• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introduction to longitudinal data analysis in psychiatric research

    2015-12-08 10:55:23XianLIU
    上海精神醫(yī)學 2015年4期
    關(guān)鍵詞:精神病學中文版數(shù)據(jù)結(jié)構(gòu)

    Xian LIU

    ?Biostatistics in psychiatry (28)?

    Introduction to longitudinal data analysis in psychiatric research

    Xian LIU1,2

    Intra-individual correlation; longitudinal data; missing data; multivariate and univariate data structures; repeated measurements

    1. Significance of longitudinal data analysis in psychiatric research

    We live in a world full of change. After birth, a person grows, ages, and dies. During such a dynamic process,we may contract various psychiatric disorders,develop functional disability, and lose mental ability.Accompanying the developmental course of psychiatric conditions, physical health may be affected. While poor physical health generally elevates the risk of developing psychiatric problems, the presence of a psychiatric disorder can also lead to an increased prevalence and severity of other diseases such as cardiovascular disease, cancer, and diabetes.[1]Social functioning can also be altered by psychiatric diseases; many individuals with psychiatric disorders experience marital disruption,unemployment, and occupational impediments. In order to understand the complex interaction between these physical, mental, and social processes, it is essential for psychiatric researchers to assess the gradual onset and course of psychiatric conditions over the lifetime of individuals who experience these disorders.

    In the developmental course of psychiatric conditions, the pattern of change over time can be influenced and determined by various risk factors, such as genetic predisposition, physical illness, traumatic events, environment, or the like. Therefore, the illness trajectory can differ significantly among individuals due to the presence or absence of factors that can govern the direction, timing, and rate of change. Consequently,much of modern psychiatric research focuses on making comparisons among subgroups of specific populations with the goal of identifying the variables that influence the onset and course of psychiatric diseases. As psychiatric researchers and other medical scientists have placed increasing attention on the inherent mechanisms that are associated with the development of various psychiatric and medical conditions, there has been a corresponding development in the statistical methods and techniques used to describe and analyze underlying features of longitudinal processes.[2,3,4]

    Data available at a single point of time cannot be used to analyze change in psychiatric conditions over time. Cross-sectional data, traditionally so popular and so widely used in many applied sciences, only provides a snapshot at one point in time of an ongoing trajectory and, thus, cannot be used to reflect change, growth,or development. Aware of the limitations of crosssectional studies, many psychiatric researchers have advanced the analytic perspective by examining data with repeated measurements. By measuring the same variable of interest multiple times, the change in mental health is displayed, its pattern over time revealed, and,thus, it may be possible to identify factors that are associated with changes in psychiatric status. Such data with a limited number of repeated measurements are referred to aslongitudinal data.[5]In many longitudinal data designs in psychiatric research, subjects receiving different interventions or those exposed to different potential risk factors are repeatedly evaluated at a number of time points separated by specified intervals.

    2. Longitudinal data structures

    Methodologically, longitudinal data can be regarded as a special case of classical repeated measures data.There are some conceptual differences between the two data types. Classical repeated measures data are a broadly defined type of data that can include a large number of time points and changing experimental or observational conditions over the course of the followup.[5]In contrast, longitudinal data are more specific.They are generally composed of multiple observations for the same group of individuals at a limited number of time points with equally or unequally spaced intervals.Therefore, longitudinal data can be defined as the data of repeated measurements at a limited number of time points with predetermined designs on time scale, time interval, and other related conditions.

    Longitudinal data can be structured as either multivariate or univariate data. Traditionally, the data structure for repeated measurements follows a multivariate format. In this data structure, each individual only has a single row of data, with repeated measurements being recorded horizontally. That is,a column is assigned to the measurement at each time point in the data matrix. Consider an example of the repeated measures data on a posttraumatic stress disorder (PTSD) score. In the multivariate data structure, the repeated measurements of PTSD for each individual are specified as four variables placed in the same row of the data matrix, with time points indicated as suffixes attached to the variable name(e.g., PTSD1, PTSD2, PTSD3, and PTSD4). With all observations for this variable recorded in one row of the data matrix, the multivariate data structure of repeated measurements contains additional columns for each time point, referred to as thewide tableformat. The most distinctive advantage of using the multivariate data structure is that each subject’s empirical growth record can be visually examined.[6]

