• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The debate about p-values

    2015-12-09 01:52:00YingLUIlanaBELITSKAYALEVY
    上海精神醫(yī)學 2015年6期
    關(guān)鍵詞:檢驗所假設(shè)檢驗局限性

    Ying LU*, Ilana BELITSKAYA-LEVY

    ?Biostatistics in psychiatry (30)?

    The debate about p-values

    Ying LU1,2,#,*, Ilana BELITSKAYA-LEVY1,#

    p-value; inferential statistics; hypothesis testing; statistical significance; scientific repeatability

    1. Introduction

    In a typical study, such as a clinical trial, the investigators might be interested in the difference in a pre-selected primary endpoint between an innovative treatment and a placebo control (or a standard treatment) group.Motivated by preliminary evidence that the innovative treatment may potentially benefit patients, clinical trials aim to test this hypothesis rigorously.

    Before we prove that a new, experimental treatment works, we have to maintain equipoise for both treatment options in order to ethically conduct a trial. Equipoise means that there is no difference between the two treatments. This hypothesis is what we statistically refer to as the 'null hypothesis'. In addition to the null hypothesis, all clinical trials also have a working hypothesis that the experimental treatment will not only work, but also achieve clinically significant benefits. This hypothesis is often referred to as the alternative hypothesis.

    Upon completion of a trial, we examine the trial data in order to determine which hypothesis – the null hypothesis or the alternative hypothesis – is supported.In 1925 Fisher[1]introduced null hypothesis significance testing (NHST) to objectively separate interesting findings from background noise. The NHST is the most widely used data analysis method in most scientific disciplines.[2]We look at the difference between the two treatments that we observe in the trial and ask ourselves: “What is the probability of observing a difference between the groups as large as the observed one (or larger) under the equipoise (null) hypothesis?”This probability is referred to as the ‘p-value’[3]or‘the significance probability.’ When this probability is sufficiently small, we are confident that the likelihood of no difference between treatments is very small and,thus, we conclude that the trial supports the alternative hypothesis (i.e., the working hypothesis that motivated the study). When the probability is larger, we have little evidence to support the alternative hypothesis, even though it may still be true.

    In statistical hypothesis testing, two types of errors can occur: false positives (i.e., the incorrect rejection of the null hypothesis) and false negatives (i.e., the failure to reject a false null hypothesis). The NHST approach uses an arbitrary cutoff value (usually 0.05) to control the false-positive rate. Findings withp-values smaller than the cutoff value are described as ‘statistically significant’ or ‘positive,’ while findings withp-values equal to or larger than the cutoff are described as ‘nonsignificant’ or ‘negative.’

    2. The debate about p-values

    The beauty of ap-value is that it combines both the signal (treatment difference) and noise (random variation of the estimated signal) into a single measure of the strength of the evidence provided by the trial data. Widely adopted in the scientific research community,p-values are considered the most influential and transformative statistical concept in modern science. However, despite their success, there is an emerging debate about whether or not the use ofp-values is responsible for the frequent failure to replicate statistically significant scientific findings – a serious problem that limits the translation of clinical research into clinical practice. In their recent paper inNature Methods, Halsey and colleagues[4]argued that:

    “theP-value is often used without the realization that in most cases the statistical power of a study is too low forPto assist the interpretation of the data. … Researchers would do better to discard theP-value and use alternative statistical measures for data interpretation.”

    In accordance with this thinking, the editors of the journalBasic and Applied Social Psychologyrecently bannedp-values and hypothesis testing from articles published in their journal.[5]

    In contrast to this view, we argue that the p-value alone cannot be blamed for the lack of repeatability of scientific research findings. Thep-value is a onedimensional metric that measures the strength of evidence as a signal-to-noise ratio in one experiment.Like all statistics, thep-value is estimated from the data and, thus, is subject to random variations; so its confidence interval can be pretty wide, particularly when the original data are from a relatively small sample of data points. For example, based on the work of Lazzeroni and colleagues,[6,7]identical replication of a test with a reported one-sidedp-value of 2.5% would have a 95% confidence interval for thep-value ranging from 0 to 79%. However, the width of this confidence interval can be narrowed by increasing the sample size of the replication experiment.

    One common misuse of thep-value unrelated to the repeatability of research results is that it is often misinterpreted by clinicians and other persons who are not trained in statistics. Thep-value, which assesses the probability a given result is due to chance, is often incorrectly interpreted as a measure of the strength of a relationship. For example, in clinical trials smallerp-values are incorrectly presumed to show a greater superiority of the experimental intervention compared to the intervention (if any) in the control group.However, a tiny, clinically-insignificant effect size can be associated with very lowp-values if the sample size is quite large. Thus, a lowp-value does not necessarily mean that a finding is of major clinical or biological interest.

