• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on a Two-dimensional Generalized Thermal Shock Problem with Temperature-dependent Properties

    2015-12-12 05:45:05TianhuHeYongbinMaandShuanhuShi
    Computers Materials&Continua 2015年7期

    Tianhu He,Yongbin Maand Shuanhu Shi

    Investigation on a Two-dimensional Generalized Thermal Shock Problem with Temperature-dependent Properties

    Tianhu He1,2,3,Yongbin Ma2,3and Shuanhu Shi3

    The dynamic response of a two-dimensional generalized thermoelastic problem with temperature-dependent properties is investigated in the context of generalized thermoelasticity proposed by Lord and Shulman.The governing equations are formulated,and due to the nonlinearity and complexity of the governing equations resulted from the temperature-dependent properties,a numerical method,i.e.,finite element method is adopted to solve such problem.By means of virtual displacement principle,the nonlinear finite element equations are derived.To demonstrate the solution process,a thermoelastic half-space subjected to a thermal shock on its bounding surface is considered in detail.The nonlinear finite element equations for this problem are solved directly in time domain.The variations of the considered variables are obtained and illustrated graphically.The results show that the effect of the temperature-dependent properties on the considered variables is to reduce their magnitudes,and taking the temperature-dependence of material properties into consideration in the investigation of generalized thermoelastic problem has practical meaning in predicting the thermoelastic behaviors accurately.It can also be deduced that directly solving the nonlinear finite element equations in time domain is a powerful method to deal with the thermoelastic problems with temperature-dependent properties.

    generalized thermoelasticity,thermal shock,finite element method,thermal relaxation,temperature-dependent properties.

    1 Introduction

    In the classical coupled thermoelasticity proposed by[Biot(1956)],due to the diffusive heat conduction equation,it predicts an infinite speed for heat propagating in elastic medium,which is physically unrealistic.To eliminate such inherentparadox,the generalized thermoelastic theories have been introduced by[Lord and Shulman(1967)]and[Green and Lindsay(1972)]since 1960’s,which are abbreviated as L-S theory and G-L theory respectively.In L-S theory,a new wave-type heat conduction law was postulated to replace the classical Fourier’s law.This new law is the same as that suggested by [Cattaneo(1958)]and[Vernotte(1961)],which contains the heat flux vector as well as its time derivative and also contains a new constant that acts as a relaxation time.The L-S theory was later extended by[Dhaliwal and Sherief(1980)]to the case of anisotropic media.The G-L theory modified both the energy equation and the Duhamel-Neumann relation by introducing two relaxation times,and also modified the heat conduction equation by introducing the temperature-rate term,which doesn’t violate the Fourier’s heat conduction law when the considered body has a center of symmetry.In both theories,the governing equations are of hyperbolic type,which can describe the so-called second sound effect,i.e.,heat propagates in medium with a finite speed.

    Based on the generalized theories,a great deal of attention has been paid to investigate generalized dynamic problems.[Sherief and Dhaliwal(1981)]concerned a one-dimensional thermal shock problem by the Laplace transform technique and its inverse transform.[Sherief and Anwar(1994)]studied the thermoelastic problem of a homogeneous isotropic thick plate of in finite extent with heating on a part of the surface by state space approach together with Laplace and Fourier integral transforms and their inverse counterparts.[Dhaliwal and Rokne(1989)]solved a thermal shock problem of a half-space with its plane boundary either held rigidly fixed or stress-free and an approximate small-time solution was obtained by using the Laplace transform method.Chen and Weng proposed a hybrid Laplace transform- finite element method to investigate the coupled transient behavior of generalized thermoelastic problems,and they used this method to study the generalized thermoelastic response of a square cylinder with an elliptical hole[Chen and Weng(1988)]and an axisymmetric circular cylinder[Chen and Weng(1989)]respectively.Later,[He,Tian and Shen(2002)]and[Aouadi(2007)]developed this method to deal with a two-dimensional problem of a thick piezoelectric plate with in finite extent and a two-dimensional problem of a half-space in electromagnetothermoelasticity respectively.

    The above investigations were carried out under the assumption that the material properties are temperature-independent,which limit the applicability of the obtained solutions to certain ranges of temperature.In general,material properties such as the modulus of elasticity,Poisson’s ratio,the coefficient of thermal expansion and the thermal conductivity etc.would vary with temperature,which in turn influence the thermoelastic coupling behaviors.To explore the effect of temperature-dependent properties on generalized dynamic problems,[Ezzat,El-Karamany and Samaan(2004)]investigated thermoelastic problems with the modulus of elasticity dependent with temperature.[Aouadi(2006)]studied the effect of temperature dependence of the modulus of elasticity on the solutions in generalized thermo-piezoelectricity.[Othman and Song(2008);Othman and Kumar(2009)]worked on the reflection of magneto-thermoelasticity waves under the effect of temperature-dependent properties in generalized thermoelasticity.[Othman and Lotfy(2009)]dealt with a two-dimensional problem of generalized magnetothermoelasticity with temperature-dependent elastic moduli for different theories.In their works,the properties were assumed as a linear function of reference temperature instead of real-time temperature.