    There are, however, distinctive disadvantages of the multivariate data structure in performing longitudinal data analysis. First, in the multivariate format the time factor is indirectly reflected by the suffix attached to the variable name for each time the same assessment is repeated, so time is not explicitly specified as an independent factor, making it difficult to include the effect of time in the analysis. In some cases, assessment intervals between two successive waves are unequally spaced or vary across individuals, variations that cannot be captured using a multivariate data structure. Second,in longitudinal data analysis, values of some covariates may vary over time (e.g., age, marital status, economic status, employment, etc.); failure to address the timevarying nature of predictor variables can result in biased effects and erroneous predictions of longitudinal processes. There are some cumbersome ways to specify time-varying covariates within the multivariate data framework, but these approaches are not user-friendly and are inconvenient to apply.[4]

    Given the aforementioned disadvantages in the multivariate data structure, the majority of modern longitudinal analyses are based on data with a univariate structure. In the univariate data format, each subject has multiple rows of data (one row for each time the outcome variable is assessed) and time is explicitly specified as a primary predictor of the trajectory of individuals. In this scenario, the repeated measures of PTSD in the example described earlier would be represented as a single variable that appears in a column within the data matrix, not as separate variables with different suffixes in a single row of the data matrix.A new covariate, TIME, is added to the data matrix to indicate a specific time point, and a combination of values for the PTSD and the time variables designate repeated measurements at a number of time points.As subject-specific observations are set vertically,fewer columns but more rows are specified than in the multivariate data structure. Correspondingly, the univariate longitudinal data structure is also referred to as thelong tableformat.

    3. Primary features of longitudinal data

    Analyzing longitudinal data in psychiatric research poses considerable challenges to biostatisticians and other quantitative methodologists due to several unique features inherent in such data. The most troublesome feature of longitudinal data is the presence of missing data in repeated measurements. In a clinical trial on the effectiveness of a new medical treatment for a psychiatric disease, patients may be lost to a follow-up due to migration or health problems. In a longitudinal observational survey, some baseline respondents may lose interest in participating at subsequent times. There are different types of missing data, some of which do not threaten the quality of the longitudinal analysis and others that do. Missing data that represent a random sample of all cases or non-random missing data that can be accounted for by adjustments using observed variables (such as age, gender, illness severity,etc.) do not pose serious threats to the quality of a longitudinal data analysis. However, in some special circumstances missing data are related to missing values of the outcome variable, and ignoring such systematic missing data can be detrimental to the estimation and prediction of the pattern of change over time in the response variable. Thus, it is important for psychiatric researchers to understand the various types of missing data and the steps that should be taken in conducting formal longitudinal data analysis when different types of missing data are present in the data set.[7]

    Another primary feature in longitudinal data is the correlation in the repeated measurements of the same individual, referred to asintra-individual correlation.[4]Such correlation is a violation of the conditional independence hypothesis regularly applied in multivariate regression modeling, so biostatisticians and other quantitative methodologists have developed two primary ways to deal with this issue when performing longitudinal data analysis, each linked to a specific source of variability. Statistically, variability in longitudinal processes can be summarized into three components: between-subjects variability, withinsubject variability, and the remaining variability due to random errors. Intra-individual correlation can be modeled by means of the first two components, that is, as either the between-subjects or the within-subject component. These two components are interrelated, so it is usually only necessary to consider one of the two sources of systematic variability to make longitudinal data conditionally independent and, thus, appropriate for use in multivariate regression modeling analysis.[4]

    4. Longitudinal analysis

    The importance of addressing intra-individual correlation and missing data has triggered the development of many advanced models and methods for longitudinal data analysis. One popular approach is‘mixed-effects modeling’. In this approach unobservable differences between individuals are accounted for by specifying specific effects that can vary over subjects.When conducting the analysis the researcher would specify that some of the parameters in the regression model can vary between subjects (i.e., ‘random’parameters) while other parameters do not change between subjects (i.e., ‘fixed’ effects). The researcherspecified random parameters are referred to asthe random effects; these can include random effects for the intercept, random effects for the time factor, and so forth. For example, when analyzing the trajectory of the PTSD score in patients receiving different types of treatment, the researcher could specify that each individual has a unique baseline value and a unique pattern of change over time (these added parameters would be the random effects in the model) before developing the model. After specification of the subjectspecific random effects in the model, differences between observed and predicted PTSD results in the final regression model are considered conditionally independent (i.e., the basic requirement for reliable multivariate regression modeling) and, thus, the regression coefficients generated in the model of the longitudinal process are usually of high quality.