    Several alternatives top-values have been proposed,[8,9]including confidence intervals and Bayesian statistics. A confidence interval provides twodimensional information, the point estimate (signal)and the width of the confidence interval (noise), thus it can potentially be more informative than ap-value and should always be reported. However, confidence intervals are unit-dependent and, thus, are hard to compare between different studies. Additionally,decision rules about acceptance or rejection of the null hypothesis based on confidence intervals result in the same conclusion as decision rules based onp-value –whenever a 95% confidence interval excludes the null value of a parameter there is a correspondingp-value less than 0.05. The ‘Bayesian credible interval’ in Bayesian statistics, analogous to the confidence interval in frequency statistics, is another possible alternative to thep-value.[10]However both of these alternative methods can, like thep-value, result in false positives and false negatives when deciding to accept or reject a clinical hypothesis and can be incorrectly interpreted to represent the clinical or biological importance of the finding.

    3. Banning p-values is not a solution for reproducible research

    There are many stages to the design and analysis of a successful study, including data collection, processing,and analysis. The last of these steps is the calculation of an inferential statistic, such as ap-value, and application of a decision rule using this statistic (e.g.,p<0.05) to accept or reject the hypothesis of interest. In the course of collecting and analyzing data, researchers have many decisions to make, such as how much data to collect,which observations to exclude, and which conditions to combine and compare.[11]These decisions made before the data analysis have a much greater impact on the validity of the final results than the decision about which inferential statistic to employ.[12]

    Simmons and colleagues[11]have shown that despite the nominal endorsement of a maximum false-positive rate of 5% (i.e.,p<0.05), changes in a few data-analysis decisions can increase the falsepositive rate to 60% in a single study. To protect against the under-estimation of the false-positive rate, they recommend the full disclosure of all data-analysis decisions and the reporting of all relevant comparisons,not only the significant ones. A more rigorous method to reduce publications with false-positive results is recommended by Gelman and Loken:[13]it involves conducting all studies in two stages, the first being a theory-based exploratory study and the second being a purely confirmatory study with its own pre-registered protocol that specifies in advance all the details of data processing and analysis. This approach allows for freedom and flexibility in the analysis while providing enough rigor to reduce the number of false positive results being published. It also helps distinguish the results of confirmatory analyses, which are reasonably robust, from the results of exploratory analyses, which should be treated with skepticism.[14]

    The incentives to publish only statistically significant(‘positive’) results has led to publication bias, a phenomenon in which studies with positive results are more likely to be published than studies with negative results. Publication bias is a serious problem that affects both the repeatability of research results and,perhaps more importantly, the correct interpretation and translation of published research results into clinical guidelines and health policies.[15]However, publication bias is primarily a problem of selective publication unrelated to the use of thep-value; the selective reporting of positive studies can also occur when other inferential statistics such as the Bayesian critical interval are used to test the null and alternative hypotheses.[16]Publication bias can be reduced not by banning p-values,but by applying higher standards and scientifically based review processes, and by encouraging the publication of well-designed and conducted ‘negative’ studies.

    The lack of repeatability in research cannot be blamed on the use ofp-values. As pointed out by Leek and Peng,[12]“ridding science of shoddy statistics will require scrutiny at every step, not merely the last one”.Clinical trial research is constructed from clearly defined null and alternative hypotheses, so the use of ap-value for hypothesis testing is appropriate. Banningp-values is not the solution to the low repeatability of scientific research findings.

    So what is the main culprit that can explain poor repeatability of research findings? If we think of statistical decision-making as diagnostic tests of the scientific validity of the result generated using the data collected in a study, ap-value can be viewed as a lab test value (similar to a lab test to aid in the determination of a clinical diagnosis). In this analogy,one minus thep-value is the specificity of the ‘diagnostic test’, that is, the chance of accepting the null when there is no treatment effect. The statistical power is the sensitivity of the diagnostic test, the ability to correctly identify a true/valid hypothesis. However, if only a small proportion of studies undertaken have correct(true/valid) clinical hypotheses, the positive predictive value of the diagnostic/statistical test (i.e., the chance of the clinical hypothesis being true given a statistically significant test) would be low. For example, using a study design with a 5% Type I error rate (i.e., a 95% specificity)and an 80% power (sensitivity), when only 10% of the clinical hypotheses to be tested are true, the positive predictive value – the likelihood that a ‘statistically significant’ result is true – is merely 60% and would be even worse for designs with lower statistical power.Thus, banningp-values is not a solution for research that is based on questionable hypotheses. This concept was explained by Dr. Ioannidis[17]in 2005 in his famous article titled “Why most published research findings are false.”Science is an iterative learning process. There is no shortcut. As long as the proportion of true hypotheses is low among the studies undertaken or the statistical power of the undertaken studies is low (low sensitivity),the results are less likely to be repeatable. Garbage in garbage out!

