λ is used to adjust the magnitudes of the forces.In this study,it is recommended that λ=The superscript of L0denotes the load case number.Fromare all ND×1 vectors.In the superscript,the letter in front of the comma indicates the identitywhile the number behind the comma is for load case.For instance,means the displacement vector at node 3 due to load case L0.Similarly,the displacement at node R induced by L0is denoted byIn this study,the reason why R is selected to be “the reference node”is thathas a nonzero component.Without loss of generality,it is assumed that this nonzerothese forces are represented symbolically by a single unit force,which is applied at node R along the direction of thevectors at the five joints induced bySecondly,a unit load is applied along the first DOF direction at node 1 to create the load case L1.The correspondingjoints can be obtained.They are defined to berespectively.Similarly,a unit force is applied to nodethe load case L2and obtain the correspondingRepeat this procedure till a unit force is applied to node 5procedure,a typical load case Lkis created and(k=1,5ND)can be calculated using Eq.7.Thirdly,considering all the load casesand the corresponding displacements,one can obtain:

    where K K Kmis a(5ND+1)×(5ND+1)matrix.

    As shown in Fig.2(e),the macro element and the nonlinear zone form a simplified structure.The macro element contains six nodes,viz.node R and nodes 1~5.In this structure,the real external loadsLPPPj(j=1,2,3,···,n)are replaced by a fictitious force with a magnitude λ acting at node R while the boundary conditions in the linear zone are ignored since their effects have been considered in the stiffness matrix of the macro element.In the nonlinear zone,both the original boundary conditions and the external loads remain unchanged.Since the stiffness matrix of macro element is known,the global stiffness matrix of the simplified structure can be assembled easily using conventional FEA approach.

    It should be noted that the structure shown in Fig.2(e)represents a nonlinear system.Compared with that of the original structure(Fig.2(a)),the DOF of the fictitious structure(Fig.2(e))is much less,so the computational cost for the original structure can be reduced.However,it must be mentioned that the numerical result based on Fig.2(e)is an approximation to that obtained from Fig.2(a).Theoretically,from the energy point of view,the difference between the two kinds of results can be limited by setting the stiffness of the weak part very small.

    3 Examples

    3.1 Demonstration of constructing a macro element

    As shown in Fig.3,a very simple plane frame is taken as an example to demonstrate the procedure of constructing a macro element.The frame is evenly divided into 20 2-node two-dimensional beam elements.Each node of a beam element has three DOF,viz.two translations and one rotation.Two pointed forces and a bending moment are applied at nodes 3,9 and 21,respectively.It is assumed that in such a structure,the elements between node 6 and node 21 are within a nonlinear zone,while those elements between node 1 and node 11 are in a linear zone.This example shows how the elements in the linear zone are merged into a macro element.

    Based on the model shown in Fig.4,both linear and nonlinear analyses can be conducted using conventional FEA algorithms.The DOF of the macro element is 4,so the total DOF of the modified FEA model is 34,which is much less than 63,the DOF of the original model.Therefore,by macro element method,the computational efficiency can be improved.

    In this example,the dimension of the cross-section of each beam is set to 0.05×0.05.The Young’s modulus and the Poisson’s ratio are 1×106and 0.3,respectively.The loads applied to the original frame are P1=P2=1 and P3=0.1.The deformation of the frame is calculated by the present macro element method and the conventional FEA,through generalized displacement approach.During the analyses,both λ and P3increase gradually and the load-displacement curves are depicted in Fig.5.The analysis stops when the load factor is up to 40.

    Figure 3:A two-dimensional frame subjected to external forces.

    Figure 4:A two-dimensional frame with a macro element.

    From Fig.5 it can be seen that the results obtained by the two methods have very good agreement.However,as the load factor increases,the variation between the two types of results becomes larger.This is because the nonlinearity behaviour of the beam members involved in the macro element becomes obvious when the load factor is large enough.Actually,such a situation conflicts with the basic assumption of the linearity in the macro element method.