    Another popular approach to longitudinal analysis is to include the pattern of correlation across repeated measurements in the regression model while leaving the between-subjects random effects unspecified. The use of such a design in modeling longitudinal processes becomes necessary when the application of the randomeffects approach (above) does not yield reliable analytic results or when within-subject variability is sizable in comparison with between-subjects variance. Applying this approach to our PTSD example, the correlation of the repeated measurements of the PTSD score for the same subject is assumed to follow a known structure,referred to as a ‘covariance matrix’, that the researcher would specify before conducting the analysis. There is a variety of model covariance patterns (designed over the years by statisticians) that the researcher can select from when conducting the analysis.

    The two approaches described above for the continuous response variables can be readily extended to longitudinal modeling of non-normal outcome variables, such as rates and proportions, multinomial outcomes, and count data. There are many statistically complex techniques and methods for modeling these data types.[8,9,10,11,12]Accompanying the rapid developments of statistical models and methods are the equally important advancements in computer science, particularly the powerful statistical software packages. The convenience of using computer software packages to create and utilize complex statistical models has made it possible for medical scientists, psychiatric researchers being no exception, to analyze longitudinal data by applying complex, efficient statistical methods and techniques. Among the variety of computing software packages, the Statistical Analysis System (SAS),a powerful software system for data analysis, consists of a group of computer programs that can be applied for longitudinal analyses on different data types.[13]

    5. Conclusion

    Over the years, biostatisticians and other scientists have developed a variety of statistical models and methods to analyze longitudinal data. Most of these advanced techniques are built for use in biomedical and behavioral settings, so the methodologically advanced techniques may be relatively unfamiliar to psychiatric researchers. Many psychiatrists still use incorrect statistical methods to analyze longitudinal mental health data without paying sufficient attention to the unique features inherent in such data. Failure to use correct analytic methods can result in tremendous bias in analytic results and outcome predictions. Psychiatric researchers need to familiarize themselves with the advanced models and methods developed specifically for longitudinal data analysis.

    Conflict of interest

    The author reports no conflict of interest related to this manuscript.

    Funding

    The preparation of this article was partially supported by the National Institute on Aging (NIH/NIA Grant No.:R03AG20140-01).

    1. Goldberg D. The detection and treatment of depression in the physically ill.World Psychiatry.2010; 9(1): 16-20

    2. Diggle PJ, Heagerty PJ, Liang K, Zeger SL.Analysis of Longitudinal Data(2nded.). Oxford: Clarendon Press; 2002

    3. Fitzmaurice GM, Laird NM, Ware JH.Applied Longitudinal Analysis. Hoboken, New Jersey: Wiley; 2004

    4. Liu X.Methods and Applications of Longitudinal Data Analysis.New York, NY: Academic Press; 2015

    5. West BT, Welch KB, Ga?ecki AT (with contributions from Gillespie BW).Linear Mixed Models: A Practical Guide Using Statistical Software. Boca Raton, FL: Chapman & Hall/CRC;2007

    6. Singer JD, Willett JB.Applied Longitudinal Data Analysis:Modeling Change and Event Occurrence. New York: Oxford University Press; 2003

    7. Little RJA, Rubin DB.Statistical Analysis with Missing Data(2nd ed.). New York, NY: Wiley; 2002

    8. Breslow NR, Clayton DG. Approximate inference in generalized linear mixed models.J Am Stat Assoc.1993; 88(421): 9-25.doi: http://dx.doi.org/10.2307/2290687

    9. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models.Biometrika.1986; 73(1): 13-22. doi: http://dx.doi.org/10.2307/2336267

    10. Liu X, Engel CC. Predicting longitudinal trajectories of health probabilities with random-effects multinomial logit regression.Stat Med.2012; 31(29): 4087-4101. doi: http://dx.doi.org/10.1002/sim.5514

    11. McCulloch CE, Searle SR, Neuhaus JM.Generalized, Linear,and Mixed Models. Hoboken, NJ: Wiley; 2008

    12. Molenberghs G, Verbeke G.Models for Discrete Longitudinal Data. New York, NY: Springer; 2010

    13. SAS.SAS/STAT12.1: User’s Guide(2nded.). Cary, NC: SAS Institute Inc; 2012

    , 2015-07-22; accepted, 2015-07-25)

    Dr. Xian Liu is Professor of Research at the Department of Psychiatry and Senior Scientist at the Center for the Study of Traumatic Stress, F. Edward Hebert School of Medicine at the Uniformed Services University of the Health Sciences in Bethesda, Maryland, USA. He also serves as Research Scientist/Senior Statistician in the Deployment Health Clinical Center, Defense Centers of Excellence at Walter Reed National Military Medical Center. His areas of expertise include longitudinal analysis in health research, survival analysis, aging and health, and development of advanced statistical models in behavioral and medical studies. Dr. Liu received his PhD in Sociology with specialization in Demography from the Population Studies Center, the Institute for Social Research at University of Michigan in 1991.

