• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Meta-analysis for psychiatric research using free soft ware R

    2015-12-09 06:33:44DingGengCHEN
    上海精神醫(yī)學 2015年3期
    關鍵詞:免費軟件拉莫三嗪

    Ding-Geng CHEN

    ?Biostatistics in psychiatry (27)?

    Meta-analysis for psychiatric research using free soft ware R

    Ding-Geng CHEN

    meta-analysis; fixed-effects model; random-effects model; bipolar disorder; lamotrigine

    1. Introducti on

    In all scientific fields there is an increasing importance placed on the synthesis of information and data from diverse studies to draw more reliable inferences and,thus, to arrive at more robust conclusions. This process of scientifically integrating diverse information is called‘systematic review’ and, when it involves generating overall results based on pooled data, is usually referred to as ‘meta-analysis’ (MA). The widespread use of MA– over 500 have been published in the New England Journal of Medicine over the last decade – has led to numerous important discoveries. Interested readers can refer to several recent books about MA: Whitehead,[1]Hartung,[2]Borenstein,[3]Pigott ,[4]and Chen and Peace.[5]MA has been widely used in psychiatry. This article introduces the classical fixed-effects and random-effects models in MA and uses a meta-analysis about the use of lamotrigine in bipolar disorder[6]as an example to illustrate the step-by-step implementation of MA using R, an open source statistical soft ware package that can be freely accessed from http://www.r-project.org.

    2. Meta-analysis models

    2.1 Fixed-effects MA model

    A typical MA combines K independent studies in which the population effect-size (ES) δk(k = 1, 2, ..., K) is estimated using the observed ES, ?kδ.These studies can be single-arm studies or multi ple-arm studies, randomized controlled studies or observational studies. The MA for the lamotrigine studies used as an example are twoarm studies, where the δkare the underlying population effect size between the treatment and control groups.

    In fixed-effects meta-analysis (FE-MA), a strong assumption is that there is no between-study variation among the K studies regardless of where, when, with whom, and how the studies were conducted. This is the ‘homogeneity assumption’, which assumes that the underlying population effect sizes δkare constant across all studies (i.e., δ1= ...=δk=δ) and that the observed study effect sizes ?kδ are a simple random sample from the population with a known sampling error. Therefore a typical FE-MA model can be described as

    where εkrepresent the within-study variati ons and are assumed to be a normal distribution with mean 0 and a known variance σk2, that is, εk~N(0,σk2). Note that σk2for all included studies are assumed to be known in MA, which is very different from the assumptions in analysis of variance or regression models where the error variance is estimated. These variances from K studies can be calculated for dichotomized outcome variables (to be illustrated for the lamotrigine example)but for continuous target variables or other types of variables the variance usually needs to be estimated from previously reported literature. The meta-estimate for the global population ES (combining data from all the independent studies) can then be estimated using a weighted-mean method where the weights are the inverse of these known variances. That is:

    where ωk=1/σk2(k=1,...,K). The variance of this FE-MA global estimate of ES can be expressed as:

    Using this weighted-mean estimate in (2.2) and its variance in (2.3), the 95% confidence interval for the global ES of δ can be constructed as:

    and a test-statistic can be formulated as

    to test the hypothesis that the global ES is zero as H0:δ=0 versus Ha: δ≠0.

    2.2 Random-effects MA model

    The FE-MA is simple, but the fundamental homogeneity assumption of no between-study variati on is oft en too restrictive. Intuitively when we synthesize a group of studies with meta-analysis, we expect these studies to have enough in common to merit combining the information for statistical inference, but it is impractical to require that all included studies have identical true effect size. The homogeneity assumption in FEMA needs to be relaxed for practical applications of MA to include situations where there is betweenstudy variation in the true effect size of the studies included in the MA, that is, when the study results are‘heterogeneous’. The random-effects meta-analysis(RE-MA) model is used when the included studies are heterogeneous.

    To incorporate heterogeneity as random-effects, it is assumed that the underlying population effect sizes δkare normally distributed with a global mean of δ and a between-study variance of τ2, that is, δk~N(δ,τ2).Therefore the FE-MA model in (2.1) can be extended to the RE-MA model as:

    where νk~N(0, τ2). The RE-MA model in (2.6) can be also be expressed in a two-level model as follows:

    The global population ES for RE-MA can be estimated using a weighted-mean methods similar to that in the FE-MA model (2.2), but the weights in RE-MA must incorporate both within-study variance(σk2) and between-study variance(τ2) as ωkR=1/(σk2+2?τ) where the subscript ‘R’ represents notations for the randomeffects meta-analysis model to distinguish them from notations for the fixed-effects meta-analysis model.With these new weights, the estimate of global ES in REMA is:

    The variance of this RE-MA estimate can be expressed as:

    The 95% con fi dence interval for the global ES of δ in REMA can be constructed using (2.9) and (2.10) as:

    and a test-stati stic can be formulated as

    to test the hypothesis that the global ES is zero as H0:δ=0 versus Ha: δ≠0 in RE-MA.