    To improve reproducibility of research findings,we must first rigorously apply scientific principles to generate well-defined and scientifically justified hypotheses. This requires thorough background research (often including systematic reviews) to develop protocols with a solid foundation, conducting pilot studies to prove concepts, using rigorous methods to objectively assess outcome measures, and properly sizing the clinical trials to ensure high statistical power(i.e., high sensitivity). Physicians do not diagnose a disease based on a single lab value; they rely on collective evidence that supports the diagnostic test.Similarly, the results of clinical trials and other medical research should not depend entirely on a singlep-value for the primary endpoint; the consistency of the finding for the primary endpoint with supporting evidence from secondary endpoints and with other evidence should be taken into account. Finally, it is critically important to report study findings in an accurate, complete,and transparent way (e.g., using reporting guidelines,available at: http://www.equator-network.org) that makes it possible for readers who may wish to use or replicate the results to clearly understand the strengths and limitations of the study and the strengths and limitations of the statistical methods used to analyze the data generated by the study.

    4. Conclusion

    In summary, thep-value is an acceptable inferential statistic to test hypotheses in clinical trial research.However, exclusively relying on a singlep-value to judge the scientific merit of a study is a misuse of thep-value; study conclusions need to be based on a range of inter-related findings, not on a single statistical test. Understanding the limitations and variability ofp-values is crucial to correctly interpreting trial results.Better background preparations for studies and the conduct of effective pilot studies before undertaking the main study are the most important steps that are needed to improve the validity and repeatability of scientific findings. Dropping the use of thep-value and of hypothesis testing due to their limitations is unlikely to have much effect on improving the repeatability of clinical trial research.

    Acknowledgements

    The authors appreciate the review and suggestions of the Editor and editorial suggestions by Cheylynne Somogyi and Joseph Nozzolillo at Palo Alto VA Health Care System.

    Funding

    This work was supported by the VA Cooperative Studies Program through the US Department of Veterans Affairs.

    Conflict of interest statement

    The authors report no conflict of interest related to this manuscript.

    Authors’ contributions

    Both authors contributed equally to this paper.

    1. Fisher RA.Statistical Methods for Research Workers.London:Oliver & Boyd; 1925

    2. Goodman SN. Toward evidence-based medical statistics. 1:ThePvalue fallacy.Ann Intern Med.1999; 130(12): 995-1004.http://dx.doi.org/10.7326/0003-4819-130-12-199906150-00008

    3. Mudholkar GS, Chaubey YP. On defining P-values.Stat Prob Letters.2009; 79(18): 1963-1971. doi: http://dx.doi.org/10.1016/j.spl.2009.06.006

    4. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fi cklePvalue generates irreproducible results.Nat Methods.2015; 12(3): 179-185. doi: http://dx.doi.org/10.1038/nmeth.3288

    5. Traf i mow D, Marks M. Editorial.Basic Appl. Soc. Psych.2015;37: 1–2. doi: http://dx.doi.org/10.1080/01973533.2015.1012 991

    6. Lazzeroni LC, Lu Y, Belitskaya-Lévy I.P-values in genomics:Apparent precision masks high uncertainty.Mol Psychiatry.2014; 19(12): 1336-1340. doi: http://dx.doi.org/10.1038/mp.2013.184

    7. Lazzeroni LC, Lu Y, Belitskaya-Levy I. Solutions for quantifyingP-value uncertainty and replication power.Nat Methods.2016; 13(2): 107-108. doi: http://dx.doi.org/10.1038/nmeth.3741

    8. Cumming G. Replication andpintervals:pvalues predict the future only vaguely, but conf i dence intervals do much better.Perspect Psychol Sci.2008; 3(4): 286–300. doi: http://dx.doi.org/10.1111/j.1745-6924.2008.00079.x

    9. Blume J, Peipert JF. What your statistician never told you aboutP-values.J Am Assoc Gynecol Laparosc.2013; 10(4):439-444

    10. Lee PM.Bayesian Statistics: An Introduction.4th edition.Wiley; 2012

    11. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: undisclosed flexibility in data collection and analysis allow presenting anything as significant.Psychological Science.2011; 22(11): 1359-1366. doi: http://dx.doi.org/10.1177/0956797611417632

    12. Leek JT, Peng RD. Statistics:Pvalues are just the tip of the iceberg.Nature.2015; 520(7549): 612. doi: http://dx.doi.org/10.1038/520612a