    精神病學研究中縱向數(shù)據(jù)分析的介紹

    Liu X

    個體內(nèi)相關(guān)性;縱向數(shù)據(jù);缺失數(shù)據(jù);多元與一元數(shù)據(jù)結(jié)構(gòu);重復測量

    Summary:The onset, course, and management of mental health problems typically occur over relatively long periods of time, so a substantial proportion of psychiatric research – particularly the research that can provide clear answers about the complex interaction of biological, psychological, and social factors –requires multiple assessments of individuals and the environments in which they live over time. However,many psychiatric researchers use incorrect statistical methods to analyze this type of longitudinal data,a problem that can result in unrecognized bias in analytic results and, thus, incorrect conclusions. This paper provides an introduction to the topic of longitudinal data analysis. It discusses the different dataset structures used in the analysis of longitudinal data, the classification and management of missing data, and methods of adjusting for intra-individual correlation when developing multivariate regression models using longitudinal data.

    [Shanghai Arch Psychiatry.2015; 27(4): 256-259.

    http://dx.doi.org/10.11919/j.issn.1002-0829.215089]

    1DoD Deployment Health Clinical Center, Defense Center of Excellence for Psychological Health and Traumatic Brain Injury, Walter Reed National Military Medical Center, Bethesda, Maryland, United States

    2Department of Psychiatry, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States correspondence: xian.liu@usuhs.edu

    The views expressed in this article are those of the author and do not necessarily represent the official position of the government of the United States of America

    A full-text Chinese translation of this article will be available at http://dx.doi.org/10.11919/j.issn.1002-0829.215089 on October 26, 2015.

    概述:精神衛(wèi)生問題的發(fā)生、發(fā)展及對其管理都需要相對較長的時間,所以相當一部分精神病學研究—— 特別是能夠明確回答有關(guān)生物、心理和社會因素復雜的相互作用的研究——要求對患者及其生活環(huán)境進行跨時長久的多種評估。然而,許多精神病學的研究人員使用不正確的統(tǒng)計方法來分析這一類型的縱向數(shù)據(jù),這一問題會導致分析結(jié)果中出現(xiàn)無法識別的偏倚而由此得出不正確的結(jié)論。本文就縱向數(shù)據(jù)分析的話題做了介紹。文章探討了縱向數(shù)據(jù)分析中使用的不同數(shù)據(jù)集結(jié)構(gòu)、缺失數(shù)據(jù)的分類和處理以及使用縱向數(shù)據(jù)建立多元回歸模型時對個體內(nèi)相關(guān)性校正的方法。