    3.2 Investigation on the computational efficiency

    A two-storey steel frame is described in Fig. 6.The dimension of the cross-section of each member is set to be 0.1m×0.1m.Without macro element, the entire structureis divided into 40 3-dimensional 3-node fibre-beam elements[Spacone, Filippouand Taucer (1996)]. Each beam cross-section is divided into 100 segments.The loads applied on the original frame is P0 = 100kN. The material properties are as follows.

    Figure 5:Comparison between two kinds of load-displacement curve.

    Fig.6 also shows that the first storey of the original structure is grouped into a macro element.Since the two storeys have only two joints,viz.nodes B and C,the macro element consists of three nodes.Without loss of generality,node A is selected to be the reference node.For this example,two types of nonlinear simulation for the original and simplified FEA models are conducted on a Pentium Dual-Core PC(CPU E6700@3.20GHz),based on the generalized displacement approach.During the analyses,both geometrical and material nonlinearities are taken into account.The maximum number of the steps for load increment is set to be 1000.The numerical test proves that the computational efficiency can be improved significantly by using the proposed macro element method.The CPU time consumed in the analysis with macro element is only 25%(2771ms vs.11095ms)of that used in the analysis without macro element.Further comparison is depicted in Fig.7.It is observed that the deflection at node M increases as the external load becomes larger.The two load-deflection curves are very close which means that the result obtained by the proposed macro element method is accurate if the members grouped into the macro element do not in the first place behave nonlinearly,or the extent of nonlinear response is limited.

    Figure 6:A two-storey frame is analyzed using macro element method.

    Figure 7:Comparison between the displacements at node M.

    4 Conclusions

    This paper proposes a macro element method to simply nonlinear FEA analysis.Using the present method,the DOF of a large-scaled structure can be reduced significantly.Through the definition of virtual weak part,the structural members in the linear zones can be grouped into just one macro element regardless whether the linear zones are connected or not.Numerical examples demonstrate the construction of a macro element and verify the correctness of the proposed method.It can be concluded that the macro element method is easy to be implemented and it has great potential in the simulation of large-scaled complex structures.It must be mentioned that the two examples given in this paper are all geometrical nonlinearity problems.However,the formulation presented in this study is applicable to material nonlinearity problems as well.Unlike that of a conventional FEA model,the stiffness matrix of a macro element may not be symmetric.This may cause additional requirement for CPU time.On the other hand,the overall calculation may still be much more efficient since the total DOF of the original FEA model can be reduced significantly by the current macro element method.

    Acknowledgement: This work is sponsored by Southwest University of Science and Technology,through the fundings(i)Modelling of Dynamical Complex System(12xz7105)and(ii)DDA-BEM Coupling for Metal Cutting(13zxzk05).The support from SWUST is acknowledged by the authors.

    Birgersson,F.;Finnveden,S.;Nilsson,S.M.(2005):A spectral super element for modelling of plate vibration,part 1:General Theory.Journal of Sound and Viberation,vol.287,no.1-2,pp.297-314.

    Cao,Z.Y.(1992):Super element method for complex structure analysis.Mechanics and Practice,vol.14,no.4,pp.10-14.

    Chen,S.H.;Pan,H.H.(1988):Guyan reduction.Communications in Applied Numerical Methods,vol.4,no.4,pp.549-556.

    Dong,L.;Atluri,S.N.(2012):SGBEM(using non-hyper-singular traction BIE),and super elements,for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs.CMES:Computer Modeling in Engineering&Sciences,vol.89,no.5,pp.415-456.

    Dong,L.;Atluri,S.N.(2013):Fracture&fatigue analyses:SGBEM-FEM or XFEM?Part 1:2D structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,no.2,pp.91-146.

    Eom,K.;Ahn,J.;Baek,S.;Kim,J.;Na,S.(2007):Robust reduction method for biomolecules modeling.CMC:Computers,Materials&Continua,vol.6,no.1,pp.35-42.

    Finnveden,S.(1994):Exact spectral finite element analysis of stationary vibrations in rail way car structure.Acta Acustica,vol.2,pp.461-482.

    Jacobsen,K.P.(1983):Fully integrated superelements:a database approach to finite element analysis.Computers and Structures,vol.16,no.1-4,pp.307-315.