    13. Gelman A, Loken E. The statistical crisis in science: datadependent analysis – a “garden of forking paths” – explains why many statistically significant comparisons don’t hold up.Am Sci.2014; 102(6): 460. doi: http://dx.doi.org/10.1511/2014.111.460

    14. Nuzzo R. Statistical errors:Pvalues, the “gold standard”of statistical validity, are not as reliable as many scientists assume.Nature.2014; 130(7487): 150-152

    15. Begg CB, Berlin JA. Publication bias — a problem in interpreting medical data.J R Stat Soc Ser A Stat Soc.1988;151(3): 419-463. doi: http://dx.doi.org/10.2307/2982993

    16. Simonsohn U. Posterior-hacking: Selective reporting invalidates Bayesian results also. 2014; Available at SSRN:http://ssrn.com/abstract=2374040 or http://dx.doi.org/10.2139/ssrn.2374040

    17. Ioannidis JP. Why most published research findings are false.PLoS Med.2005; 2(8): e124. doi: http://dx.doi.org/10.1371/journal.pmed.0020124

    Dr. Ying Lu is Professor of Biostatistics at Stanford University and the Director of the US Department of Veterans Affairs (VA) Palo Alto Cooperative Studies Program Coordinating Center (CSPCC) which provides comprehensive research support to the VA's nationwide large-scale multicenter clinical trials and DNA bank studies. Originally from Shanghai, Dr. Lu received his BS in Mathematics from Fudan University and his MS in Applied Mathematics from Shanghai Jiao Tong University followed by a Ph.D.in Biostatistics from the University of California at Berkeley. Dr. Lu’s work, which has been published in more than 200 peer-reviewed publications, covers a wide range of clinical domains including several trials in mental health that he is currently overseeing at the Palo Alto CSPCC. Dr. Lu is an elected fellow of the American Statistical Association and a recipient of the Evelyn Fix Memorial Award and the Healthstar Osteoporosis Medical Research Award. As an alumnus of Shanghai Jiao Tong University, Dr. Lu is honored to serve as a Biostatistical Editor for the Shanghai Archives of Psychiatry.Further information is in https://med.stanford.edu/profiles/ying-lu.

    Dr. Belitskaya-Lévy is Mathematical Statistician in the US Department of Veterans Affairs (VA) Palo Alto Cooperative Studies Program Coordinating Center (CSPCC). She is the lead biostatistician for the VA Cooperative Studies Program-wide DNA bank. Dr. Belitskaya-Lévy received her Ph.D. in Statistics from Stanford University where she was a student of Professor Rob Tibshirani. She was on the faculty at New York University School of Medicine Division of Biostatistics for over 10 years. Her current work is focused on genetic and genomic studies, study designs and statistical methodology for highdimensional data analysis.

    p值之爭

    Lu Y, Belitskaya-Levy I

    p值;統(tǒng)計推斷;假設(shè)檢驗;統(tǒng)計顯著性;科學可重復(fù)性

    Thep-value is the most widely used statistical concept in biomedical research. Recently, there are controversies over its utility and over the possible relationship betweenp-value misuse and the relatively high proportion of published medical research that cannot be replicated. In this paper, we introduce thep-value in layman’s terms and explain its randomness and limitations. However, we also point out that the available alternatives top-value suffer similar limitations. We conclude that using p values is a valid way to test the null and alternative hypotheses in clinical trials. However, using thep-value from a single statistical test to judge the scientific merit of a research project is a misuse of thep-value; the results of inference tests usingp-values need to be integrated with secondary results and other data to arrive at clinically valid conclusions. Understanding the variability and limitations of thep-value is important for the interpretation of statistical results in research studies.

    [Shanghai Arch Psychiatry.2015; 27(6): 381-385.

    http://dx.doi.org/10.11919/j.issn.1002-0829.216027]

    1VA (Veterans Affairs) Cooperative Studies Program Palo Alto Coordinating Center, VA Palo Alto Health Care System, Palo Alto, CA, USA

    2Department of Biomedical Data Science, Stanford University, Stanford, CA, USA

    #joint first authors

    *correspondence: ying.lu@va.gov

    A full-text Chinese translation of this article will be available at http://dx.doi.org/10.11919/j.issn.1002-0829.216027 on April 25, 2016.