    本文全文中文版從2015年10月26日起在

    http://dx.doi.org/10.11919/j.issn.1002-0829.215089可供免費閱覽下載

    猜你喜歡
    精神病學中文版數(shù)據(jù)結(jié)構(gòu)
    《數(shù)學年刊A輯》(中文版)征稿簡則
    《數(shù)學年刊A輯》(中文版)征稿簡則
    基因決定了 你們會是好朋友
    《數(shù)學年刊A輯》(中文版)征稿簡則
    《數(shù)學年刊A輯》(中文版)征稿簡則
    “翻轉(zhuǎn)課堂”教學模式的探討——以《數(shù)據(jù)結(jié)構(gòu)》課程教學為例
    高職高專數(shù)據(jù)結(jié)構(gòu)教學改革探討
    中國市場(2016年45期)2016-05-17 05:15:48
    四個字
    不同教學方法在精神病學實驗教學中的效果評價
    TRIZ理論在“數(shù)據(jù)結(jié)構(gòu)”多媒體教學中的應用
    国产精品99久久99久久久不卡| 午夜免费成人在线视频| 女性被躁到高潮视频| 欧美另类一区| 少妇的丰满在线观看| bbb黄色大片| 国产色视频综合| 亚洲国产精品一区二区三区在线| 国产午夜精品一二区理论片| 精品福利观看| 啦啦啦中文免费视频观看日本| 国产人伦9x9x在线观看| 日本猛色少妇xxxxx猛交久久| 桃花免费在线播放| 欧美精品人与动牲交sv欧美| 天天添夜夜摸| 亚洲精品美女久久av网站| 免费在线观看完整版高清| 久热这里只有精品99| avwww免费| 女人被躁到高潮嗷嗷叫费观| 欧美成人精品欧美一级黄| 欧美日韩国产mv在线观看视频| 色播在线永久视频| 国产高清国产精品国产三级| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲国产一区二区在线观看 | 成年动漫av网址| 人人妻,人人澡人人爽秒播 | 国产91精品成人一区二区三区 | 亚洲综合色网址| 国产欧美日韩综合在线一区二区| 99精品久久久久人妻精品| 国产一区二区三区av在线| 精品免费久久久久久久清纯 | 亚洲av电影在线进入| 岛国毛片在线播放| 高清视频免费观看一区二区| 男女床上黄色一级片免费看| 宅男免费午夜| 熟女av电影| 亚洲视频免费观看视频| 国产一区有黄有色的免费视频| 丁香六月天网| 女人高潮潮喷娇喘18禁视频| 老熟女久久久| 精品亚洲乱码少妇综合久久| 日韩欧美一区视频在线观看| 亚洲精品中文字幕在线视频| 丝袜美足系列| 18禁裸乳无遮挡动漫免费视频| 精品国产乱码久久久久久小说| 别揉我奶头~嗯~啊~动态视频 | 久久天躁狠狠躁夜夜2o2o | 午夜福利视频精品| 国产成人av激情在线播放| 国产人伦9x9x在线观看| 中文字幕最新亚洲高清| 丰满人妻熟妇乱又伦精品不卡| 狂野欧美激情性xxxx| 日韩伦理黄色片| 性少妇av在线| 国产精品秋霞免费鲁丝片| 亚洲国产av影院在线观看| 成人国产av品久久久| 美女国产高潮福利片在线看| 精品久久久精品久久久| netflix在线观看网站| 亚洲中文日韩欧美视频| 国产免费一区二区三区四区乱码| 亚洲精品av麻豆狂野| 亚洲欧洲精品一区二区精品久久久| 女人精品久久久久毛片| 18禁裸乳无遮挡动漫免费视频| 婷婷丁香在线五月| 精品一区在线观看国产| 亚洲精品国产色婷婷电影| 在线观看国产h片| 久久国产精品人妻蜜桃| 久久综合国产亚洲精品| 久久 成人 亚洲| 亚洲成人手机| 美国免费a级毛片| 欧美日韩av久久| 一级黄片播放器| 晚上一个人看的免费电影| 男女午夜视频在线观看| 少妇精品久久久久久久| 少妇被粗大的猛进出69影院| 午夜福利一区二区在线看| 国产av一区二区精品久久| 国产又色又爽无遮挡免| 亚洲精品一二三| 国产欧美日韩精品亚洲av| 欧美激情极品国产一区二区三区| 成年人免费黄色播放视频| 日本黄色日本黄色录像| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久男人| 国产免费福利视频在线观看| 亚洲国产精品一区二区三区在线| 一级片免费观看大全| 成人手机av| 极品人妻少妇av视频| 又粗又硬又长又爽又黄的视频| 欧美另类一区| 青青草视频在线视频观看| 日日爽夜夜爽网站| 男男h啪啪无遮挡| 啦啦啦视频在线资源免费观看| 一区二区三区乱码不卡18| 日本欧美国产在线视频| 久久国产精品影院| 免费在线观看影片大全网站 | 美女中出高潮动态图| 午夜福利乱码中文字幕| 考比视频在线观看| 黄片小视频在线播放| 性高湖久久久久久久久免费观看| 美女脱内裤让男人舔精品视频| 国产成人精品久久久久久| 欧美精品人与动牲交sv欧美| 亚洲黑人精品在线| 国产成人影院久久av| 欧美成狂野欧美在线观看| 女人精品久久久久毛片| 高清av免费在线| 久久久久久久精品精品| 亚洲自偷自拍图片 自拍| 国产黄色视频一区二区在线观看| 国产高清视频在线播放一区 | 欧美精品亚洲一区二区| 一级a爱视频在线免费观看| 一级a爱视频在线免费观看| 美女国产高潮福利片在线看| 