    Jiang,J.;Olson,M.D.(1994):Nonlinear analysis of orthogonally stiffened cylindrical shells by a super element approach.Finite Elements in Analysis and Design,vol.18,pp.99-110.

    Lin,Y.K.;Donaldson,B.K.(1969):A brief survey of transfer matrix techniques with special reference of aircraft panels.Journal of Sound and Vibration,vol.10,pp.103-143.

    Lukasiewics,S.A.(1987):Geometrical super-elements for elasto-plastic shells with large deformation.Finite Elements in Analysis and Design,vol.3,pp.199-211.

    Miao,Y.;Chen,Z.;Wang,Q.;Zhu,H.(2014):Mechanical analysis of 3D composite materials by hybrid boundary node method.CMC:Computers,Materials&Continua,vol.43,no.1,pp.49-73.

    Przemieniecki,J.S.(1968):Theory of Matrix Structural Analysis,Mc Graw-Hill Publication,New York.

    Song,C.(2004):A super-element for crack analysis in the time domain.International Journal for Numerical Methods in Engineering,vol.61,no.8,pp.1332-1357.

    Spacone,E.;Filippou,F.C.;Taucer,F.F.(1996):Fibre beam-column model for non-linear analysis of r/c frames:part I.formulation.Earthquake Engineering and Structural Dynamics,vol.25,no.7,pp.711-725.

    Wilson,E.L.(1979):The static condensation algorithm.International Journal for Numerical Methods in Engineering,vol.8,no.1,pp.198-203.

    Zemer,D.T.(1979):Implementation of superelement analysis at the production level.Proceeding of the MSC/NASTRAN Users’Conference,Munich,Germany.

    1School of Applied Technology,Southwest University of Science and Technology,China.

    2School of Manufacturing Science and Engineering,Southwest University of Science and Technology,China.