    In present work,a two-dimensional generalized thermoelastic problem with temperature-dependent properties is investigated in the context of L-S theory.The properties are assumed to be dependent with the real-time temperature instead of the reference temperature,which result in a system of nonlinear governing equations.To solve such nonlinear generalized thermoelastic problem, finite element method is adopted,and the nonlinear finite element equations are derived by means of virtual displacement principle.To set an example,a thermoelastic half-space subjected to a thermal shock is concerned in detail.It should be noted that the derived nonlinear finite element equations are solved directly in time domain.

    2 Basic Equations

    In the absence of body force and inner heat source,the L-S type generalized thermoelastic governing equations are

    In the above equations,a superimposed dot denotes the derivative with respect to time,a comma followed by a suffix denotes material derivative and the summation convention is used.σijare the components of the stress tensor,εijthe components of the strain tensor,uithe components of displacement vector,cijklthe elastic constants,aijthe thermal moduli,κijthe coefficients of thermal conductivity,η the entropy density,qithe components of heat flux vector,τ the thermal relaxation time,θ=T?T0the temperature increment,T the absolute temperature,T0the initial reference temperature,ν=ρCE?T0,ρ the mass density,CEthe specific heat at constant strain.Once τ=0,the L-S theory reduces to the classical coupled thermoelasticity.

    For the isotropic case,Eqs.(2)and(7)reduce to

    where λ,μ are Lame’s constants,e=εkkis the cubical dilatation,γ=(3λ +2μ)αtand αtis the coefficient of linear thermal expansion.

    For the temperature-dependent material properties,we assume

    where λ0, μ0and κ0are constants,fi(θ)(i=1,2,3)are given non-dimensional functions of temperature.In case of temperature-independent properties,fi(θ)≡1 and λ = λ0,μ = μ0as well as κ = κ0.Except the properties in(10),the other material properties are assumed to be independent of temperature.

    [Rishin,Lyashenko,Akinin and Nadezhdin(1973)]investigated the relationship between modulus of elasticity of several sprayed coatings and temperature,and they reported the modulus of elasticity decreases monotonically with the increasing of temperature.For simplicity and without loss of generality,we assume

    where α is an empirical material constant.

    In view of Eqs.(10)and(11),from Eqs.(1)-(6),we can obtain the partial differential governing equations for isotropic thermoelastic problems as

    where a comma followed by suffix t denotes the derivative with respect to time.Once α=0,the above equations reduce to the case of temperature-independence of material properties.If the initial conditions and the boundary conditions are given,Eqs.(12)-(13)can be supplemented to solve concrete thermoelastic problems.

    Though there are a variety of computational methods as presented by[Dong,Mohiuddine and Atluri(2014)]may be used to solve problems in multidisciplinary engineering and sciences,for the generalized dynamic thermoelastic problems,generally speaking,the integral transform techniques are often adopted to solve such problems.In case of one-dimensional problems,the Laplace transform together with its inverse transform can be used to get the solutions[Sherief and Dhaliwal(1981)],while in case of two-dimensional problems,both Laplace and Fourier transforms and their inverse counterparts have to be employed simultaneously to obtain the solutions[Sherief and Megahed(1999)].Alternatively,the hybrid Laplace transform-finite element method as presented in[Chen and Weng(1988,1989)]can also be used to solve such problems.Unfortunately,as pointed out by[Tian and Shen(2005);Tian,Shen,Chen and He(2006)],the above methods encounter a defect,i.e.,loss of the calculation precision.To overcome such defect,[Tian and Shen(2005);Tian,Shen,Chen and He(2006)]suggested that the generalized dynamic thermoelastic problems could be solved by finite element method and the corresponding finite element equations can be solved in time domain directly.In their work,the obtained results show a higher calculation precision.Nevertheless,for the generalized dynamic thermoelastic problems with temperature-dependent properties,due to the nonlinearity and complexity of the governing equations,it seems a big challenge to get the solutions of such problems by means of the integral transform techniques or the hybrid Laplace transform-finite element method.Fortunately,encouraged by the works of[Tian,Shen,Chen and He(2006);Xiong and Tian(2011a);Xiong and Tian(2011b)],we are about to formulate our problem by finite element method and directly solve the corresponding nonlinear finite element equations in time domain.