国产精品一区二区精品视频观看| 婷婷成人精品国产| 亚洲图色成人| 巨乳人妻的诱惑在线观看| 免费一级毛片在线播放高清视频 | av天堂在线播放| 男的添女的下面高潮视频| 人体艺术视频欧美日本| 成年美女黄网站色视频大全免费| 1024视频免费在线观看| 免费高清在线观看视频在线观看| 一区在线观看完整版| 国产成人av教育| 亚洲精品国产一区二区精华液| 欧美精品av麻豆av| 精品第一国产精品| 欧美乱码精品一区二区三区| 9热在线视频观看99| 国产亚洲一区二区精品| 欧美日韩亚洲高清精品| 一区福利在线观看| 国产精品二区激情视频| 99国产综合亚洲精品| 一级毛片黄色毛片免费观看视频| 伊人亚洲综合成人网| 亚洲色图 男人天堂 中文字幕| 人人妻人人澡人人看| 国产成人欧美在线观看 | 国产高清videossex| 国产99久久九九免费精品| 在线av久久热| 久久热在线av| 2021少妇久久久久久久久久久| 黄色 视频免费看| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻丝袜一区二区| 成年美女黄网站色视频大全免费| 亚洲精品久久久久久婷婷小说| 人人妻人人澡人人看| 久久影院123| 国产精品99久久99久久久不卡| 99久久人妻综合| 亚洲,欧美,日韩| 国产成人精品久久久久久| 少妇人妻久久综合中文| 精品少妇久久久久久888优播| 丝袜脚勾引网站| 丁香六月天网| 午夜福利免费观看在线| 国产精品 国内视频| 国产一区二区在线观看av| 我的亚洲天堂| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区激情短视频 | 最近最新中文字幕大全免费视频 | 一二三四在线观看免费中文在| 欧美av亚洲av综合av国产av| 90打野战视频偷拍视频| 两性夫妻黄色片| 多毛熟女@视频| 亚洲欧美一区二区三区久久| 欧美日韩av久久| 秋霞在线观看毛片| av线在线观看网站| 中文字幕人妻丝袜一区二区| 久久久久久久久久久久大奶| 七月丁香在线播放| 色视频在线一区二区三区| 亚洲一区中文字幕在线| 91字幕亚洲| 日韩欧美一区视频在线观看| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| 亚洲色图综合在线观看| 美女国产高潮福利片在线看| 天天躁夜夜躁狠狠躁躁| 一区福利在线观看| 成在线人永久免费视频| 99精品久久久久人妻精品| 亚洲精品久久午夜乱码| 欧美成人午夜精品| 日韩欧美一区视频在线观看| 久久国产精品大桥未久av| 精品福利永久在线观看| 91麻豆av在线| 看免费av毛片| 亚洲成人免费电影在线观看 | 一区二区av电影网| 黑人欧美特级aaaaaa片| a级毛片黄视频| 亚洲伊人色综图| 人妻 亚洲 视频| 国产伦人伦偷精品视频| 只有这里有精品99| 91麻豆av在线| 亚洲精品国产av成人精品| 飞空精品影院首页| 少妇精品久久久久久久| 啦啦啦 在线观看视频| 日韩av不卡免费在线播放| xxx大片免费视频| 亚洲av在线观看美女高潮| 亚洲 国产 在线| 成人免费观看视频高清| 一区在线观看完整版| 亚洲情色 制服丝袜| 曰老女人黄片| 精品人妻一区二区三区麻豆| videosex国产| 日本一区二区免费在线视频| 日本av手机在线免费观看| 少妇 在线观看| av欧美777| 99国产精品一区二区蜜桃av | 免费在线观看日本一区| 久久人人爽人人片av| 国产野战对白在线观看| 亚洲男人天堂网一区| 一级片免费观看大全| 首页视频小说图片口味搜索 | 在线观看人妻少妇| 亚洲人成77777在线视频| 最黄视频免费看| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡| 国产在线观看jvid| 亚洲成色77777| 一区二区三区精品91| 在线观看国产h片| 亚洲精品成人av观看孕妇| 国产91精品成人一区二区三区 | 精品第一国产精品| 少妇 在线观看| 欧美激情 高清一区二区三区| 久久99一区二区三区| 大片电影免费在线观看免费| 热99国产精品久久久久久7| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 少妇人妻久久综合中文| 丰满少妇做爰视频| 国产成人系列免费观看| 肉色欧美久久久久久久蜜桃| 七月丁香在线播放| 夜夜骑夜夜射夜夜干| 欧美在线黄色| 精品福利永久在线观看| 狂野欧美激情性xxxx| av不卡在线播放| 欧美97在线视频| 天天操日日干夜夜撸| av网站在线播放免费| 国产片特级美女逼逼视频| 久久国产精品男人的天堂亚洲| 亚洲九九香蕉| 一边亲一边摸免费视频| 老司机在亚洲福利影院| 熟女av电影| 欧美精品一区二区免费开放| 欧美大码av| 另类精品久久| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| 成人国产一区最新在线观看 | 国产成人精品久久二区二区免费| 久久人人97超碰香蕉20202| 午夜福利免费观看在线| 极品人妻少妇av视频| 亚洲成人手机| av在线app专区| 免费高清在线观看日韩| 