    To make use of the estimation in RE-MA from equati ons (2.9) to (2.12), the estimate of the betweenstudy variance τ2is required. There are several methods to estimate τ2, including the DerSimonian and Laird’s method of moments (MM),[8]the maximum likelihood estimation (MLE) method,[9]the restricted maximum likelihood (REML) method,[10]and the Sidik-Jonkman (SJ)estimator.[11]Among these estimators, MM and SJ are distribution-free and non-iterative, whereas both MLE and REML are parametric methods that need multiple iterations to estimate τ2. A discussion that compares these estimators can be found in the paper by Sidik and Jonkman.[12]

    The most commonly used estimate is the DerSimonian-Laird method of moments which is also commonly called the Cochran-DerSimonian-Laird procedure. This estimate is given as:

    where U is a constant defined as Q is the weighted sum of squared errors defined asT his Q-stati stic is commonly used to test the statistical significance of heterogeneity across studies; it has a χ2distribution with K-1 degrees of freedom.

    It is impossible for a group of independent studies to be identical in every respect, so even when the chi-square value for the Q-statistic suggests that the studies included in the review are homogeneous it is recommended that the RE-MA model be used to combine the results of the studies because this method considers both within-study and between-study variation.

    3. Meta-analysis about lamotrigine for the treatment of bipolar depression

    3.1. Data from five clinical trials on lamotrigine

    Although there is definitive evidence of the long-term efficacy of lamotrigine in the maintenance treatment for bipolar I disorder, five placebo-controlled clinical trials of lamotrigine in the acute phase of the illness did not find statistically significant benefit of lamotrigine over placebo.[7]However, Geddes and colleagues[6]pooled the patient-level results of these five studies using MA to demonstrate that lamotrigine is, in fact, superior to placebo in the acute phase of bipolar I disorder. A comprehensive description of this analysis is provided in Chen and Peace,[5]but the following discussion will be limited to the part of the paper that pooled results for the Hamilton Rating Scale for Depression (HRSD)[13]from the five studies. In this analysis, a patient was considered a ‘responder’ if he or she experienced at least a 50%reduction from baseline in the HRSD. The basic results for the lamotrigine group and the control group from the five studies are shown in the first five columns of Figure 1; in this figure the ‘Total’ columns represent the sample size in each group and the ‘Events’ columns represent the number of individuals in each group who met the ‘responder’ criteria at the end of the trial.

    3.2 Meta-analysis with risk-rati o

    The purpose of meta-analysis is to combine individual estimates of treatment effect or effect sizes (ESs) across studies. If estimates of the treatment effect or effect size are not provided for the individual studies but the number of patients who respond to treatment are provided (as in this example), it is possible to calculate the effect size for each study and to subsequently pool the estimated effect sizes across all of the studies in a meta-analysis. For binomial outcome measures,such as response to treatment versus non-response to treatment, the most commonly use estimator of effect size is the risk-ratio. The risk-ratios for the studies included in the MA of the effectiveness of lamotrigine are defined as:

    Figure 1. Forest plot for meta-analysis of five lamotrigine clinical trials

    where the risk (i.e., the probability,p) in each group is the proportion of the ‘total’ sample (i.e., ‘T’) in each group that experience the ‘event’ (i.e., ‘E’) of interest(in this case, respond to treatment); for the lamotrigine group pL=EL/TLand for the control group pc=Ec/Tc. The method of estimating the variance of this risk ratio is based on the normal distribution approximation; the RR is transformed using the natural logarithm and the variance of the natural log of RR is estimated using the delta method:

    Subsequently, the point estimate for ln(RR) and the corresponding confidence intervals are transformed back to RR and the con fi dence interval for RR.