    3 Finite Element Formulations

    To get the finite element equations,we rewrite Eqs.(2)and(3)in vector form as

    and the modified Fourier’s law in Eq.(6)as

    The considered object can be divided into elements and nodal points and any variable in an element can be approximated by the values of the nodal points of the element together with shape functions.To this end,we introduce two sets of shape functions[Ne1]and{Ne2},and the displacement{u}and the temperature θ on the element level can be expressed respectively as

    where[B1]and[B2]relate respectively to the first order derivative of component in[]and{}with respect to material coordinates,and they can be explicitly specif i ed once the components of[]and{}are given.The variational form of Eq.(17)is

    In the absence of body force,the virtual displacement principle of the generalized thermoelastic problems in the context of L-S theory can be formulated as

    whereˉFirepresents the components of traction vector,andˉq the heat flux vector.Substituting Eqs.(14)-(18)into Eq.(19),we arrive at

    where

    Due to the temperature-dependent properties,the matrix of elastic constants[c],the vector of thermal moduli{a}and the matrix of the coefficients of thermal conductivity[κ]are correspondingly temperature-dependent.Thus,the mass matrix,the damping matrix and the stiffness matrix in Eq.(20)are also temperature-dependent,which results in Eq.(20)a nonlinear finite element equation.

    To get the solutions in time domain,one of the direct integration methods,the Newmark’s method,labeled as implicit method,is applied to formulating the recursive formula from Eq.(20)for solutions.The considered period S is sub-divided into n intervals of length ?t=S/n and solution for each timestep ?t,2?t,3?t,...,S is established.Due to the nonlinearity of the mass matrix,the damping matrix and the stiffness matrix in Eq.(20),the set of equations included in the recursive formula is nonlinear.In essence,the problem is materially nonlinear,thus,the modified Newton-Raphson(mNR)iteration method is adopted to obtain the solutions of the system of nonlinear equations at each timestep.In mNR method,the tangential stiffness matrix is formed and decomposed at the beginning of each step and used throughout the iterations,avoiding the formulation of the tangential stiffness matrix as well as its inverse matrix in each iteration step.

    4 Numerical Results and Discussions

    To demonstrate the above process of solution,we consider a thermoelastic halfspace.The schematic of the considered half-space as well as the applied thermal shock on its bounding surface is shown in Fig.1(a).The bounding surface is assumed to be traction free,and the thermal shock has the following form

    where H(·)is the Heaviside unit step function and θ0is a constant.

    Assume the half-space is initially at rest,so that,the initial conditions are

    Due to the symmetries of geometrical shape and thermal load,the problem can be treated as a plane strain problem and only half of the half-space needs to be considered.The model for simulation is shown in Fig.1(b),where OABC outlines the region for implementing the simulation and OD represents the region within which the thermal shock is applied.The boundary conditions of the problem are

    Figure 1:The schematic of the half-space.

    assumed to be

    In order to simplify the simulation,the following non-dimensional variables are introduced in the calculation.

    To carry out the simulation,we take τ=0.02,T0=293K,θ0=1,OD=0.2,Lx=2.5 and Ly=3.0.The half-space is taken as copper material and the temperatureindependent material parameters of copper material are given as follows

    In the calculation,we will reveal how the considered variables change with time tand the temperature-dependent properties.To this end,two values of time(i.e.,t=0.05 and 0.1)and two values of α (i.e.,α =0.0 and 0.002)are considered and four different combinations of t and α are set.Comparisons are made between the results obtained in case of α =0 and those in case of α =0.002.The nondimensional distributions of the considered variables are obtained and illustrated in Figs.2-8 respectively.Fig.2 shows the distributions of the non-dimensional temperature along axis-x.As shown,for the same α,the temperature increases with the increase of time;for the same time,the temperature decreases with the increase of α.At x=0,the value of temperature is 1.0,which is consistent with the amplitude of the applied thermal shock θ0.

    Figure 2: temperature θ along axis-x.

    Fig.3 shows the distributions of the non-dimensional temperature along axis-y.As seen,the values of temperature remain constant within y∈[0,0.2],which coincides with the applied thermal shock.Outside y∈[0,0.2],the temperature increases with the increase of time for the same α while decreases with the increase of α for the same time.

    Fig.4 shows the distributions of the non-dimensional displacement u along axis-x.Due to the applied thermal shock,the half-space undergoes thermal expansion deformation.As shown,the induced displacement varies continuously from negative to positive till zero,and the negative-positive region transfers dynamically with the passage of time.The magnitude of displacement decreases with the increase of α for the same time while increases with the increase of time for the same α.

    Figure 3:Distributions of the non-dimensional temperature θ along axis-y.

    Figure 4:Distributions of the non-dimensional displacement u along axis-x.

    Figure 5:Distributions of the non-dimensional displacement u along axis-y.

    Figure 6:Distributions of the non-dimensional displacement v along axis-y.

    Figure 7:Distributions of the non-dimensional stress σxalong axis-x.

    Figure 8:Distributions of the non-dimensional stress σyalong axis-y

    Fig.5 shows the distributions of the non-dimensional displacement u along axis-y.As observed,the horizontal displacement along axis-y varies from negative to zero,and the magnitude of the displacement u increases with the increase of time for the same α while decreases with the increase of α for the same time.

    Fig.6 shows the distributions of the non-dimensional displacement υ along axis-y.As seen,the magnitude of the vertical displacement along axis-y increases with the increase of time for the same α while decreases with the increase of α for the same time.