视频区图区小说| 国产99久久九九免费精品| 午夜视频精品福利| 在线精品无人区一区二区三| 久久精品亚洲av国产电影网| 精品一区在线观看国产| 韩国高清视频一区二区三区| 国产真人三级小视频在线观看| 国产一区二区三区综合在线观看| 国产精品偷伦视频观看了| 制服人妻中文乱码| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 免费看十八禁软件| 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 在线观看免费视频网站a站| 亚洲黑人精品在线| 又粗又硬又长又爽又黄的视频| 免费日韩欧美在线观看| 美女中出高潮动态图| 久久久久久久久久久久大奶| 夫妻午夜视频| 中文字幕精品免费在线观看视频| videos熟女内射| 久久人妻福利社区极品人妻图片 | 在线观看www视频免费| 男女床上黄色一级片免费看| 汤姆久久久久久久影院中文字幕| 国产日韩一区二区三区精品不卡| 999精品在线视频| 成年人免费黄色播放视频| 国产麻豆69| 不卡av一区二区三区| 亚洲第一av免费看| 日韩av不卡免费在线播放| 成人国语在线视频| 老司机深夜福利视频在线观看 | 在线观看人妻少妇| 欧美xxⅹ黑人| 亚洲欧洲日产国产| 亚洲欧美激情在线| 精品人妻熟女毛片av久久网站| 国产精品秋霞免费鲁丝片| 2021少妇久久久久久久久久久| 在线观看免费视频网站a站| a级毛片在线看网站| 日韩av免费高清视频| 超碰成人久久| 中文字幕亚洲精品专区| 午夜影院在线不卡| 亚洲欧美一区二区三区黑人| 女警被强在线播放| 99九九在线精品视频| 亚洲图色成人| 99国产精品免费福利视频| 18禁黄网站禁片午夜丰满| 亚洲精品国产av成人精品| 在线观看一区二区三区激情| 精品福利永久在线观看| 日日爽夜夜爽网站| 在线观看人妻少妇| 午夜福利在线免费观看网站| 成年女人毛片免费观看观看9 | 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕欧美一区二区 | 一边亲一边摸免费视频| 亚洲三区欧美一区| 成人午夜精彩视频在线观看| 又大又爽又粗| av在线播放精品| 亚洲精品一区蜜桃| 少妇裸体淫交视频免费看高清 | 精品国产一区二区久久| 精品国产国语对白av| 热99久久久久精品小说推荐| 免费观看a级毛片全部| 真人做人爱边吃奶动态| 国产精品麻豆人妻色哟哟久久| 电影成人av| 亚洲,一卡二卡三卡| 亚洲熟女毛片儿| av欧美777| 久久天躁狠狠躁夜夜2o2o | 国产亚洲av片在线观看秒播厂| 黑丝袜美女国产一区| 国产精品免费大片| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜| 国产成人欧美在线观看 | 久久精品久久久久久久性| 国产欧美日韩精品亚洲av| 国产一区二区在线观看av| 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 国产成人91sexporn| 国产精品久久久久成人av| 国产欧美日韩一区二区三 | 国产精品.久久久| 操美女的视频在线观看| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 成人国产av品久久久| av视频免费观看在线观看| 成人黄色视频免费在线看| 大片免费播放器 马上看| 午夜免费男女啪啪视频观看| 中文字幕人妻熟女乱码| 久久久久网色| 亚洲成av片中文字幕在线观看| 又大又黄又爽视频免费| 国产片特级美女逼逼视频| 91麻豆精品激情在线观看国产 | 97精品久久久久久久久久精品| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 97人妻天天添夜夜摸| 国产在线免费精品| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 免费看不卡的av| 精品国产乱码久久久久久小说| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区 | 国产精品久久久av美女十八| 亚洲精品日韩在线中文字幕| 天堂8中文在线网| 欧美在线黄色| av福利片在线| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 欧美精品亚洲一区二区| 最近中文字幕2019免费版| 久久人人爽av亚洲精品天堂| 美女中出高潮动态图| 老司机午夜十八禁免费视频| 激情视频va一区二区三区| 精品免费久久久久久久清纯 | 一本大道久久a久久精品| 99re6热这里在线精品视频| 美女扒开内裤让男人捅视频| av线在线观看网站| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 久久影院123| 午夜福利乱码中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲欧美激情在线| 男女下面插进去视频免费观看| 亚洲图色成人| 久久久亚洲精品成人影院| 亚洲av成人精品一二三区| 