    When conducti ng the MA using R, data from column 1 to 5 in Figure 1 would fi rst be loaded into R as:

    The MA can be done using the function ‘metabin’(denoting meta-analysis for binary variables) in the R library labelled ‘meta’. [For explanation about the use of this R library, activate the help function by entering ‘library(help=‘meta’)’, which will display all the functionalities for this library.] The R coding to metaanalyze the five lamotrigine trials using this function would be as follows:

    In the above coding, ‘studlab’ is the data field when the labels for the different studies are located (i.e.,‘trial’); ‘label.e’ is the label assigned to the experimental group (‘Lamotrigine’); ‘label.c’ is the label assigned to the control group (‘Placebo’); ‘method’ is the method used to pool the studies (‘inverse’, inverse-weighting as described above for FE-MA [2.2] and RE-MA [2.9]);and ‘sm’ is the summary measure being used (‘RR’, riskratio). Alternative methods that can be selected in R to combine the target measure included the Mantel-Haenszel method (which was used in Geddes and colleague’s report[6]) or the Peto method. The printout for this coding would be as follows:

    The first part of the summary provides the risk-ratios,associated 95% confidence intervals, and the weightings for fixed-effects and random-effects MA models for each individual study based on the formulae in (3.1) and(3.2). Notice that the weights for both fixed-effects and random-effects are the same since the heterogeneity is not statistically significant and therefore the estimated τ2=0. The first four trials are not statistically significant (i.e.,the 95% confidence intervals of the RRs include 1, which is the RR at which lamotrigine and placebo are equally effective), but the fifth trial is statistically significant(RR=1.60, 95% CI=1.04,2.45), indicating a significant advantage for lamotrigine over placebo. The second part of the summary provides the pooled RR and the associated 95% confidence intervals both for the fixedeffects and random-effects models; in this example both pooled RRs were statistically significant and the values using the FE-MA and RE-MA models were identical.

    The last part of the summary first quantifies the level of heterogeneity of the included studies and then tests whether or not there is statistically significant heterogeneity. In the ‘Quantifying heterogeneity’section, between study variance (τ2or ‘tau^2’) is estimated to be 0; the standardized heterogeneity index (H) is estimated to be 1 with a 95% CI of 1 to 1.47,and the proportion of the total variance attributed to between-study heterogeneity (I2) if 0% with a 95% CI of 0% to 53.8%. In the ‘Test of heterogeneity’ section, the p-value for the Q-statistic, 0.772, is not significant which indicates that there was no significant heterogeneity between the five studies (which is the reason the pooled RRs for the fixed-effect and random-effect models were so similar).

    The Q statistic only assesses the presence or absence of heterogeneity. Test can only tell us about the presence versus the absence of heterogeneity and‘Quantifying heterogeneity’ is then to report the extend of such heterogeneity which shows that the betweenstudy heterogeneity τ2(‘tau^2’) is estimated to be 0;the standardized heterogeneity index H is estimated to be 1 with 95% CI [1; 1.47]; the measure of proportion of observed heterogeneity from the total heterogeneityI2= 0% with 95% CI [0%; 53.8%] indicating again that there is no statistically significant heterogeneity for this MA.

    For any MA, a forest plot is typically produced for summary and publication purposes. The forest plot for this dataset shown in Figure 1 can be simply produced in R by using the ‘forest’ function as follows:

    > forest(RR1.Lamo)

    3.3. Meta-analysis with risk-difference and odds-ratio

    The risk-ratio is probably the most commonly used measure of ES in MA for binomial data, but other measures of ES include the risk-difference and oddsratio. The definition of risk difference (RD) is simply the difference of the risks between a treatment (or intervention) group and control group, defined as:

    with the risk (or probability) of a target outcome defined as in (3.1). The statistical inference for RD is to test whether this RD is statistically significant different from zero.

    The odds-ratio (OR), which is familiar because of its use in logistic regression, is intuitively less appealing than the RR or RD. The odds-rati o (OR) associated with an event is defined as the ratio of the odds of the event in one study group to the odds of the event in another study group. The odds of the event is de fi ned as:

    Thus the odds-rati o (OR) of the treatment group (such as, lamotrigine) to the control group for kth study can be formulated as follows:

    The statistical inference for the OR in meta-analysis is usually conducted by converting the odds-ratio to the log scale and estimating the log odds-ratio and its standard error based on an approximate normal distributi on.

    The implementation of these alternative methods for estimated ES in R is very straightforward. It is done by specifyingsm=‘RD’for risk-difference andsm=‘OR’for odds-rati o in the R functi on ‘metabin’ in the coding block shown in section 3.2.

    4. Discussion

    This paper provides an overview for meta-analysis using the classical fixed-effects and random-effects models and illustrates the models using the ‘meta’ package in R.Other commonly used R packages for conducting metaanalysis, such as ‘rmeta’ and ‘metafor’, and extensive illustrations of their application can be freely accessed from http://www.r-project.org. Further description of this meta-analysis methodology and its implementation using R is available inApplied Meta-Analysis with Rby Chen and Peace.[5]

    Conflict of interest

    The author declares no conflict of interest.

    Funding

    No funding was provided to prepare this paper.