    Fig.7 shows the distributions of the non-dimensional stress σxalong axis-x.As shown,the non-dimensional stress σxalong axis-x is compressive.With the increase of α ,for the same time the magnitude of σxdecreases.

    Fig.8 shows the distributions of the non-dimensional stress σyalong axis-y.As seen,the non-dimensional stress σyalong axis-y is compressive.With the increase of α ,for the same time the magnitude of σydecreases.

    From Figs.2-8,it can be found that the non-zero values of all the considered variables are only in a bounded region,which is dominated by the nature that heat wave and thermoelastic wave propagate with finite speeds respectively.

    5 Conclusions

    The dynamic response of a two-dimensional generalized thermoelastic problem for a half-space with temperature-dependent properties is investigated in the context of L-S generalized thermoelastic theory.The obtained results show that

    (1)Due to the finite speeds of heat wave and thermoelastic wave,the non-zero values of all the considered variables are only in a bounded region.

    (2)The temperature-dependent properties actually influence the variations of the considered variables and their overall effects act to reduce the magnitudes of the considered variables.

    (3)Directly solving the nonlinear finite element equations in time domain is a powerful method to investigate the thermoelastic problems with temperature-dependent properties.

    (4)In the investigation of thermoelastic problems,taking the temperature-dependent properties into consideration has practical meaning in the accurate prediction of the thermoelastic behaviors.

    Acknowledgement: This work was supported by the National Natural Science

    Foundation of China(11372123)and Hong-Liu Excellent Talents Program of Lanzhou University of Technology.

    Aouadi,M.(2006):Generalized thermo-piezoelectric problems with temperaturedependent properties.International Journal of Solids and Structures,vol.43,pp.6347-6358.

    Aouadi,M.(2007):Hybrid Laplace transform-finite element method to a generalized electromagneto-thermoelastic problem.Applied Mathematical Modeling,vol.31,pp.712-726.

    Biot,M.A.(1956):Thermoelasticity and irreversible thermodynamics.Journal of Applied Physics,vol.27,pp.240-253.

    Catteneo,C.(1958):A form of heat conduction equation which eliminates the paradox of instantaneous propagation.Compte Rendus,vol.247,pp.431-433.

    Chen,T.C.;Weng,C.(1989):Coupled transient thermoelastic response in an axisymmetric circular cylinder by Laplace transform-finite element method.Computer&Structures,vol.33,pp.533-542.

    Chen,T.C.;Weng,C.(1988):Generalized coupled transient thermoelastic plane problems by Laplace transform-finite element method.Journal of Applied Mechanics,vol.55,pp.377-382.

    Dhaliwal,R.S.;Rokne,J.G.(1989):One-dimensional thermal shock problem with two relaxation times.Journal Thermal Stresses,vol.12,pp.259-279.

    Dhaliwal,R.S.;Sherief,H.H.(1980):Generalized thermoelasticity for anisotropic media.Quarterly of Applied Mathematics,vol.38,pp.1-8.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,pp.1-85.

    Ezzat,M.A.;El-Karamany,A.S.;Samaan,A.A.(2004):The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation.Applied Mathematics and Computation,vol.147,pp.169-189.

    Ezzat,M.A.;Zakaria,M.;Abdel-bary,A.(2004):Generalized thermoelasticity with temperatture dependent modulus of elasticity under three theories.Applied Mathematics and Computation,vol.14,pp.193-212.

    Green,A.E.;Lindsany,K.A.(1972):Thermoelasticity.Journal of Elasticity,vol.2,issue 1,pp.1-7.

    He,T.H.;Tian,X.G.,Shen,Y.P.(2002):Two-dimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent.International Journal of Engineering Science,vol.40,pp.2249-2264.

    Lord,H.W.;Shulman,Y.(1967):A generalized dynamical theory of thermoelasticity.Journal of the Mechanics and Physics of Solid,vol.15,pp.299-309.

    Othman,M.I.A.;Kumar,R.(2009):Reflection of magneto-thermoelastic waves under the effect of temperature-dependent properties in generalized thermoelasticity with four theories.International Communications in Heat and Mass Transfer,vol.36,pp.513-520.

    Othman,M.I.A.;Lotfy,K.H.(2009):Two-dimensional problem of generalized magneto-thermoelasticity with temperature-dependent elastic moduli for different theories.Multidisciplinary Modeling in Materials and Structures,vol.5,pp.235-242.

    Othman,M.I.A.;Song,Y.Q.(2008):Ref l ection of magneto-thermoelasticity waves with two relaxation times and temperature-dependent elastic moduli.Applied Mathematical Modeling,vol.32,pp.483-500.

    Rishin,V.V.;Lyashenko,B.A.;Akinin,K.G.;Nadezhdin,G.N.(1973):Temperature dependence of adhesion strength and elasticity of some heat-resistant coatings.Strength of Materials,vol.5,pp.123-126.