    3Corresponding author.E-mail:yuanweifeng@swust.edu.cn

    日本欧美视频一区| 欧美另类一区| 欧美日本中文国产一区发布| 亚洲av男天堂| 男的添女的下面高潮视频| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| 如日韩欧美国产精品一区二区三区| 另类亚洲欧美激情| 五月天丁香电影| 国产人伦9x9x在线观看| 永久免费av网站大全| 欧美激情 高清一区二区三区| 亚洲五月色婷婷综合| 久久ye,这里只有精品| 欧美亚洲 丝袜 人妻 在线| 免费看不卡的av| 久久久久久人人人人人| 亚洲国产欧美网| 少妇的丰满在线观看| 欧美日韩亚洲综合一区二区三区_| 男女午夜视频在线观看| 丝袜脚勾引网站| 精品一区在线观看国产| 国产精品一国产av| 1024香蕉在线观看| 男人添女人高潮全过程视频| 在现免费观看毛片| 午夜激情久久久久久久| 汤姆久久久久久久影院中文字幕| 亚洲男人天堂网一区| 伊人久久大香线蕉亚洲五| 啦啦啦在线免费观看视频4| 十八禁人妻一区二区| 熟女av电影| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 自线自在国产av| 免费一级毛片在线播放高清视频 | 男女边吃奶边做爰视频| 精品国产乱码久久久久久男人| tube8黄色片| 亚洲国产精品成人久久小说| 菩萨蛮人人尽说江南好唐韦庄| 国产精品.久久久| 成人国产一区最新在线观看 | 中文字幕人妻熟女乱码| 亚洲伊人色综图| 欧美乱码精品一区二区三区| 欧美黄色淫秽网站| 国产成人精品久久久久久| 国产主播在线观看一区二区 | 蜜桃国产av成人99| 中文字幕av电影在线播放| 日本vs欧美在线观看视频| av有码第一页| 亚洲国产精品国产精品| 精品少妇一区二区三区视频日本电影| 热99久久久久精品小说推荐| 老司机靠b影院| 麻豆乱淫一区二区| 午夜福利影视在线免费观看| 校园人妻丝袜中文字幕| 1024香蕉在线观看| 国产亚洲av片在线观看秒播厂| 亚洲精品国产区一区二| 国产片特级美女逼逼视频| 在线观看免费高清a一片| 黑人欧美特级aaaaaa片| 亚洲国产中文字幕在线视频| e午夜精品久久久久久久| 又大又爽又粗| 天天躁夜夜躁狠狠久久av| 国产一区二区三区综合在线观看| 国产一区有黄有色的免费视频| 91字幕亚洲| 性色av一级| 五月天丁香电影| www日本在线高清视频| netflix在线观看网站| 国精品久久久久久国模美| 欧美大码av| 777米奇影视久久| 精品国产一区二区久久| 免费人妻精品一区二区三区视频| 天堂中文最新版在线下载| 日韩,欧美,国产一区二区三区| 考比视频在线观看| 国产老妇伦熟女老妇高清| 欧美性长视频在线观看| 91精品国产国语对白视频| 黄色怎么调成土黄色| 多毛熟女@视频| 91麻豆av在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美在线一区| 久久这里只有精品19| 亚洲美女黄色视频免费看| 别揉我奶头~嗯~啊~动态视频 | 免费看十八禁软件| 视频在线观看一区二区三区| 丝袜人妻中文字幕| 国产黄频视频在线观看| 国产精品国产三级专区第一集| 大香蕉久久成人网| 纵有疾风起免费观看全集完整版| 中国美女看黄片| 亚洲精品久久久久久婷婷小说| 亚洲精品第二区| 热re99久久国产66热| 夜夜骑夜夜射夜夜干| 一本久久精品| av不卡在线播放| av不卡在线播放| 高清欧美精品videossex| 国产老妇伦熟女老妇高清| av不卡在线播放| www日本在线高清视频| 水蜜桃什么品种好| 日韩 亚洲 欧美在线| 老司机亚洲免费影院| 不卡av一区二区三区| 水蜜桃什么品种好| 妹子高潮喷水视频| 女人被躁到高潮嗷嗷叫费观| 亚洲专区中文字幕在线| 伊人久久大香线蕉亚洲五| 在线观看人妻少妇| 在线观看人妻少妇| 18禁国产床啪视频网站| 熟女av电影| 欧美变态另类bdsm刘玥| www.自偷自拍.com| 少妇粗大呻吟视频| 欧美成人精品欧美一级黄| 欧美日韩国产mv在线观看视频| 欧美日韩视频高清一区二区三区二| 在线观看免费日韩欧美大片| 日本av免费视频播放| 亚洲色图 男人天堂 中文字幕| 午夜av观看不卡| 日韩伦理黄色片| 又大又黄又爽视频免费| 18禁黄网站禁片午夜丰满| 欧美日韩福利视频一区二区| 99热国产这里只有精品6| 亚洲一卡2卡3卡4卡5卡精品中文| 日本色播在线视频| 69精品国产乱码久久久| 国产精品秋霞免费鲁丝片| 亚洲国产av新网站| 久久久久视频综合| netflix在线观看网站| 性色av一级| 无遮挡黄片免费观看| 国产成人精品久久二区二区91| 汤姆久久久久久久影院中文字幕| 免费高清在线观看视频在线观看| 日韩大片免费观看网站| 午夜免费鲁丝| 9热在线视频观看99| 亚洲欧美精品综合一区二区三区| 亚洲欧美激情在线| 少妇 在线观看| 少妇 在线观看| 999精品在线视频| 亚洲精品在线美女| 亚洲精品在线美女| 欧美成人精品欧美一级黄| 飞空精品影院首页| 午夜精品国产一区二区电影| 精品人妻1区二区| 免费黄频网站在线观看国产| 精品亚洲成国产av| 人人妻,人人澡人人爽秒播 | 亚洲少妇的诱惑av| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频 | 熟女少妇亚洲综合色aaa.