    1. Whitehead A.Meta-Analysis of Controlled Clinical Trials.New Jersey: John Wiley & Sons, Inc.; 2003

    2. Hartung J, Knapp G, Sinha BK.statistical Meta-Analysis with Applicati ons. New Jersey: John Wiley & Sons, Inc.; 2008

    3. Borenstein M, Hedges, LV, Higgins JPT, Rothstein HR.Introducti on to Meta-Analysis. New Jersey: Wiley; 2009

    4. Pigott TD.Advances in Meta-Analysis. New York: Springer;2012

    5. Chen DG, Peace KE.Applied Meta-Analysiswith R. Chapman and Hall/CRC Biostati stics Series. London: Taylor & Francis Group, Inc.; 2013

    6. Geddes JR, Calabrese JR, GodwinGM. Lamotrigine for treatment of bipolar depression: independent meta-analysis and meta-regression of individual patient data from five randomized trials.BJP.2009; 194: 4-9

    7. Calabrese JP, Huff man RF, White RL, Edwards S, Thompson TR, Ascher JA. Lamotrigine in the acute treatment of bipolar depression: results of fi ve double-blind, placebo-controlled clinical trials.Bipolar Disorder.2008; 10(2): 323-333. doi:http://dx.doi.org/10.1111/j.1399-5618.2007.00500.x

    8. DerSimonian R, Laird N. Meta-analysis in clinical trials.Control Clin Trials. 1986; 7: 177-188. doi: http://dx.doi.org/10.1016/0197-2456(86)90046-2

    9. Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis.Stat Med. 1998; 17(8):841-856. doi: http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D

    10. Raudenbush SW, Bryk AS. Empirical Bayes meta-analysis.J Educ Stat. 1985; 10(2):75-98. doi: http://dx.doi.org/10.2307/1164836

    11. Sidik K, Jonkman JN. Simple heterogeneity variance estimation for meta-analysis.J R Stat Soc Series C. 2005;54(2): 367–384. doi: http://dx.doi.org/10.1111/j.1467-9876.2005.00489.x

    12. Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies.Stat Med.2007;26(9): 1964–1981. doi: http://dx.doi.org/10.1002/sim.2688

    13. Hamilton M. A rating scale for depression.J Neurol Neurosurg Psychiatry.1960; 23(1): 56-62

    2015-05-29; accepted, 2015-06-18)

    Ding-Geng (Din) Chen received his Ph.D. in Statistics from University of Guelph (Canada) in 1995 and he is now the Wallace H. Kuralt Distinguished Professor and Director of statistical Development and Consultation at the School of Social Work, University of North Carolina at Chapel Hill. Professor Chen was a professor in biostatistics at the University of Rochester from 2010 to 2015 and the Karl E. Peace endowed eminent scholar chair in biostatistics from the Jiann-Ping Hsu College of Public Health at the Georgia Southern University from 2009 to 2010. Professor Chen is also a senior biostatistics consultant for biopharmaceuti cals and government agencies with extensive expertise in clinical trials and bioinformati cs. He has more than 100 referred professional publications and co-authored/co-edited six books on ‘Clinical Trial Methodology (2010)’, ‘Clinical Trial Data Analysis Using R(2011)’, ‘Interval-Censored Time-to-Event Data: Methods and Applications (2012)’, ‘Applied Meta-Analysis Using R(2013)’and ‘Clinical Trials Biostatistics and Biopharmaceuti cal Applicati on (2014)’ published by Chapman and Hall/CRC and ‘Innovative statistical Methods for Public Health Data (2015) by Springer.

    使用免費軟件R進行精神病學研究的Meta 分析

    Chen DG

    meta分析;固定效應模型;隨機效應模型;雙相情感障礙;拉莫三嗪

    Summary:This paper provides a brief overview of meta-analysis (MA) with emphasis on classical fixedeffects and random-effects MA models. It illustrates the application of MA models with the open-source software R using publicly available data from five studies on lamotrigine to treat bipolar depression and finds that meta-analysis identifies a statistically significant advantage of lamotrigine over placebo that was not evident in the individual studies.

    [Shanghai Arch Psychiatry. 2015; 27(3): 195-199.

    http://dx.doi.org/10.11919/j.issn.1002-0829.215063]

    School of Social Work, University of North Carolina at Chapel Hill, Chapel Hill, United States

    correspondence: DrDG.Chen@gmail.com

    概述:本文對meta分析(meta-analysis, MA)作了簡要概述,并著重于經(jīng)典的固定效應和隨機效應MA模型。文章以綜合分析5項使用拉莫三嗪治療雙相障礙抑郁發(fā)作的研究的公開數(shù)據(jù)為范例,介紹了MA模型的應用及免費軟件R在meta分析中的使用方法,該meta分析證實拉莫三嗪的效果優(yōu)于安慰劑,且有統(tǒng)計學顯著性,而在單個的研究中此優(yōu)勢并不明顯。