    概述:p值是生物醫(yī)學研究中使用最廣泛的統(tǒng)計學概念。最近,學界關(guān)于p值的效用以及p值的濫用與已發(fā)表的醫(yī)學研究無法重復(fù)性較差之間可能存在的關(guān)聯(lián)性有一些爭論。在本文中,我們以通俗易懂的方法介紹p值,并且解釋它的隨機性和局限性。然而,目前提出其它能替代p值的概念也有同樣的局限。我們得出了如下的結(jié)論:對于檢驗臨床試驗的中的零假設(shè) (null hypothesis) 和替代假設(shè) (alternative hypothesis) 來說,使用p值是一種有效的方法。然而,僅僅利用從某單一統(tǒng)計檢驗所得出的p值來判斷研究項目的科學價值則是一種對p值的濫用;為得到可信的臨床研究結(jié)果,我們需要將利用P值得到的推斷檢驗的結(jié)果與次要結(jié)果以及其它數(shù)據(jù)進行整合。對于在研究中闡釋統(tǒng)計結(jié)果而言,了解p值的多樣性和局限性是至關(guān)重要的。

    本文全文中文版從2016年4月25日起在

    http://dx.doi.org/10.11919/j.issn.1002-0829.216027可供免費閱覽下載

    猜你喜歡
    檢驗所假設(shè)檢驗局限性
    局限性皮膚瘙癢癥案
    北京市醫(yī)療器械檢驗所
    北京市醫(yī)療器械檢驗所
    北京市醫(yī)療器械檢驗所
    北京市醫(yī)療器械檢驗所簡介
    統(tǒng)計推斷的研究
    時代金融(2017年6期)2017-03-25 12:02:43
    雙冪變換下正態(tài)線性回歸模型參數(shù)的假設(shè)檢驗
    Primary Question and Hypothesis Testing in Randomized Controlled Clinical Trials
    統(tǒng)計學教學中關(guān)于假設(shè)檢驗問題探討
    胸腹部局限性Castleman病的CT特征
    亚洲精品久久国产高清桃花| 夫妻性生交免费视频一级片| 亚洲乱码一区二区免费版| 97超视频在线观看视频| 美女内射精品一级片tv| 亚洲精品456在线播放app| 国产高清三级在线| h日本视频在线播放| 亚洲真实伦在线观看| 亚洲综合色惰| 国产精品久久视频播放| 亚洲国产色片| 国产精品美女特级片免费视频播放器| 国产成人91sexporn| 三级国产精品欧美在线观看| 神马国产精品三级电影在线观看| 欧美精品一区二区大全| .国产精品久久| 国产免费一级a男人的天堂| 小说图片视频综合网站| 在线天堂最新版资源| 成人高潮视频无遮挡免费网站| 国产伦一二天堂av在线观看| av专区在线播放| 啦啦啦韩国在线观看视频| 国产成人精品一,二区 | 欧美区成人在线视频| 亚洲色图av天堂| 成人高潮视频无遮挡免费网站| 变态另类成人亚洲欧美熟女| 国产精品久久久久久精品电影| 亚洲av一区综合| 国产麻豆成人av免费视频| 欧美最黄视频在线播放免费| 国产高潮美女av| 国产精品国产三级国产av玫瑰| 美女内射精品一级片tv| 国产成人a区在线观看| 欧美日韩综合久久久久久| avwww免费| av在线播放精品| 久久草成人影院| 欧美人与善性xxx| 日本与韩国留学比较| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 欧美人与善性xxx| 国产午夜精品久久久久久一区二区三区| 国国产精品蜜臀av免费| 欧美3d第一页| 久久久久久久久久久免费av| 丰满人妻一区二区三区视频av| 亚洲精品久久国产高清桃花| 国产探花在线观看一区二区| 精品一区二区三区人妻视频| 欧美性猛交黑人性爽| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 国产高潮美女av| 亚洲精品粉嫩美女一区| 麻豆精品久久久久久蜜桃| 看黄色毛片网站| 日韩一本色道免费dvd| 精品久久久久久久久av| 国产日本99.免费观看| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 男女那种视频在线观看| 男的添女的下面高潮视频| 精品久久久久久久久av| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 此物有八面人人有两片| 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 成人午夜高清在线视频| 欧美成人精品欧美一级黄| 亚洲最大成人中文| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 嘟嘟电影网在线观看| 国产免费男女视频| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| av在线老鸭窝| 波多野结衣高清无吗| 乱人视频在线观看| 色视频www国产| 伊人久久精品亚洲午夜| 悠悠久久av| 亚洲av男天堂| 国产老妇伦熟女老妇高清| 成人综合一区亚洲| 久久欧美精品欧美久久欧美| 99久久无色码亚洲精品果冻| 国产色婷婷99| av在线观看视频网站免费| 免费大片18禁| 亚洲av不卡在线观看| 岛国毛片在线播放| 深夜精品福利| 