    Sherief,H.H.;Anwar,M.N.(1994):State-space approach to two-dimensional thermoelasticity problems.Journal of Thermal Stresses,vol.17,pp.567-590.

    Sherief,H.H.;Dhaliwal,R.S.(1981):Generalized one-dimensional thermal shock problem for small times.Journal of Thermal Stresses,vol.4,pp.407-420.

    Sherief,H.H.;Megahed,F.A.(1999):A two-dimensional thermoelasticity problem for a half space subjected to heat sources.International Journal of Solids and Structures,vol.36,pp.1369-1382.

    Tian,X.G.;Shen,Y.P.;Chen,C.Q.;He T.H.(2006):A direct finite element method study of generalized thermoelastic problems.International Journal of Solids and Structures,vol.43,pp.2050-2063.

    Tian,X.G.;Shen,Y.P.(2005):Study on generalized magneto-thermoelastic problems by FEM in time domain.Acta Mechanica Sinica,vol.21,pp.380-387.

    Vernotte,P.(1961):Some possible complications in the phenomenon of thermal conduction.Compte Rendus,vol.252,pp.2190-2191.

    Xiong,Q.L.;Tian X.G.(2011a):Response of a semi-infinite microstretch homogeneous isotropic body under thermal shock.Journal of Applied Mechanics,Transactions ASME,vol.78,044503.

    Xiong,Q.L.;Tian,X.G.(2011b):Transient magneto-thermoelastic response for a semi-infinite body with voids and variable material properties during thermal shock.International Journal of Applied Mechanics,vol.3,pp.881-902.

    1Corresponding author.E-mail:heth@lut.cn

    2Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province,Lanzhou University of Technology,Lanzhou 730050,P.R.China.

    3School of Science,Lanzhou University of Technology,Lanzhou 730050,P.R.China.