    本文全文中文版從2015年08月06日起在http://dx.doi.org/10.11919/j.issn.1002-0829.215063可供免費閱覽下載

    猜你喜歡
    免費軟件拉莫三嗪
    藍色的海豚島(四)
    利用免費分子繪制軟件實現(xiàn)線上線下的互動教學
    小象柚子長大了
    互聯(lián)網(wǎng)的營銷價值與有效挖掘思考
    三嗪—羅丹明型鐵離子熒光探針的合成及性能
    新型三嗪類氮-硅成炭劑的合成及其熱穩(wěn)定性
    合成化學(2015年1期)2016-01-17 09:01:13
    內(nèi)含雙二氯均三嗪基團的真絲織物抗皺劑的合成
    三嗪型二苯乙烯熒光增白劑的研究進展
    200合1,全球最強免費軟件合集
    青青草视频在线视频观看| 插逼视频在线观看| 免费在线观看成人毛片| 精华霜和精华液先用哪个| 网址你懂的国产日韩在线| .国产精品久久| 十八禁国产超污无遮挡网站| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av成人精品| 久久久久九九精品影院| 国产高清有码在线观看视频| 亚洲精品乱久久久久久| 亚洲精品色激情综合| 亚州av有码| 我要搜黄色片| 精品一区二区三区视频在线| 男人和女人高潮做爰伦理| 亚洲av不卡在线观看| 国产色爽女视频免费观看| 成人二区视频| 麻豆av噜噜一区二区三区| 亚洲人成网站在线播| 可以在线观看毛片的网站| 亚洲国产日韩欧美精品在线观看| av在线蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av免费在线观看| 男女视频在线观看网站免费| 日本一二三区视频观看| 国产亚洲精品久久久com| 51国产日韩欧美| 午夜精品国产一区二区电影 | 黄色配什么色好看| 国产成人精品久久久久久| 精品国产三级普通话版| 午夜a级毛片| 看非洲黑人一级黄片| 午夜日本视频在线| 男人舔女人下体高潮全视频| 久久婷婷人人爽人人干人人爱| 国产免费一级a男人的天堂| 三级经典国产精品| .国产精品久久| 国语自产精品视频在线第100页| 日韩国内少妇激情av| 麻豆成人av视频| 亚洲欧美日韩东京热| 小蜜桃在线观看免费完整版高清| 黄色配什么色好看| 91午夜精品亚洲一区二区三区| 99热这里只有是精品50| 一级二级三级毛片免费看| 菩萨蛮人人尽说江南好唐韦庄 | 免费看美女性在线毛片视频| 天美传媒精品一区二区| 亚洲国产精品成人综合色| 一个人观看的视频www高清免费观看| 欧美zozozo另类| 亚洲va在线va天堂va国产| 欧美成人a在线观看| 卡戴珊不雅视频在线播放| 一本一本综合久久| 老师上课跳d突然被开到最大视频| 美女脱内裤让男人舔精品视频| 久久久久久伊人网av| 午夜老司机福利剧场| 国产又黄又爽又无遮挡在线| 亚洲欧美精品自产自拍| 长腿黑丝高跟| 美女高潮的动态| 尾随美女入室| 日韩精品有码人妻一区| 男人的好看免费观看在线视频| 国产色爽女视频免费观看| 国产成人精品久久久久久| 亚州av有码| 男人的好看免费观看在线视频| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 国产高清有码在线观看视频| 丝袜喷水一区| 人妻夜夜爽99麻豆av| 99在线人妻在线中文字幕| 国产淫片久久久久久久久| 成人午夜精彩视频在线观看| 亚洲av男天堂| 99久久精品国产国产毛片| 99久久成人亚洲精品观看| 欧美最新免费一区二区三区| 亚洲自偷自拍三级| 中文字幕精品亚洲无线码一区| 麻豆一二三区av精品| 日韩av不卡免费在线播放| 亚洲国产欧美人成| 韩国高清视频一区二区三区| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| 国产淫片久久久久久久久| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 天堂√8在线中文| 超碰av人人做人人爽久久| 男人和女人高潮做爰伦理| 国产黄色视频一区二区在线观看 | 国产精品爽爽va在线观看网站| 国产中年淑女户外野战色| 午夜免费男女啪啪视频观看| 男女啪啪激烈高潮av片| 日本av手机在线免费观看| 如何舔出高潮| 夜夜看夜夜爽夜夜摸| 亚洲av福利一区| 好男人在线观看高清免费视频| 国产色婷婷99| 国产av在哪里看| 免费观看人在逋| 特大巨黑吊av在线直播| 国产精品.久久久| 亚洲欧美成人综合另类久久久 | 大话2 男鬼变身卡| 嫩草影院精品99| 啦啦啦啦在线视频资源| 色网站视频免费| 国产精品一区二区三区四区久久| 少妇人妻精品综合一区二区| www.av在线官网国产| 婷婷六月久久综合丁香| 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 亚洲伊人久久精品综合 | kizo精华| 亚洲怡红院男人天堂| 亚洲欧美清纯卡通| 99热精品在线国产| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| .