色视频www国产| 九草在线视频观看| 国产成人精品婷婷| 男人狂女人下面高潮的视频| 在线a可以看的网站| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频| 成人美女网站在线观看视频| 日产精品乱码卡一卡2卡三| 我要搜黄色片| 乱码一卡2卡4卡精品| 亚洲中文字幕一区二区三区有码在线看| 变态另类丝袜制服| 免费看av在线观看网站| 亚洲成人av在线免费| 国产精品,欧美在线| 18禁裸乳无遮挡免费网站照片| 精品久久久噜噜| 22中文网久久字幕| 国产黄色小视频在线观看| 成熟少妇高潮喷水视频| 小说图片视频综合网站| 亚洲无线在线观看| 精品日产1卡2卡| 三级经典国产精品| 亚洲av免费在线观看| 一进一出抽搐动态| 网址你懂的国产日韩在线| 国产精品,欧美在线| 成人av在线播放网站| 日韩在线高清观看一区二区三区| 精品一区二区免费观看| 毛片女人毛片| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播| 成人亚洲欧美一区二区av| 亚洲自偷自拍三级| 成人二区视频| 天堂中文最新版在线下载 | 久久精品国产亚洲av天美| 免费观看在线日韩| or卡值多少钱| 在线播放国产精品三级| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 亚洲婷婷狠狠爱综合网| 午夜视频国产福利| 日韩制服骚丝袜av| 国产老妇伦熟女老妇高清| 中国美白少妇内射xxxbb| avwww免费| 男人和女人高潮做爰伦理| 看片在线看免费视频| 久久人人精品亚洲av| 日日摸夜夜添夜夜爱| av在线老鸭窝| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 搞女人的毛片| АⅤ资源中文在线天堂| 麻豆av噜噜一区二区三区| 国产白丝娇喘喷水9色精品| 国产高清视频在线观看网站| 国产精品伦人一区二区| 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 午夜福利成人在线免费观看| 22中文网久久字幕| 成人无遮挡网站| av专区在线播放| av免费观看日本| 免费观看的影片在线观看| 18+在线观看网站| 国产不卡一卡二| 国内精品宾馆在线| 欧美不卡视频在线免费观看| 有码 亚洲区| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 亚洲无线在线观看| 十八禁国产超污无遮挡网站| 黄片无遮挡物在线观看| 午夜老司机福利剧场| 国产在线男女| 99热网站在线观看| 欧美3d第一页| 国产高潮美女av| 亚洲欧美日韩卡通动漫| 看黄色毛片网站| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 成人鲁丝片一二三区免费| 全区人妻精品视频| 两个人视频免费观看高清| 啦啦啦观看免费观看视频高清| 国产一区二区三区av在线 | 日产精品乱码卡一卡2卡三| 嫩草影院入口| 国产伦理片在线播放av一区 | 男人狂女人下面高潮的视频| 免费观看在线日韩| 夜夜爽天天搞| a级一级毛片免费在线观看| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 九色成人免费人妻av| 如何舔出高潮| 爱豆传媒免费全集在线观看| 中文字幕制服av| 亚洲中文字幕一区二区三区有码在线看| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 亚洲国产精品sss在线观看| 一本久久精品| 婷婷亚洲欧美| 深爱激情五月婷婷| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 干丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 欧美性感艳星| 国产精品电影一区二区三区| 国产高清激情床上av| 欧美xxxx性猛交bbbb| 看十八女毛片水多多多| 免费看美女性在线毛片视频| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 国产91av在线免费观看| 午夜福利高清视频| 亚洲内射少妇av| 日韩亚洲欧美综合| 内地一区二区视频在线| 尾随美女入室| 久久99蜜桃精品久久| 中国国产av一级| 人妻系列 视频| 久久久精品大字幕| 人人妻人人澡人人爽人人夜夜 | 在线观看午夜福利视频| 成人亚洲精品av一区二区| 色5月婷婷丁香| 波多野结衣高清无吗| 国产一区二区亚洲精品在线观看| 免费观看的影片在线观看| 精品无人区乱码1区二区| 欧美变态另类bdsm刘玥| 日日啪夜夜撸| 亚洲av成人av| 晚上一个人看的免费电影| 日韩欧美 国产精品| 免费人成视频x8x8入口观看| 不卡视频在线观看欧美| 国产精品精品国产色婷婷| 天堂网av新在线| 久久精品久久久久久噜噜老黄 | 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久av| 国产 一区 欧美 日韩| av在线观看视频网站免费| 精品欧美国产一区二区三| 久久久久久久久久久免费av| 一区二区三区四区激情视频 | 99国产精品一区二区蜜桃av| 欧美+日韩+精品| 