    国产av国产精品国产| 脱女人内裤的视频| 欧美少妇被猛烈插入视频| 精品少妇内射三级| 亚洲国产成人一精品久久久| 成年人免费黄色播放视频| 亚洲av国产av综合av卡| 亚洲精品国产色婷婷电影| 99国产精品一区二区三区| 乱人伦中国视频| 国产一区二区三区综合在线观看| 最黄视频免费看| 欧美久久黑人一区二区| 久久精品久久久久久久性| 一个人免费看片子| 精品免费久久久久久久清纯 | 在现免费观看毛片| 欧美在线黄色| 母亲3免费完整高清在线观看| 成人国产av品久久久| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区久久| 少妇精品久久久久久久| 男女免费视频国产| 一级毛片电影观看| 日韩中文字幕欧美一区二区 | 免费在线观看日本一区| 久久久久久久国产电影| 久久精品人人爽人人爽视色| 99热网站在线观看| 亚洲成人手机| 亚洲成人免费av在线播放| 九草在线视频观看| 国产精品一国产av| 亚洲成人手机| 搡老岳熟女国产| 老司机影院毛片| 国产精品一国产av| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| 九草在线视频观看| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| 美女高潮到喷水免费观看| 成年人黄色毛片网站| 国产一区二区 视频在线| 日韩一区二区三区影片| 捣出白浆h1v1| 国产麻豆69| 日日摸夜夜添夜夜爱| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| 女警被强在线播放| 夜夜骑夜夜射夜夜干| 新久久久久国产一级毛片| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 王馨瑶露胸无遮挡在线观看| 日本欧美视频一区| 18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 久久影院123| 国产精品免费视频内射| 一个人免费看片子| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久 | 亚洲熟女毛片儿| 天天躁狠狠躁夜夜躁狠狠躁| 精品一品国产午夜福利视频| 成人午夜精彩视频在线观看| 亚洲男人天堂网一区| 国产男女超爽视频在线观看| 高清黄色对白视频在线免费看| 一区二区三区精品91| 午夜老司机福利片| 99热网站在线观看| 国产精品三级大全| 久久久久久久久免费视频了| 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 国产精品亚洲av一区麻豆| 亚洲欧美清纯卡通| 午夜福利乱码中文字幕| 亚洲黑人精品在线| 国产99久久九九免费精品| 国产高清视频在线播放一区 | 亚洲欧洲国产日韩| 午夜福利影视在线免费观看| 久久亚洲精品不卡| 91国产中文字幕| 91老司机精品| 精品人妻1区二区| 免费观看人在逋| av网站在线播放免费| 欧美日韩av久久| av视频免费观看在线观看| 18在线观看网站| 丰满迷人的少妇在线观看| 亚洲,一卡二卡三卡| 国产精品一区二区在线不卡| 王馨瑶露胸无遮挡在线观看| 在线观看www视频免费| 久久国产精品影院| 国产精品免费视频内射| 亚洲精品在线美女| 国产欧美日韩一区二区三区在线| 51午夜福利影视在线观看| 午夜激情久久久久久久| 国产精品国产三级国产专区5o| 亚洲男人天堂网一区| 欧美日韩福利视频一区二区| 精品国产国语对白av| 国产成人系列免费观看| 亚洲五月婷婷丁香| 色播在线永久视频| 精品人妻在线不人妻| 丝袜人妻中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一区蜜桃| 一级片免费观看大全| 欧美精品av麻豆av| 成人国产一区最新在线观看 | 亚洲午夜精品一区,二区,三区| 热99久久久久精品小说推荐| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 亚洲欧美一区二区三区久久| 久久天堂一区二区三区四区| 桃花免费在线播放| 国产精品免费视频内射| 国产精品.久久久| e午夜精品久久久久久久| 在线 av 中文字幕| 亚洲精品美女久久av网站| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| av视频免费观看在线观看| 国产精品一国产av| 欧美精品啪啪一区二区三区 | 五月开心婷婷网| 性少妇av在线| 国产亚洲av高清不卡| 日本黄色日本黄色录像| 亚洲综合色网址| 亚洲五月色婷婷综合| 欧美黑人欧美精品刺激| 国产成人91sexporn| 久久久久网色| www.999成人在线观看| 国产成人一区二区三区免费视频网站 | 老司机靠b影院| 波野结衣二区三区在线| 在线观看国产h片| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 久久久久久久久免费视频了| 国产又爽黄色视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美色中文字幕在线| 男女边摸边吃奶| 亚洲精品av麻豆狂野| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 捣出白浆h1v1| 精品免费久久久久久久清纯 | 中文字幕av电影在线播放| 九色亚洲精品在线播放| 女人高潮潮喷娇喘18禁视频| 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 欧美中文综合在线视频| 日韩制服丝袜自拍偷拍| 18在线观看网站| 丝袜美足系列| 免费在线观看完整版高清| 国产成人av教育| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 大香蕉久久网| www.