国产精品久久| 亚洲av成人av| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 久久久午夜欧美精品| 日韩成人av中文字幕在线观看| 亚洲精品乱码久久久v下载方式| 天堂中文最新版在线下载 | 日日啪夜夜撸| 插阴视频在线观看视频| 国产午夜精品一二区理论片| 99热网站在线观看| 国产视频内射| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| 国产精品永久免费网站| 久久99精品国语久久久| 国产亚洲精品久久久com| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 亚洲成人久久爱视频| 久久久久久久久久成人| 精品一区二区免费观看| 久久精品国产亚洲网站| 国产午夜福利久久久久久| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 国产精品久久久久久久电影| 日本爱情动作片www.在线观看| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 国产乱来视频区| 女人久久www免费人成看片 | 三级经典国产精品| 成人漫画全彩无遮挡| 欧美高清性xxxxhd video| 成人毛片60女人毛片免费| 久久综合国产亚洲精品| 亚洲在线自拍视频| 国内揄拍国产精品人妻在线| 麻豆成人午夜福利视频| 夫妻性生交免费视频一级片| 一级毛片久久久久久久久女| 一级毛片aaaaaa免费看小| 免费观看a级毛片全部| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 少妇裸体淫交视频免费看高清| 乱码一卡2卡4卡精品| 国产三级中文精品| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| 婷婷六月久久综合丁香| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 看十八女毛片水多多多| .国产精品久久| 99在线视频只有这里精品首页| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 亚洲av福利一区| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| 五月伊人婷婷丁香| 亚洲国产精品合色在线| 国产精品不卡视频一区二区| 91aial.com中文字幕在线观看| 亚洲高清免费不卡视频| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站| 高清毛片免费看| 麻豆久久精品国产亚洲av| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 在线a可以看的网站| 久久久久久久久久成人| 亚洲欧美日韩无卡精品| av卡一久久| 十八禁国产超污无遮挡网站| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx在线观看| 一级av片app| 色网站视频免费| 亚洲自偷自拍三级| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 日本-黄色视频高清免费观看| 在线免费观看的www视频| 青青草视频在线视频观看| 亚洲最大成人手机在线| 级片在线观看| 亚洲成人av在线免费| 亚洲欧洲国产日韩| 久久6这里有精品| 三级国产精品片| 看黄色毛片网站| 黄片无遮挡物在线观看| 色吧在线观看| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久 | 一个人看视频在线观看www免费| 天堂中文最新版在线下载 | 99热精品在线国产| 汤姆久久久久久久影院中文字幕 | 亚洲精品影视一区二区三区av| 小蜜桃在线观看免费完整版高清| 久久精品影院6| 久久精品国产亚洲av天美| av在线观看视频网站免费| 99久国产av精品国产电影| 看免费成人av毛片| 亚洲av一区综合| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩强制内射视频| 国产伦精品一区二区三区四那| 亚洲国产精品专区欧美| 午夜福利成人在线免费观看| 精品人妻视频免费看| 亚洲成人久久爱视频| 精品国产一区二区三区久久久樱花 | 水蜜桃什么品种好| 精品一区二区三区人妻视频| 一级毛片我不卡| 天天一区二区日本电影三级| 亚洲av一区综合| a级一级毛片免费在线观看| 色吧在线观看| 国产在视频线在精品| 精华霜和精华液先用哪个| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 日本av手机在线免费观看| 国产午夜精品一二区理论片| 国产一区亚洲一区在线观看| 国产中年淑女户外野战色| 中文字幕久久专区| 国产黄色视频一区二区在线观看 | 