| 一级毛片 在线播放| 国产成人免费观看mmmm| av片东京热男人的天堂| 亚洲国产av影院在线观看| 亚洲国产av影院在线观看| 国产成人av教育| 99热网站在线观看| 免费不卡黄色视频| 日韩大片免费观看网站| 亚洲av成人精品一二三区| 午夜老司机福利片| 七月丁香在线播放| 国产精品亚洲av一区麻豆| 国产精品人妻久久久影院| av网站在线播放免费| 精品欧美一区二区三区在线| 一级片'在线观看视频| 午夜激情久久久久久久| 国产精品欧美亚洲77777| 国产精品三级大全| 久久综合国产亚洲精品| 亚洲精品久久午夜乱码| 日日摸夜夜添夜夜爱| 热re99久久国产66热| 国产在视频线精品| av电影中文网址| 五月天丁香电影| 久久热在线av| 又大又黄又爽视频免费| 欧美日韩亚洲综合一区二区三区_| 在线观看一区二区三区激情| 久久精品亚洲熟妇少妇任你| 国产精品三级大全| 亚洲人成电影观看| 女性生殖器流出的白浆| 搡老岳熟女国产| 九色亚洲精品在线播放| 黑人欧美特级aaaaaa片| 国产极品粉嫩免费观看在线| 国产精品av久久久久免费| 精品一区二区三卡| 韩国高清视频一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲精品一区蜜桃| 在线观看一区二区三区激情| 国产一卡二卡三卡精品| 欧美日韩亚洲综合一区二区三区_| 日本av免费视频播放| bbb黄色大片| 99久久精品国产亚洲精品| av又黄又爽大尺度在线免费看| 久久99热这里只频精品6学生| 午夜两性在线视频| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 免费观看a级毛片全部| 777久久人妻少妇嫩草av网站| 另类精品久久| 精品人妻一区二区三区麻豆| 亚洲第一青青草原| 高清黄色对白视频在线免费看| 麻豆国产av国片精品| 十分钟在线观看高清视频www| 午夜久久久在线观看| 亚洲中文日韩欧美视频| 国产精品免费视频内射| 18禁观看日本| 成人午夜精彩视频在线观看| 岛国毛片在线播放| 一本综合久久免费| 丝袜脚勾引网站| 国产又爽黄色视频| 亚洲男人天堂网一区| 国产色视频综合| 男女高潮啪啪啪动态图| 久久精品亚洲熟妇少妇任你| 老熟女久久久| 五月开心婷婷网| 久久精品国产亚洲av高清一级| xxx大片免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲 国产 在线| 久久精品国产亚洲av涩爱| 操出白浆在线播放| 黄色a级毛片大全视频| 黄网站色视频无遮挡免费观看| 女人被躁到高潮嗷嗷叫费观| 欧美黑人欧美精品刺激| 一区二区av电影网| 久久 成人 亚洲| 午夜视频精品福利| 色94色欧美一区二区| 国产高清国产精品国产三级| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 午夜精品国产一区二区电影| 男人操女人黄网站| 建设人人有责人人尽责人人享有的| 天堂中文最新版在线下载| 啦啦啦在线免费观看视频4| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 婷婷色av中文字幕| 亚洲五月婷婷丁香| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 婷婷色综合www| 啦啦啦 在线观看视频| 国产视频首页在线观看| 美女中出高潮动态图| 精品一区二区三区四区五区乱码 | 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频| 午夜影院在线不卡| 国产成人欧美在线观看 | 七月丁香在线播放| 欧美日韩亚洲高清精品| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区精品视频观看| 精品国产乱码久久久久久男人| 免费一级毛片在线播放高清视频 | 国产日韩欧美在线精品| 国产精品亚洲av一区麻豆| 三上悠亚av全集在线观看| 久久99精品国语久久久| 日韩中文字幕欧美一区二区 | 999精品在线视频| 日韩av在线免费看完整版不卡| av不卡在线播放| 90打野战视频偷拍视频| 精品高清国产在线一区| 看十八女毛片水多多多| 