变态另类丝袜制服| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 久久6这里有精品| 亚洲av成人精品一区久久| 欧美日韩在线观看h| а√天堂www在线а√下载| 久久人妻av系列| 看非洲黑人一级黄片| 99热6这里只有精品| 色哟哟哟哟哟哟| 中国美女看黄片| 国产探花极品一区二区| 亚洲最大成人av| 精品久久久噜噜| 精品一区二区免费观看| 直男gayav资源| 久久国产乱子免费精品| 99热这里只有是精品在线观看| 亚洲一区二区三区色噜噜| 18禁在线无遮挡免费观看视频| 亚洲在久久综合| 97在线视频观看| 国产日韩欧美在线精品| 在线免费观看的www视频| 高清毛片免费看| 久久国产乱子免费精品| 免费看日本二区| 99国产极品粉嫩在线观看| 成人性生交大片免费视频hd| 1000部很黄的大片| 亚洲欧美日韩高清专用| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| 特级一级黄色大片| 在线观看美女被高潮喷水网站| 成人午夜精彩视频在线观看| 床上黄色一级片| 国产又黄又爽又无遮挡在线| 久久中文看片网| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区| 狂野欧美白嫩少妇大欣赏| 身体一侧抽搐| 日韩亚洲欧美综合| 悠悠久久av| 亚洲四区av| 亚洲人成网站在线播放欧美日韩| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| 亚洲av第一区精品v没综合| 18+在线观看网站| 成年女人永久免费观看视频| 天堂av国产一区二区熟女人妻| 中文精品一卡2卡3卡4更新| 国产久久久一区二区三区| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 日本五十路高清| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 国产免费男女视频| 国产高清有码在线观看视频| 少妇高潮的动态图| av卡一久久| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| h日本视频在线播放| 日韩av在线大香蕉| .国产精品久久| 夜夜爽天天搞| 国产老妇女一区| 亚洲高清免费不卡视频| 人体艺术视频欧美日本| 春色校园在线视频观看| 亚洲中文字幕一区二区三区有码在线看| 男插女下体视频免费在线播放| 国产老妇女一区| 欧美成人一区二区免费高清观看| 欧美区成人在线视频| 97热精品久久久久久| 波野结衣二区三区在线| 99riav亚洲国产免费| av天堂中文字幕网| 嫩草影院入口| 全区人妻精品视频| 好男人在线观看高清免费视频| 欧美日韩一区二区视频在线观看视频在线 | 日本免费a在线| 伦精品一区二区三区| 深爱激情五月婷婷| 亚洲最大成人中文| 嫩草影院入口| 成人特级黄色片久久久久久久| 一本久久中文字幕| 国产免费一级a男人的天堂| 欧美色视频一区免费| 国产成人精品久久久久久| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 好男人在线观看高清免费视频| 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 欧美丝袜亚洲另类| 村上凉子中文字幕在线| 人妻久久中文字幕网| 看非洲黑人一级黄片| 成人亚洲精品av一区二区| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费看| 精品一区二区免费观看| 国产日韩欧美在线精品| 国产一区二区亚洲精品在线观看| 中国美白少妇内射xxxbb| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 欧美日韩综合久久久久久| 高清毛片免费观看视频网站| av在线蜜桃| 在线免费十八禁| 男女啪啪激烈高潮av片| 免费看av在线观看网站| 成人国产麻豆网| 99久久成人亚洲精品观看| 日日撸夜夜添| 啦啦啦韩国在线观看视频| 一级毛片电影观看 | 人妻制服诱惑在线中文字幕| 亚洲婷婷狠狠爱综合网| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| av在线观看视频网站免费| 又爽又黄无遮挡网站| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 亚洲18禁久久av| 亚洲丝袜综合中文字幕| 偷拍熟女少妇极品色| 欧美人与善性xxx| 日日摸夜夜添夜夜爱| 在线a可以看的网站| 禁无遮挡网站| 亚洲精品亚洲一区二区| 99久国产av精品| 精品国产三级普通话版| 国产大屁股一区二区在线视频| 免费av毛片视频| 国产色爽女视频免费观看| 深夜精品福利| 日韩欧美国产在线观看| 亚洲欧美成人综合另类久久久 | 久久欧美精品欧美久久欧美| 亚洲国产精品成人综合色| 免费一级毛片在线播放高清视频| 欧美bdsm另类| 秋霞在线观看毛片| 亚洲国产高清在线一区二区三| 狠狠狠狠99中文字幕| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看 | 欧美一区二区精品小视频在线| 国产精品久久久久久av不卡| 免费av观看视频| 亚洲国产欧洲综合997久久,| 