日韩在线高清观看一区二区三区| 日韩av在线免费看完整版不卡| 国产亚洲91精品色在线| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 99久久精品一区二区三区| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 久热久热在线精品观看| 国产精品无大码| 久久精品夜色国产| 亚洲精品亚洲一区二区| 久久精品夜色国产| 午夜日本视频在线| 一级黄片播放器| 麻豆久久精品国产亚洲av| 日韩高清综合在线| 国产av码专区亚洲av| 少妇猛男粗大的猛烈进出视频 | 在现免费观看毛片| 久久久久免费精品人妻一区二区| 草草在线视频免费看| 国产精品久久视频播放| 99热这里只有是精品50| 国产精品综合久久久久久久免费| 我要搜黄色片| 国产在视频线在精品| 久久精品人妻少妇| 国产精品美女特级片免费视频播放器| 边亲边吃奶的免费视频| 亚洲国产色片| 欧美一区二区精品小视频在线| 2021少妇久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 国产免费视频播放在线视频 | 亚洲国产精品sss在线观看| 久久人人爽人人片av| 欧美精品一区二区大全| 一级毛片我不卡| 亚洲无线观看免费| 寂寞人妻少妇视频99o| 亚洲av福利一区| 在现免费观看毛片| 成人欧美大片| 亚洲av中文av极速乱| 久久久精品欧美日韩精品| 免费人成在线观看视频色| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 中文字幕亚洲精品专区| 精品国产三级普通话版| 国产精品永久免费网站| 美女国产视频在线观看| 国产色爽女视频免费观看| 99热网站在线观看| av在线老鸭窝| 国产高清视频在线观看网站| 亚洲在线自拍视频| 高清av免费在线| 国产色婷婷99| 色哟哟·www| 精品国内亚洲2022精品成人| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 色综合站精品国产| 国产亚洲精品av在线| 亚洲最大成人av| 日韩欧美在线乱码| 国产精品爽爽va在线观看网站| 国产在线男女| 99九九线精品视频在线观看视频| 搞女人的毛片| 成人午夜高清在线视频| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 成人亚洲欧美一区二区av| 精品久久久久久久末码| 日本免费在线观看一区| 精品欧美国产一区二区三| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 色视频www国产| 亚洲色图av天堂| 超碰av人人做人人爽久久| 国产精品久久视频播放| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 一本久久精品| 久久久久久久久久成人| av又黄又爽大尺度在线免费看 | 国产探花极品一区二区| 国产成年人精品一区二区| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线 | 久久热精品热| 国产精品久久久久久av不卡| 成年版毛片免费区| 插阴视频在线观看视频| 人妻夜夜爽99麻豆av| 中文乱码字字幕精品一区二区三区 | 欧美又色又爽又黄视频| 久久久国产成人精品二区| 国产 一区精品| 女的被弄到高潮叫床怎么办| www.色视频.com| 国产综合懂色| 床上黄色一级片| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 亚洲av中文字字幕乱码综合| 久久综合国产亚洲精品| 白带黄色成豆腐渣| 男插女下体视频免费在线播放| 国产极品精品免费视频能看的| 国产片特级美女逼逼视频| 精品人妻偷拍中文字幕| 欧美3d第一页| 亚洲欧洲国产日韩| 十八禁国产超污无遮挡网站| 国产亚洲午夜精品一区二区久久 | 精品久久久噜噜| 国产一区二区在线av高清观看| 久久久久久久久中文| 18禁在线播放成人免费| 白带黄色成豆腐渣| 一级毛片我不卡| 国内精品美女久久久久久| 亚洲国产色片| 亚洲乱码一区二区免费版| 久热久热在线精品观看| 亚洲综合色惰| 可以在线观看毛片的网站| 日韩强制内射视频| 不卡视频在线观看欧美| 丰满少妇做爰视频| 中文天堂在线官网| 超碰97精品在线观看| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| 欧美又色又爽又黄视频| 麻豆精品久久久久久蜜桃| 97人妻精品一区二区三区麻豆| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 亚洲在线自拍视频| 噜噜噜噜噜久久久久久91| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 欧美日韩一区二区视频在线观看视频在线 | 日本与韩国留学比较| 特大巨黑吊av在线直播| 国产精品,欧美在线| 亚洲三级黄色毛片| 18禁在线播放成人免费| 