国产1区2区3区精品| 18禁国产床啪视频网站| 夫妻午夜视频| av线在线观看网站| 亚洲国产av新网站| 午夜免费成人在线视频| 在线观看免费午夜福利视频| 久久久久久人人人人人| 18在线观看网站| 欧美日韩av久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美清纯卡通| 少妇裸体淫交视频免费看高清 | 热99国产精品久久久久久7| 90打野战视频偷拍视频| 亚洲成人手机| 亚洲av电影在线进入| av在线播放精品| 国产成人一区二区在线| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久| 国产真人三级小视频在线观看| 桃花免费在线播放| 午夜福利视频在线观看免费| 亚洲成国产人片在线观看| www.自偷自拍.com| 亚洲国产av影院在线观看| 久久久久久久大尺度免费视频| 久久性视频一级片| 另类精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 日韩 精品 国产| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 青草久久国产| 性色av一级| 只有这里有精品99| 国产无遮挡羞羞视频在线观看| 亚洲精品日韩在线中文字幕| 日韩一区二区三区影片| 国产精品偷伦视频观看了| 国产精品免费视频内射| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 亚洲精品自拍成人| 亚洲成人免费电影在线观看 | 国产欧美日韩一区二区三区在线| 中文字幕人妻熟女乱码| 成年av动漫网址| 最黄视频免费看| 另类精品久久| 99香蕉大伊视频| 免费看av在线观看网站| 中文欧美无线码| 久久精品亚洲熟妇少妇任你| 国产亚洲精品久久久久5区| 美国免费a级毛片| 免费高清在线观看日韩| 亚洲精品国产av成人精品| 亚洲av电影在线进入| 大片免费播放器 马上看| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| 国产亚洲欧美在线一区二区| 午夜福利视频精品| 99国产综合亚洲精品| 一区二区三区乱码不卡18| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区国产| 国产成人影院久久av| 午夜两性在线视频| 亚洲熟女精品中文字幕| 久久久久久人人人人人| 日韩制服骚丝袜av| 久久久国产欧美日韩av| av网站在线播放免费| 男女无遮挡免费网站观看| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| 久久午夜综合久久蜜桃| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看 | 欧美日韩黄片免| 亚洲熟女精品中文字幕| 亚洲av成人不卡在线观看播放网 | 9191精品国产免费久久| 欧美日韩综合久久久久久| 女人爽到高潮嗷嗷叫在线视频| 国产xxxxx性猛交| 操美女的视频在线观看| 在线观看人妻少妇| 免费不卡黄色视频| 欧美在线黄色| 国产片内射在线| 亚洲国产精品999| 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 午夜日韩欧美国产| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久精品电影小说| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 18在线观看网站| 亚洲精品在线美女| 国产成人av教育| 国产野战对白在线观看| 日本猛色少妇xxxxx猛交久久| 两个人免费观看高清视频| 伦理电影免费视频| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 国产在视频线精品| 国产成人精品久久二区二区91| 精品福利观看| 亚洲美女黄色视频免费看| 三上悠亚av全集在线观看| 亚洲国产av新网站| 国产免费又黄又爽又色| 亚洲欧洲日产国产| 久久av网站| 中文字幕av电影在线播放| 九草在线视频观看| 日韩免费高清中文字幕av| 最近最新中文字幕大全免费视频 | 亚洲天堂av无毛| 久久人人97超碰香蕉20202| 桃花免费在线播放| 久久亚洲精品不卡| 黄色a级毛片大全视频| 大香蕉久久网| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网 | 热99国产精品久久久久久7| 亚洲黑人精品在线| 免费看av在线观看网站| 99久久综合免费| 岛国毛片在线播放| 欧美人与性动交α欧美软件| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲少妇的诱惑av| 