亚洲国产精品久久男人天堂| 久久欧美精品欧美久久欧美| 日韩欧美精品免费久久| 两性午夜刺激爽爽歪歪视频在线观看| 五月玫瑰六月丁香| 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| 一个人免费在线观看电影| 国产成人福利小说| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| a级毛色黄片| 身体一侧抽搐| 99久久无色码亚洲精品果冻| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久 | 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 久久久久九九精品影院| 国产高清不卡午夜福利| 欧美在线一区亚洲| 亚洲欧美日韩东京热| 成人午夜高清在线视频| 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 午夜福利在线在线| 国产精品久久电影中文字幕| 长腿黑丝高跟| 亚洲在久久综合| 午夜老司机福利剧场| 22中文网久久字幕| 亚洲av不卡在线观看| 日韩欧美三级三区| kizo精华| 国产精品久久久久久av不卡| 一区二区三区高清视频在线| 蜜桃亚洲精品一区二区三区| 99热只有精品国产| 亚洲成av人片在线播放无| 卡戴珊不雅视频在线播放| 永久网站在线| 成年免费大片在线观看| 亚洲av.av天堂| 精品久久久久久久人妻蜜臀av| 校园人妻丝袜中文字幕| 久久精品91蜜桃| 免费在线观看成人毛片| 少妇丰满av| 亚洲在线自拍视频| 在线观看美女被高潮喷水网站| 一级黄色大片毛片| 亚洲国产色片| 婷婷色综合大香蕉| 国产成人精品一,二区 | 精品不卡国产一区二区三区| 少妇人妻精品综合一区二区 | 人妻系列 视频| 国产精品av视频在线免费观看| 联通29元200g的流量卡| 91在线精品国自产拍蜜月| 夜夜看夜夜爽夜夜摸| 精品人妻熟女av久视频| 国产精品久久久久久亚洲av鲁大| 秋霞在线观看毛片| 全区人妻精品视频| 国产亚洲5aaaaa淫片| 亚洲国产精品成人久久小说 | 校园人妻丝袜中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 国产精品三级大全| 日韩大尺度精品在线看网址| 中文精品一卡2卡3卡4更新| 中文字幕久久专区| 一边亲一边摸免费视频| 日韩大尺度精品在线看网址| 亚洲内射少妇av| 天堂av国产一区二区熟女人妻| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 欧美性猛交黑人性爽| 免费av观看视频| 欧美日韩乱码在线| 亚洲国产精品合色在线| 69av精品久久久久久| 看十八女毛片水多多多| 一边摸一边抽搐一进一小说| 精品熟女少妇av免费看| av女优亚洲男人天堂| 又粗又爽又猛毛片免费看| 能在线免费观看的黄片| 日本五十路高清| 国产一级毛片在线| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄a免费视频| 亚州av有码| 美女被艹到高潮喷水动态| 丝袜美腿在线中文| 日韩av不卡免费在线播放| 别揉我奶头 嗯啊视频| 综合色av麻豆| 国产亚洲精品久久久久久毛片| 热99re8久久精品国产| 久久婷婷人人爽人人干人人爱| 人人妻人人看人人澡| 在线观看午夜福利视频| 亚洲乱码一区二区免费版| 又黄又爽又刺激的免费视频.| a级毛片免费高清观看在线播放| 一个人看的www免费观看视频| 少妇人妻精品综合一区二区 | 婷婷色av中文字幕| 亚洲熟妇中文字幕五十中出| 国产精品国产高清国产av| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看| 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 亚洲综合色惰| 99热这里只有是精品50| 日本色播在线视频| 免费不卡的大黄色大毛片视频在线观看 | av专区在线播放| av在线天堂中文字幕| 看十八女毛片水多多多| 春色校园在线视频观看| 日韩欧美 国产精品| 美女高潮的动态| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 久久韩国三级中文字幕| 精品一区二区三区人妻视频| 美女 人体艺术 gogo| 成人国产麻豆网| 青春草视频在线免费观看| 一级毛片久久久久久久久女| 伦理电影大哥的女人| 99在线视频只有这里精品首页| 黄片无遮挡物在线观看| 日本三级黄在线观看| 哪里可以看免费的av片| 国产伦在线观看视频一区| 亚洲高清免费不卡视频| 22中文网久久字幕| 女人被狂操c到高潮| 久久这里只有精品中国| 可以在线观看毛片的网站| 搡老妇女老女人老熟妇| 亚洲国产高清在线一区二区三| 最近2019中文字幕mv第一页| 国产真实伦视频高清在线观看| 尤物成人国产欧美一区二区三区| 色综合站精品国产| 人妻制服诱惑在线中文字幕| 亚洲精品久久国产高清桃花| 国产一级毛片七仙女欲春2| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久 | 熟妇人妻久久中文字幕3abv| 毛片一级片免费看久久久久| 国产一级毛片七仙女欲春2|