亚洲成色77777| 免费观看的影片在线观看| 男的添女的下面高潮视频| 麻豆乱淫一区二区| 最新中文字幕久久久久| 亚洲在线自拍视频| 舔av片在线| www.av在线官网国产| 一级毛片我不卡| 纵有疾风起免费观看全集完整版 | 99久久成人亚洲精品观看| 久久久久久久久久黄片| 18+在线观看网站| 狠狠狠狠99中文字幕| 色网站视频免费| 1024手机看黄色片| 免费看a级黄色片| 精品99又大又爽又粗少妇毛片| 最近最新中文字幕免费大全7| 成人欧美大片| 国产真实伦视频高清在线观看| 久久人人爽人人片av| 黄片wwwwww| 国产综合懂色| or卡值多少钱| 国语自产精品视频在线第100页| 亚洲四区av| 午夜福利在线在线| 蜜桃久久精品国产亚洲av| 亚洲精品色激情综合| 久久久欧美国产精品| 成人午夜高清在线视频| 日本黄大片高清| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 一级毛片aaaaaa免费看小| 免费观看人在逋| 色网站视频免费| 国产成人aa在线观看| 亚洲成人精品中文字幕电影| 99久久成人亚洲精品观看| 有码 亚洲区| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 久久欧美精品欧美久久欧美| 欧美高清性xxxxhd video| 欧美精品国产亚洲| 国产探花极品一区二区| 亚洲最大成人手机在线| 黄片无遮挡物在线观看| 国产亚洲av片在线观看秒播厂 | 欧美成人a在线观看| 亚洲精品aⅴ在线观看| 男人狂女人下面高潮的视频| 日韩欧美三级三区| 91狼人影院| 午夜福利在线观看吧| 国内少妇人妻偷人精品xxx网站| 国产精品伦人一区二区| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 亚洲va在线va天堂va国产| 午夜日本视频在线| 国产在线一区二区三区精 | 国产成人精品一,二区| 深爱激情五月婷婷| 你懂的网址亚洲精品在线观看 | 99久久精品热视频| 欧美变态另类bdsm刘玥| 性插视频无遮挡在线免费观看| 国产高潮美女av| 欧美成人免费av一区二区三区| av又黄又爽大尺度在线免费看 | a级毛片免费高清观看在线播放| 精品酒店卫生间| 国产真实乱freesex| www日本黄色视频网| 午夜精品一区二区三区免费看| 少妇裸体淫交视频免费看高清| 高清午夜精品一区二区三区| 建设人人有责人人尽责人人享有的 | 好男人视频免费观看在线| 久久久亚洲精品成人影院| 亚洲久久久久久中文字幕| 床上黄色一级片| 国产毛片a区久久久久| 精品一区二区三区视频在线| 少妇被粗大猛烈的视频| 欧美潮喷喷水| 久久韩国三级中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲美女搞黄在线观看| 综合色av麻豆| 欧美区成人在线视频| 麻豆精品久久久久久蜜桃| 国产成人免费观看mmmm| 国产午夜精品论理片| 一本久久精品| 国产精品无大码| 国产成人精品一,二区| 搡老妇女老女人老熟妇| 国产免费一级a男人的天堂| 特大巨黑吊av在线直播| 亚洲欧洲日产国产| 欧美激情国产日韩精品一区| 99国产精品一区二区蜜桃av| 国产老妇女一区| 国产精品嫩草影院av在线观看| 日本免费一区二区三区高清不卡| 国产一级毛片在线| 国产成人福利小说| 黄色日韩在线| 久久99热6这里只有精品| 97超视频在线观看视频| 久久精品国产亚洲av涩爱| 好男人在线观看高清免费视频| 日韩中字成人| 国产精品一二三区在线看| 亚洲一级一片aⅴ在线观看| 亚洲无线观看免费| 国产精品嫩草影院av在线观看| 3wmmmm亚洲av在线观看| 午夜视频国产福利| 18禁裸乳无遮挡免费网站照片| 黄片无遮挡物在线观看| 亚洲三级黄色毛片| 天天躁日日操中文字幕| 午夜福利在线在线| 99热这里只有是精品50| 69av精品久久久久久| 日韩av不卡免费在线播放| 长腿黑丝高跟| 国产成人freesex在线| 午夜爱爱视频在线播放| 久久亚洲精品不卡| 欧美日本视频| 好男人在线观看高清免费视频| 男女下面进入的视频免费午夜| 人人妻人人看人人澡| 国语对白做爰xxxⅹ性视频网站| 国产 一区精品| 99久久精品一区二区三区| 丰满少妇做爰视频| 美女大奶头视频| 看片在线看免费视频| 久久午夜福利片| 国产真实伦视频高清在线观看| 可以在线观看毛片的网站| 国模一区二区三区四区视频| 村上凉子中文字幕在线| 啦啦啦韩国在线观看视频| 好男人视频免费观看在线| 亚洲自拍偷在线| 久久这里有精品视频免费| 一区二区三区乱码不卡18| 日本午夜av视频| 18+在线观看网站| 亚洲av免费高清在线观看| 久久亚洲精品不卡| 国产成人一区二区在线| 国产人妻一区二区三区在| 色综合亚洲欧美另类图片| 国产成人一区二区在线| 午夜爱爱视频在线播放| av免费在线看不卡| 久久鲁丝午夜福利片| 非洲黑人性xxxx精品又粗又长| 国产一区亚洲一区在线观看| 女人久久www免费人成看片 | 亚洲国产精品专区欧美| 免费看光身美女| 久久人人爽人人片av|