免费观看a级毛片全部| 黄色视频在线播放观看不卡| 精品亚洲成a人片在线观看| 色94色欧美一区二区| 极品少妇高潮喷水抽搐| 一本综合久久免费| 巨乳人妻的诱惑在线观看| 日韩制服骚丝袜av| 性色av一级| 国产精品国产av在线观看| 亚洲精品日韩在线中文字幕| 少妇猛男粗大的猛烈进出视频| 91麻豆精品激情在线观看国产 | 久久精品熟女亚洲av麻豆精品| 久久精品国产亚洲av涩爱| 18禁裸乳无遮挡动漫免费视频| 天天躁日日躁夜夜躁夜夜| 国产真人三级小视频在线观看| 国产福利在线免费观看视频| 亚洲情色 制服丝袜| 欧美97在线视频| 国产精品国产三级专区第一集| 在线观看国产h片| 成年av动漫网址| av网站免费在线观看视频| 91老司机精品| 女人高潮潮喷娇喘18禁视频| 美女大奶头黄色视频| 亚洲精品国产av成人精品| av在线老鸭窝| 成人免费观看视频高清| 日韩中文字幕视频在线看片| 蜜桃国产av成人99| 一级片免费观看大全| 91精品国产国语对白视频| 亚洲成人国产一区在线观看 | 久久这里只有精品19| 手机成人av网站| 男女床上黄色一级片免费看| 一边亲一边摸免费视频| 一边摸一边做爽爽视频免费| 看免费成人av毛片| 最黄视频免费看| 中文乱码字字幕精品一区二区三区| 久久鲁丝午夜福利片| av片东京热男人的天堂| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看| 一级毛片电影观看| 悠悠久久av| 啦啦啦 在线观看视频| 色婷婷av一区二区三区视频| 亚洲精品一卡2卡三卡4卡5卡 | 一级毛片电影观看| 2021少妇久久久久久久久久久| 国产不卡av网站在线观看| 18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美软件| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 中文欧美无线码| 秋霞在线观看毛片| 狠狠婷婷综合久久久久久88av| 亚洲,一卡二卡三卡| 日本五十路高清| 老司机午夜十八禁免费视频| 男人舔女人的私密视频| 这个男人来自地球电影免费观看| 国产片特级美女逼逼视频| 人妻一区二区av| 久久热在线av| 亚洲图色成人| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 赤兔流量卡办理| 啦啦啦在线观看免费高清www| 亚洲午夜精品一区,二区,三区| 视频区欧美日本亚洲| av在线播放精品| 欧美av亚洲av综合av国产av| 69精品国产乱码久久久| 欧美日韩国产mv在线观看视频| 九草在线视频观看| 国产精品三级大全| 日韩一区二区三区影片| 亚洲人成77777在线视频| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 中文字幕人妻熟女乱码| 久久精品久久久久久久性| 亚洲av电影在线进入| 精品一区在线观看国产| 国产午夜精品一二区理论片| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成国产av| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 日韩,欧美,国产一区二区三区| 日本vs欧美在线观看视频| 99久久人妻综合| 大型av网站在线播放| 少妇人妻久久综合中文| 丝袜喷水一区| 最新在线观看一区二区三区 | 50天的宝宝边吃奶边哭怎么回事| 18禁国产床啪视频网站| 最新在线观看一区二区三区 | 丁香六月天网| 最新的欧美精品一区二区| 欧美成人午夜精品| 男女免费视频国产| 一边摸一边抽搐一进一出视频| 亚洲欧美精品自产自拍| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 中文精品一卡2卡3卡4更新| 欧美在线黄色| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久| 黄色片一级片一级黄色片| av线在线观看网站| 欧美人与性动交α欧美精品济南到| 欧美成人午夜精品| 午夜福利免费观看在线| 国产99久久九九免费精品| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 丰满少妇做爰视频| 最近最新中文字幕大全免费视频 | 少妇被粗大的猛进出69影院| www.熟女人妻精品国产| 国产欧美日韩一区二区三 | 18禁黄网站禁片午夜丰满| 免费人妻精品一区二区三区视频| 欧美日韩黄片免| 日本一区二区免费在线视频| 精品亚洲成国产av| 大片电影免费在线观看免费| h视频一区二区三区| 亚洲国产日韩一区二区| 美女高潮到喷水免费观看| 啦啦啦在线免费观看视频4| 99精国产麻豆久久婷婷| 9热在线视频观看99| 嫁个100分男人电影在线观看 | 国产1区2区3区精品| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| videosex国产| 欧美 亚洲 国产 日韩一| 最近中文字幕2019免费版| 黄色视频在线播放观看不卡|