精华液| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 国产一区二区 视频在线| 韩国精品一区二区三区| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜爱| 美女中出高潮动态图| 亚洲美女黄色视频免费看| 午夜91福利影院| 欧美黑人精品巨大| 亚洲国产av新网站| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 亚洲精品国产一区二区精华液| 国产无遮挡羞羞视频在线观看| 成在线人永久免费视频| 久久99热这里只频精品6学生| 午夜福利视频在线观看免费| 男人操女人黄网站| 人人澡人人妻人| 久久精品国产综合久久久| 久9热在线精品视频| 国产男人的电影天堂91| 久久 成人 亚洲| 晚上一个人看的免费电影| 国产伦人伦偷精品视频| 久久青草综合色| 国产日韩欧美在线精品| 国产精品秋霞免费鲁丝片| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清 | 久久综合国产亚洲精品| 久久狼人影院| 国产国语露脸激情在线看| 国产精品久久久久久精品电影小说| 19禁男女啪啪无遮挡网站| xxx大片免费视频| 欧美成人精品欧美一级黄| 日本a在线网址| 色视频在线一区二区三区| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看| 制服人妻中文乱码| 日韩电影二区| 亚洲国产av影院在线观看| 一级a爱视频在线免费观看| 免费高清在线观看日韩| 国产精品一区二区免费欧美 | 国产免费福利视频在线观看| 亚洲成人手机| 黄色视频不卡| 亚洲情色 制服丝袜| 一个人免费看片子| 国产麻豆69| 丰满饥渴人妻一区二区三| 亚洲人成77777在线视频| 国产一区二区 视频在线| 少妇精品久久久久久久| 国产一区二区在线观看av| 亚洲精品一卡2卡三卡4卡5卡 | 人人妻,人人澡人人爽秒播 | 亚洲欧美一区二区三区黑人| 高清av免费在线| 啦啦啦啦在线视频资源| 尾随美女入室| 一级片免费观看大全| 男女边吃奶边做爰视频| 一级a爱视频在线免费观看| avwww免费| 交换朋友夫妻互换小说| 久久久久国产一级毛片高清牌| 国产精品三级大全| 久久久久国产精品人妻一区二区| 亚洲国产成人一精品久久久| 欧美黄色片欧美黄色片| 这个男人来自地球电影免费观看| 两个人看的免费小视频| 亚洲精品在线美女| 美女高潮到喷水免费观看| 性少妇av在线| 777久久人妻少妇嫩草av网站| 男人添女人高潮全过程视频| av片东京热男人的天堂| 老熟女久久久| 视频区图区小说| 国产亚洲av高清不卡| 日本a在线网址| 在线观看免费高清a一片| 国产不卡av网站在线观看| 欧美黄色淫秽网站| 国产精品久久久久久精品电影小说| 午夜免费成人在线视频| 九草在线视频观看| www.精华液| 精品亚洲成国产av| 精品一区二区三区四区五区乱码 | 美女大奶头黄色视频| 亚洲国产最新在线播放| 成人免费观看视频高清| 一级毛片女人18水好多 | 免费一级毛片在线播放高清视频 | h视频一区二区三区| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区 | 成年人午夜在线观看视频| 国产一区二区激情短视频 | 丰满饥渴人妻一区二区三| 人成视频在线观看免费观看| 丰满少妇做爰视频| 90打野战视频偷拍视频| 午夜福利视频精品| 国产精品九九99| 国产人伦9x9x在线观看| 亚洲视频免费观看视频| 久久久精品94久久精品| 在线观看免费视频网站a站| 在线av久久热| 极品少妇高潮喷水抽搐| 亚洲av男天堂| 亚洲av在线观看美女高潮| 欧美人与性动交α欧美精品济南到| 一级黄片播放器| 欧美精品一区二区大全| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久人妻精品电影 | 婷婷色麻豆天堂久久| 99国产精品一区二区三区| 天天添夜夜摸| 人妻人人澡人人爽人人| 看十八女毛片水多多多| 午夜福利视频精品| 亚洲成色77777| 高清不卡的av网站| 国产精品.久久久| 脱女人内裤的视频| 久久鲁丝午夜福利片| 久久国产精品人妻蜜桃| avwww免费| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 国产成人精品久久久久久| 亚洲国产欧美网| 欧美激情极品国产一区二区三区| 久久 成人 亚洲| 久久天堂一区二区三区四区| 制服人妻中文乱码| 一本一本久久a久久精品综合妖精| 夫妻午夜视频| 赤兔流量卡办理| 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| av网站在线播放免费| 亚洲欧美色中文字幕在线| 欧美黄色淫秽网站| 免费少妇av软件| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网 | 国产1区2区3区精品| 久久鲁丝午夜福利片| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 国产激情久久老熟女| 乱人伦中国视频| 亚洲欧洲国产日韩| av线在线观看网站| 少妇人妻久久综合中文| 女人高潮潮喷娇喘18禁视频| 爱豆传媒免费全集在线观看| 精品一区二区三卡| 国产男人的电影天堂91| 一区二区日韩欧美中文字幕| av天堂久久9| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 男女边吃奶边做爰视频| 免费看不卡的av| 国产精品 欧美亚洲| 精品一品国产午夜福利视频| 国产高清videossex| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看 | 免费观看人在逋| 精品国产国语对白av| 国产高清不卡午夜福利| 美国免费a级毛片| 国产有黄有色有爽视频| 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看| www日本在线高清视频| 久久人妻熟女aⅴ| 欧美国产精品va在线观看不卡| 一级毛片黄色毛片免费观看视频| 欧美性长视频在线观看| 欧美精品一区二区大全| 久久人人爽人人片av| 丝袜人妻中文字幕| 美女视频免费永久观看网站| 欧美日韩福利视频一区二区| 精品人妻一区二区三区麻豆| 爱豆传媒免费全集在线观看| 国产主播在线观看一区二区 | 国产一区二区三区综合在线观看| 美女福利国产在线| 欧美激情高清一区二区三区| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品古装| 麻豆国产av国片精品| 国产欧美日韩一区二区三区在线| 精品久久久久久电影网| 国产一区有黄有色的免费视频| 婷婷丁香在线五月| 免费看不卡的av| 黄片播放在线免费| 亚洲av日韩精品久久久久久密 | 