久久久国产一区二区| 国产av一区二区精品久久| 天堂8中文在线网| 女性生殖器流出的白浆| 老司机亚洲免费影院| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 国产高清videossex| 亚洲国产日韩一区二区| 一本大道久久a久久精品| 一级片免费观看大全| 久久久久久免费高清国产稀缺| 亚洲欧洲国产日韩| 国产免费又黄又爽又色| 免费av中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 好男人视频免费观看在线| 大话2 男鬼变身卡| 秋霞在线观看毛片| 人人妻人人澡人人看| 无遮挡黄片免费观看| 欧美少妇被猛烈插入视频| 高清视频免费观看一区二区| 亚洲中文日韩欧美视频| 日本a在线网址| 国产精品国产三级国产专区5o| 最黄视频免费看| 免费黄频网站在线观看国产| 中文字幕最新亚洲高清| 久久精品人人爽人人爽视色| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| www.自偷自拍.com| 国产激情久久老熟女| 亚洲久久久国产精品| 咕卡用的链子| 亚洲精品日韩在线中文字幕| 嫩草影视91久久| av网站在线播放免费| 高清视频免费观看一区二区| 一级毛片我不卡| 1024视频免费在线观看| 亚洲国产成人一精品久久久| 精品欧美一区二区三区在线| 高清视频免费观看一区二区| 午夜福利影视在线免费观看| 十八禁人妻一区二区| av线在线观看网站| www.熟女人妻精品国产| 看十八女毛片水多多多| 午夜激情av网站| 日本色播在线视频| 一个人免费看片子| 久久午夜综合久久蜜桃| 美女脱内裤让男人舔精品视频| 一级黄色大片毛片| 午夜老司机福利片| 国产xxxxx性猛交| 校园人妻丝袜中文字幕| 精品国产乱码久久久久久男人| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| av视频免费观看在线观看| 久久99热这里只频精品6学生| 性高湖久久久久久久久免费观看| 亚洲一区中文字幕在线| 精品熟女少妇八av免费久了| 国产免费又黄又爽又色| 我的亚洲天堂| 男女免费视频国产| 欧美 日韩 精品 国产| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av涩爱| 99国产精品一区二区三区| 制服诱惑二区| 日韩视频在线欧美| xxxhd国产人妻xxx| 国产成人精品无人区| 另类精品久久| 国产男人的电影天堂91| 黄色视频不卡| 国产精品久久久久久精品电影小说| 69精品国产乱码久久久| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 久久天躁狠狠躁夜夜2o2o | 一边亲一边摸免费视频| 美女高潮到喷水免费观看| 777久久人妻少妇嫩草av网站| 视频区图区小说| 成人午夜精彩视频在线观看| 午夜日韩欧美国产| 欧美亚洲 丝袜 人妻 在线| 精品亚洲乱码少妇综合久久| 欧美国产精品一级二级三级| 亚洲中文av在线| 亚洲欧美中文字幕日韩二区| 欧美日韩福利视频一区二区| 久热这里只有精品99| 真人做人爱边吃奶动态| 国产黄色免费在线视频| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 精品福利永久在线观看| 国产深夜福利视频在线观看| 国产精品一区二区在线不卡| 狠狠婷婷综合久久久久久88av| 妹子高潮喷水视频| 大片电影免费在线观看免费| 视频区欧美日本亚洲| 秋霞在线观看毛片| 国产精品亚洲av一区麻豆| 一二三四社区在线视频社区8| 在线 av 中文字幕| 国产极品粉嫩免费观看在线| 久久久欧美国产精品| av电影中文网址| 麻豆国产av国片精品| 欧美黑人精品巨大| 丰满少妇做爰视频| 亚洲色图 男人天堂 中文字幕| 久久狼人影院| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看视频在线观看| 国产一区有黄有色的免费视频| 亚洲色图综合在线观看| 男的添女的下面高潮视频| 精品亚洲乱码少妇综合久久| 天堂8中文在线网| 交换朋友夫妻互换小说| 精品亚洲乱码少妇综合久久| 久久久久久久久免费视频了| 大型av网站在线播放| 亚洲 国产 在线| 久久国产精品人妻蜜桃| 久久99一区二区三区| 999久久久国产精品视频| 国产人伦9x9x在线观看| 51午夜福利影视在线观看| 男人舔女人的私密视频| 中国国产av一级| 满18在线观看网站| 亚洲精品一区蜜桃| 高潮久久久久久久久久久不卡| 一级片免费观看大全| 久久久国产欧美日韩av| 国产av国产精品国产| 18在线观看网站| 男人添女人高潮全过程视频| 国产又爽黄色视频| 亚洲国产欧美网|