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 国产伦人伦偷精品视频| 9热在线视频观看99| 国产女主播在线喷水免费视频网站| 欧美日韩精品网址| 中文欧美无线码| 中文字幕亚洲精品专区| 日本一区二区免费在线视频| 超碰97精品在线观看| 男的添女的下面高潮视频| 在线观看免费高清a一片| kizo精华| 亚洲成国产人片在线观看| 久久人人爽人人片av| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 少妇精品久久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲三区欧美一区| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜爱| 亚洲国产精品999| 亚洲精品乱久久久久久| 妹子高潮喷水视频| 欧美在线一区亚洲| 美国免费a级毛片| 午夜福利免费观看在线| 黄色怎么调成土黄色| 亚洲中文av在线| 91九色精品人成在线观看| 国产伦人伦偷精品视频| 秋霞在线观看毛片| 99热国产这里只有精品6| 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| svipshipincom国产片| 深夜精品福利| 在线观看免费高清a一片| 香蕉丝袜av| 777久久人妻少妇嫩草av网站| 只有这里有精品99| 欧美+亚洲+日韩+国产| 操美女的视频在线观看| 精品人妻在线不人妻| 欧美日韩视频高清一区二区三区二| 美女高潮到喷水免费观看| 午夜福利影视在线免费观看| 亚洲激情五月婷婷啪啪| 午夜视频精品福利| 可以免费在线观看a视频的电影网站| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 国产成人精品在线电影| 国产精品久久久久久精品电影小说| 超色免费av| 亚洲专区中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡 | 99香蕉大伊视频| 精品亚洲成a人片在线观看| 777米奇影视久久| 蜜桃在线观看..| 黄色毛片三级朝国网站| 男女免费视频国产| 在线观看www视频免费| 午夜老司机福利片| 精品一品国产午夜福利视频| 一级毛片女人18水好多 | 久久久久国产精品人妻一区二区| 亚洲熟女精品中文字幕| 丁香六月天网| av天堂久久9| 国产精品.久久久| 热99国产精品久久久久久7| 1024视频免费在线观看| 男人舔女人的私密视频| 一边亲一边摸免费视频| 十八禁网站网址无遮挡| 高清欧美精品videossex| 亚洲一区二区三区欧美精品| 三上悠亚av全集在线观看| 操美女的视频在线观看| 午夜免费男女啪啪视频观看| 国产成人a∨麻豆精品| 最近最新中文字幕大全免费视频 | 99热网站在线观看| 午夜免费男女啪啪视频观看| 亚洲中文日韩欧美视频| 母亲3免费完整高清在线观看| 美女视频免费永久观看网站| 可以免费在线观看a视频的电影网站| kizo精华| 国产一级毛片在线| 美女主播在线视频| 国产精品久久久av美女十八| 亚洲情色 制服丝袜| 天天添夜夜摸| 秋霞在线观看毛片| 日本vs欧美在线观看视频| 人妻 亚洲 视频| 日日摸夜夜添夜夜爱| 亚洲av日韩在线播放| 啦啦啦啦在线视频资源| 18禁裸乳无遮挡动漫免费视频| 国产91精品成人一区二区三区 | 制服人妻中文乱码| 成在线人永久免费视频| 99热全是精品| av片东京热男人的天堂| 宅男免费午夜| 咕卡用的链子| 又大又爽又粗| 黑人巨大精品欧美一区二区蜜桃| 欧美中文综合在线视频| 日韩熟女老妇一区二区性免费视频| 曰老女人黄片| 国产极品粉嫩免费观看在线| 精品一品国产午夜福利视频| 真人做人爱边吃奶动态| 日韩一本色道免费dvd| 国产爽快片一区二区三区| 大片电影免费在线观看免费| 国产在线视频一区二区| 国产老妇伦熟女老妇高清| 国产熟女午夜一区二区三区| 国产真人三级小视频在线观看| 校园人妻丝袜中文字幕| 国产成人精品久久久久久| 999精品在线视频| 大码成人一级视频| 看免费成人av毛片| 亚洲午夜精品一区,二区,三区| 99精品久久久久人妻精品| 精品视频人人做人人爽| 免费一级毛片在线播放高清视频 | 久久人妻熟女aⅴ| 国产无遮挡羞羞视频在线观看| 中文字幕色久视频| 亚洲精品美女久久av网站| a级毛片黄视频| 国产欧美日韩综合在线一区二区| 亚洲精品久久成人aⅴ小说| 美女福利国产在线| 这个男人来自地球电影免费观看| 男女午夜视频在线观看| 天堂8中文在线网| 亚洲七黄色美女视频| 老汉色∧v一级毛片| 国产男人的电影天堂91| 岛国毛片在线播放| 国产精品免费视频内射| av片东京热男人的天堂| 高清视频免费观看一区二区| 我要看黄色一级片免费的| 国产精品成人在线| 少妇精品久久久久久久| 国产99久久九九免费精品| 国产精品久久久久久人妻精品电影 | 我的亚洲天堂| 男女下面插进去视频免费观看| 国产欧美日韩一区二区三区在线| 黑人猛操日本美女一级片| 久久久国产精品麻豆| 一级黄片播放器| 一本—道久久a久久精品蜜桃钙片| 99re6热这里在线精品视频| 亚洲一区中文字幕在线| 视频区图区小说| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 麻豆国产av国片精品| 午夜福利乱码中文字幕| 久久精品国产综合久久久| 久久九九热精品免费| 亚洲国产看品久久| 精品少妇内射三级| 国产黄频视频在线观看| 精品一区二区三卡| 色播在线永久视频| 国产精品成人在线| avwww免费| 欧美日韩国产mv在线观看视频| 久久性视频一级片| 久久精品熟女亚洲av麻豆精品| 大片免费播放器 马上看| 91国产中文字幕| 久久狼人影院| 国产免费一区二区三区四区乱码| 亚洲美女黄色视频免费看| 日韩精品免费视频一区二区三区| 亚洲av片天天在线观看| 欧美成狂野欧美在线观看| 美女中出高潮动态图| netflix在线观看网站| 如日韩欧美国产精品一区二区三区| avwww免费| 一级毛片我不卡| 欧美人与性动交α欧美精品济南到| 国产av一区二区精品久久| 又黄又粗又硬又大视频| 欧美人与性动交α欧美精品济南到| 人妻 亚洲 视频| 高清欧美精品videossex| 18禁黄网站禁片午夜丰满| 亚洲视频免费观看视频| 热99国产精品久久久久久7| 国产成人一区二区三区免费视频网站 | 久久精品成人免费网站| 在线观看一区二区三区激情| 精品高清国产在线一区| 国产一区二区三区av在线|